WIP: страницы для правил #62
@ -1,39 +1,39 @@
|
|||||||
package ru.ulstu.extractor.recommendation.controller;
|
package ru.ulstu.extractor.assessment.controller;
|
||||||
|
|
||||||
import org.springframework.stereotype.Controller;
|
import org.springframework.stereotype.Controller;
|
||||||
import org.springframework.ui.Model;
|
import org.springframework.ui.Model;
|
||||||
import org.springframework.web.bind.annotation.GetMapping;
|
import org.springframework.web.bind.annotation.GetMapping;
|
||||||
import org.springframework.web.bind.annotation.RequestParam;
|
import org.springframework.web.bind.annotation.RequestParam;
|
||||||
|
import ru.ulstu.extractor.assessment.model.FilterBranchForm;
|
||||||
import ru.ulstu.extractor.branch.service.BranchService;
|
import ru.ulstu.extractor.branch.service.BranchService;
|
||||||
import ru.ulstu.extractor.recommendation.model.FilterBranchForm;
|
|
||||||
import ru.ulstu.extractor.rule.service.FuzzyInferenceService;
|
import ru.ulstu.extractor.rule.service.FuzzyInferenceService;
|
||||||
import springfox.documentation.annotations.ApiIgnore;
|
import springfox.documentation.annotations.ApiIgnore;
|
||||||
|
|
||||||
import java.util.Optional;
|
import java.util.Optional;
|
||||||
|
|
||||||
import static ru.ulstu.extractor.core.Route.RECOMMENDATIONS;
|
import static ru.ulstu.extractor.core.Route.ASSESSMENTS;
|
||||||
|
|
||||||
@Controller
|
@Controller
|
||||||
@ApiIgnore
|
@ApiIgnore
|
||||||
public class RecommendationController {
|
public class AssessmentController {
|
||||||
private final FuzzyInferenceService fuzzyInferenceService;
|
private final FuzzyInferenceService fuzzyInferenceService;
|
||||||
private final BranchService branchService;
|
private final BranchService branchService;
|
||||||
|
|
||||||
public RecommendationController(FuzzyInferenceService fuzzyInferenceService,
|
public AssessmentController(FuzzyInferenceService fuzzyInferenceService,
|
||||||
BranchService branchService) {
|
BranchService branchService) {
|
||||||
this.fuzzyInferenceService = fuzzyInferenceService;
|
this.fuzzyInferenceService = fuzzyInferenceService;
|
||||||
this.branchService = branchService;
|
this.branchService = branchService;
|
||||||
}
|
}
|
||||||
|
|
||||||
@GetMapping(RECOMMENDATIONS)
|
@GetMapping(ASSESSMENTS)
|
||||||
public String getRecommendations(Model model, @RequestParam Optional<Integer> branchId) {
|
public String getAssessments(Model model, @RequestParam Optional<Integer> branchId) {
|
||||||
model.addAttribute("branches", branchService.findAll());
|
model.addAttribute("branches", branchService.findAll());
|
||||||
if (branchId.isPresent()) {
|
if (branchId.isPresent()) {
|
||||||
model.addAttribute("recommendations", fuzzyInferenceService.getRecommendations(branchId.get()));
|
model.addAttribute("assessments", fuzzyInferenceService.getAssessmentsByForecastTendencies(branchId.get()));
|
||||||
model.addAttribute("filterBranchForm", new FilterBranchForm(branchId.get()));
|
model.addAttribute("filterBranchForm", new FilterBranchForm(branchId.get()));
|
||||||
} else {
|
} else {
|
||||||
model.addAttribute("filterBranchForm", new FilterBranchForm());
|
model.addAttribute("filterBranchForm", new FilterBranchForm());
|
||||||
}
|
}
|
||||||
return RECOMMENDATIONS;
|
return ASSESSMENTS;
|
||||||
}
|
}
|
||||||
}
|
}
|
@ -0,0 +1,40 @@
|
|||||||
|
package ru.ulstu.extractor.assessment.model;
|
||||||
|
|
||||||
|
import ru.ulstu.extractor.rule.model.DbRule;
|
||||||
|
import ru.ulstu.extractor.ts.model.TimeSeriesType;
|
||||||
|
|
||||||
|
public class Assessment {
|
||||||
|
private final String consequent;
|
||||||
|
private final TimeSeriesType firstAntecedent;
|
||||||
|
private final String firstAntecedentTendency;
|
||||||
|
private final TimeSeriesType secondAntecedent;
|
||||||
|
private final String secondAntecedentTendency;
|
||||||
|
|
||||||
|
public Assessment(DbRule dbRule) {
|
||||||
|
this.consequent = dbRule.getConsequent();
|
||||||
|
this.firstAntecedent = dbRule.getFirstAntecedent();
|
||||||
|
this.firstAntecedentTendency = dbRule.getFirstAntecedentValue().getAntecedentValue();
|
||||||
|
this.secondAntecedent = dbRule.getSecondAntecedent();
|
||||||
|
this.secondAntecedentTendency = dbRule.getSecondAntecedentValue().getAntecedentValue();
|
||||||
|
}
|
||||||
|
|
||||||
|
public String getConsequent() {
|
||||||
|
return consequent;
|
||||||
|
}
|
||||||
|
|
||||||
|
public TimeSeriesType getFirstAntecedent() {
|
||||||
|
return firstAntecedent;
|
||||||
|
}
|
||||||
|
|
||||||
|
public String getFirstAntecedentTendency() {
|
||||||
|
return firstAntecedentTendency;
|
||||||
|
}
|
||||||
|
|
||||||
|
public TimeSeriesType getSecondAntecedent() {
|
||||||
|
return secondAntecedent;
|
||||||
|
}
|
||||||
|
|
||||||
|
public String getSecondAntecedentTendency() {
|
||||||
|
return secondAntecedentTendency;
|
||||||
|
}
|
||||||
|
}
|
@ -1,4 +1,4 @@
|
|||||||
package ru.ulstu.extractor.recommendation.model;
|
package ru.ulstu.extractor.assessment.model;
|
||||||
|
|
||||||
public class FilterBranchForm {
|
public class FilterBranchForm {
|
||||||
private Integer branchId;
|
private Integer branchId;
|
@ -19,7 +19,7 @@ public class Route {
|
|||||||
public static final String STATISTIC = "statistic";
|
public static final String STATISTIC = "statistic";
|
||||||
public static final String LIST_RULE = "listRules";
|
public static final String LIST_RULE = "listRules";
|
||||||
public static final String ADD_RULE = "addRule";
|
public static final String ADD_RULE = "addRule";
|
||||||
public static final String RECOMMENDATIONS = "recommendations";
|
public static final String ASSESSMENTS = "assessments";
|
||||||
public static final String DELETE_RULE = "deleteRule";
|
public static final String DELETE_RULE = "deleteRule";
|
||||||
|
|
||||||
public static String getLIST_INDEXED_REPOSITORIES() {
|
public static String getLIST_INDEXED_REPOSITORIES() {
|
||||||
@ -42,7 +42,7 @@ public class Route {
|
|||||||
return STATISTIC;
|
return STATISTIC;
|
||||||
}
|
}
|
||||||
|
|
||||||
public static String getRECOMMENDATIONS() {
|
public static String getASSESSMENTS() {
|
||||||
return RECOMMENDATIONS;
|
return ASSESSMENTS;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -0,0 +1,7 @@
|
|||||||
|
package ru.ulstu.extractor.rule.model;
|
||||||
|
|
||||||
|
public class AssessmentException extends RuntimeException {
|
||||||
|
public AssessmentException(String message) {
|
||||||
|
super(message);
|
||||||
|
}
|
||||||
|
}
|
@ -12,16 +12,20 @@ import com.fuzzylite.term.Triangle;
|
|||||||
import com.fuzzylite.variable.InputVariable;
|
import com.fuzzylite.variable.InputVariable;
|
||||||
import com.fuzzylite.variable.OutputVariable;
|
import com.fuzzylite.variable.OutputVariable;
|
||||||
import org.springframework.stereotype.Service;
|
import org.springframework.stereotype.Service;
|
||||||
|
import ru.ulstu.extractor.assessment.model.Assessment;
|
||||||
import ru.ulstu.extractor.gitrepository.service.GitRepositoryService;
|
import ru.ulstu.extractor.gitrepository.service.GitRepositoryService;
|
||||||
import ru.ulstu.extractor.rule.model.AntecedentValue;
|
import ru.ulstu.extractor.rule.model.AntecedentValue;
|
||||||
|
import ru.ulstu.extractor.rule.model.AssessmentException;
|
||||||
import ru.ulstu.extractor.rule.model.DbRule;
|
import ru.ulstu.extractor.rule.model.DbRule;
|
||||||
import ru.ulstu.extractor.ts.model.TimeSeries;
|
import ru.ulstu.extractor.ts.model.TimeSeries;
|
||||||
import ru.ulstu.extractor.ts.service.TimeSeriesService;
|
import ru.ulstu.extractor.ts.service.TimeSeriesService;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
import java.util.HashMap;
|
import java.util.HashMap;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import java.util.Map;
|
import java.util.Map;
|
||||||
import java.util.stream.Collectors;
|
import java.util.stream.Collectors;
|
||||||
|
import java.util.stream.Stream;
|
||||||
|
|
||||||
@Service
|
@Service
|
||||||
public class FuzzyInferenceService {
|
public class FuzzyInferenceService {
|
||||||
@ -29,6 +33,7 @@ public class FuzzyInferenceService {
|
|||||||
private final static String RULE_TEMPLATE = "if %s is %s and %s is %s then "
|
private final static String RULE_TEMPLATE = "if %s is %s and %s is %s then "
|
||||||
+ OUTPUT_VARIABLE_NAME
|
+ OUTPUT_VARIABLE_NAME
|
||||||
+ " is %s";
|
+ " is %s";
|
||||||
|
private final static String NO_RESULT = "Нет результата";
|
||||||
private final DbRuleService ruleService;
|
private final DbRuleService ruleService;
|
||||||
private final AntecedentValueService antecedentValueService;
|
private final AntecedentValueService antecedentValueService;
|
||||||
private final GitRepositoryService gitRepositoryService;
|
private final GitRepositoryService gitRepositoryService;
|
||||||
@ -44,10 +49,9 @@ public class FuzzyInferenceService {
|
|||||||
this.timeSeriesService = timeSeriesService;
|
this.timeSeriesService = timeSeriesService;
|
||||||
}
|
}
|
||||||
|
|
||||||
public List<String> getRulesFromDb(Map<String, Double> variableValues) {
|
public List<String> getRulesFromDb(List<DbRule> dbRules, Map<String, Double> variableValues) {
|
||||||
List<DbRule> dbDbRules = ruleService.getList();
|
validateVariables(variableValues, dbRules);
|
||||||
validateVariables(variableValues, dbDbRules);
|
return dbRules.stream().map(this::getFuzzyRule).collect(Collectors.toList());
|
||||||
return dbDbRules.stream().map(this::getFuzzyRule).collect(Collectors.toList());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
private String getFuzzyRule(DbRule dbRule) {
|
private String getFuzzyRule(DbRule dbRule) {
|
||||||
@ -56,13 +60,14 @@ public class FuzzyInferenceService {
|
|||||||
dbRule.getFirstAntecedentValue().getAntecedentValue(),
|
dbRule.getFirstAntecedentValue().getAntecedentValue(),
|
||||||
dbRule.getSecondAntecedent().name(),
|
dbRule.getSecondAntecedent().name(),
|
||||||
dbRule.getSecondAntecedentValue().getAntecedentValue(),
|
dbRule.getSecondAntecedentValue().getAntecedentValue(),
|
||||||
dbRule.getConsequent().replaceAll(" ", "_"));
|
dbRule.getId());
|
||||||
}
|
}
|
||||||
|
|
||||||
private RuleBlock getRuleBlock(Engine engine,
|
private RuleBlock getRuleBlock(Engine engine,
|
||||||
|
List<DbRule> dbRules,
|
||||||
Map<String, Double> variableValues,
|
Map<String, Double> variableValues,
|
||||||
List<AntecedentValue> antecedentValues,
|
List<AntecedentValue> antecedentValues,
|
||||||
List<String> consequentValues) {
|
List<Integer> consequentValues) {
|
||||||
variableValues.forEach((key, value) -> {
|
variableValues.forEach((key, value) -> {
|
||||||
InputVariable input = new InputVariable();
|
InputVariable input = new InputVariable();
|
||||||
input.setName(key);
|
input.setName(key);
|
||||||
@ -86,7 +91,7 @@ public class FuzzyInferenceService {
|
|||||||
output.setDefaultValue(Double.NaN);
|
output.setDefaultValue(Double.NaN);
|
||||||
output.setLockValueInRange(false);
|
output.setLockValueInRange(false);
|
||||||
for (int i = 0; i < consequentValues.size(); i++) {
|
for (int i = 0; i < consequentValues.size(); i++) {
|
||||||
output.addTerm(new Triangle(consequentValues.get(i).replaceAll(" ", "_"), i - 0.1, i + 2.1));
|
output.addTerm(new Triangle(consequentValues.get(i).toString(), i - 0.1, i + 2.1));
|
||||||
}
|
}
|
||||||
engine.addOutputVariable(output);
|
engine.addOutputVariable(output);
|
||||||
|
|
||||||
@ -98,7 +103,7 @@ public class FuzzyInferenceService {
|
|||||||
mamdani.setDisjunction(new BoundedSum());
|
mamdani.setDisjunction(new BoundedSum());
|
||||||
mamdani.setImplication(new AlgebraicProduct());
|
mamdani.setImplication(new AlgebraicProduct());
|
||||||
mamdani.setActivation(new Highest());
|
mamdani.setActivation(new Highest());
|
||||||
getRulesFromDb(variableValues).forEach(r -> mamdani.addRule(Rule.parse(r, engine)));
|
getRulesFromDb(dbRules, variableValues).forEach(r -> mamdani.addRule(Rule.parse(r, engine)));
|
||||||
return mamdani;
|
return mamdani;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -109,15 +114,67 @@ public class FuzzyInferenceService {
|
|||||||
return engine;
|
return engine;
|
||||||
}
|
}
|
||||||
|
|
||||||
public String getRecommendations(Integer branchId) {
|
public List<Assessment> getAssessmentsByForecastTendencies(Integer branchId) {
|
||||||
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||||
|
List<DbRule> dbRules = ruleService.getList();
|
||||||
|
try {
|
||||||
|
return getAssessmentsByTimeSeriesTendencies(dbRules, timeSeries);
|
||||||
|
} catch (AssessmentException ex) {
|
||||||
|
return new ArrayList<>();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public List<Assessment> getAssessmentsByLastValues(Integer branchId) {
|
||||||
|
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||||
|
List<DbRule> dbRules = ruleService.getList();
|
||||||
|
return getAssessmentsByLastValues(dbRules, timeSeries);
|
||||||
|
}
|
||||||
|
|
||||||
|
private List<Assessment> getFuzzyInference(List<DbRule> dbRules, Map<String, Double> variableValues) {
|
||||||
Engine engine = getFuzzyEngine();
|
Engine engine = getFuzzyEngine();
|
||||||
List<AntecedentValue> antecedentValues = antecedentValueService.getList();
|
List<AntecedentValue> antecedentValues = Stream.concat(dbRules.stream().map(DbRule::getFirstAntecedentValue),
|
||||||
List<String> consequentValues = ruleService.getConsequentList();
|
dbRules.stream().map(DbRule::getSecondAntecedentValue)).distinct().collect(Collectors.toList());
|
||||||
|
List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
|
||||||
|
engine.addRuleBlock(getRuleBlock(engine, dbRules, variableValues, antecedentValues, consequentValues));
|
||||||
|
String consequent = getConsequent(engine, variableValues);
|
||||||
|
if (consequent.equals(NO_RESULT)) {
|
||||||
|
return new ArrayList<>();
|
||||||
|
}
|
||||||
|
return dbRules
|
||||||
|
.stream()
|
||||||
|
.filter(r -> r.getId().equals(Integer.valueOf(consequent)))
|
||||||
|
.map(Assessment::new)
|
||||||
|
.collect(Collectors.toList());
|
||||||
|
}
|
||||||
|
|
||||||
|
private List<Assessment> getSingleAssessmentByTimeSeriesTendencies(List<DbRule> dbRules, List<TimeSeries> timeSeries) throws AssessmentException {
|
||||||
Map<String, Double> variableValues = new HashMap<>();
|
Map<String, Double> variableValues = new HashMap<>();
|
||||||
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService.getLastTimeSeriesTendency(ts)));
|
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(),
|
||||||
engine.addRuleBlock(getRuleBlock(engine, variableValues, antecedentValues, consequentValues));
|
timeSeriesService.getLastTimeSeriesTendency(ts)
|
||||||
return getConsequent(engine, variableValues);
|
.orElseThrow(() -> new AssessmentException(""))));
|
||||||
|
return getFuzzyInference(dbRules, variableValues);
|
||||||
|
}
|
||||||
|
|
||||||
|
private List<Assessment> getAssessmentsByTimeSeriesTendencies(List<DbRule> dbRules, List<TimeSeries> timeSeries) {
|
||||||
|
return dbRules
|
||||||
|
.stream()
|
||||||
|
.flatMap(dbRule -> {
|
||||||
|
Map<String, Double> variableValues = new HashMap<>();
|
||||||
|
timeSeries
|
||||||
|
.stream()
|
||||||
|
.filter(ts -> ts.getTimeSeriesType() == dbRule.getFirstAntecedent()
|
||||||
|
|| ts.getTimeSeriesType() == dbRule.getSecondAntecedent())
|
||||||
|
.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService
|
||||||
|
.getLastTimeSeriesTendency(ts)
|
||||||
|
.orElseThrow(() -> new AssessmentException(""))));
|
||||||
|
return getFuzzyInference(List.of(dbRule), variableValues).stream();
|
||||||
|
}).collect(Collectors.toList());
|
||||||
|
}
|
||||||
|
|
||||||
|
private List<Assessment> getAssessmentsByLastValues(List<DbRule> dbRules, List<TimeSeries> timeSeries) {
|
||||||
|
Map<String, Double> variableValues = new HashMap<>();
|
||||||
|
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), ts.getValues().get(ts.getValues().size() - 1).getValue()));
|
||||||
|
return getFuzzyInference(dbRules, variableValues);
|
||||||
}
|
}
|
||||||
|
|
||||||
private void validateVariables(Map<String, Double> variableValues, List<DbRule> dbDbRules) {
|
private void validateVariables(Map<String, Double> variableValues, List<DbRule> dbDbRules) {
|
||||||
@ -144,7 +201,7 @@ public class FuzzyInferenceService {
|
|||||||
outputVariable.defuzzify();
|
outputVariable.defuzzify();
|
||||||
}
|
}
|
||||||
return (outputVariable == null || Double.isNaN(outputVariable.getValue()))
|
return (outputVariable == null || Double.isNaN(outputVariable.getValue()))
|
||||||
? "Нет рекомендаций"
|
? NO_RESULT
|
||||||
: outputVariable.highestMembership(outputVariable.getValue()).getSecond().getName();
|
: outputVariable.highestMembership(outputVariable.getValue()).getSecond().getName();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -115,16 +115,16 @@ public class TimeSeriesService {
|
|||||||
return timeSeriesRepository.getTimeSeriesByBranchId(branchId);
|
return timeSeriesRepository.getTimeSeriesByBranchId(branchId);
|
||||||
}
|
}
|
||||||
|
|
||||||
public Double getLastTimeSeriesTendency(TimeSeries ts) {
|
public Optional<Double> getLastTimeSeriesTendency(TimeSeries ts) {
|
||||||
if (ts != null && ts.getValues().size() > 5) {
|
if (ts != null && ts.getValues().size() > 5) {
|
||||||
JSONObject response = httpService.post(TIME_SERIES_TENDENCY_URL, new JSONObject(new SmoothingTimeSeries(ts)));
|
JSONObject response = httpService.post(TIME_SERIES_TENDENCY_URL, new JSONObject(new SmoothingTimeSeries(ts)));
|
||||||
LOG.debug("Успешно отправлен на сервис сглаживания");
|
LOG.debug("Успешно отправлен на сервис сглаживания");
|
||||||
if (response.has("response") && response.getString("response").equals("empty")) {
|
if (response.has("response") && response.getString("response").equals("empty")) {
|
||||||
return 0.0;
|
return Optional.empty();
|
||||||
}
|
}
|
||||||
JSONArray jsonArray = response.getJSONObject("timeSeries").getJSONArray("values");
|
JSONArray jsonArray = response.getJSONObject("timeSeries").getJSONArray("values");
|
||||||
return jsonArray.getJSONObject(jsonArray.length() - 1).getDouble("value");
|
return Optional.of(jsonArray.getJSONObject(jsonArray.length() - 1).getDouble("value"));
|
||||||
}
|
}
|
||||||
return 0.0;
|
return Optional.empty();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -7,7 +7,7 @@
|
|||||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
|
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
|
||||||
</head>
|
</head>
|
||||||
<div class="container" layout:fragment="content">
|
<div class="container" layout:fragment="content">
|
||||||
<form action="#" th:action="${@route.RECOMMENDATIONS}" th:object="${filterBranchForm}" method="get">
|
<form action="#" th:action="${@route.ASSESSMENTS}" th:object="${filterBranchForm}" method="get">
|
||||||
<div class="row">
|
<div class="row">
|
||||||
<div class="col-md-2 col-sm-12">
|
<div class="col-md-2 col-sm-12">
|
||||||
Репозиторий-ветка
|
Репозиторий-ветка
|
||||||
@ -26,17 +26,26 @@
|
|||||||
])
|
])
|
||||||
;
|
;
|
||||||
$('#select-branch').selectpicker('refresh');
|
$('#select-branch').selectpicker('refresh');
|
||||||
|
|
||||||
</script>
|
</script>
|
||||||
</div>
|
</div>
|
||||||
<input type="submit" class="btn btn-outline-success w-100" value="Применить фильтр"/>
|
<input type="submit" class="btn btn-outline-success w-100" value="Применить фильтр"/>
|
||||||
</div>
|
</div>
|
||||||
<div th:if="*{branchId == null}">Выбрерите ветку для получения рекомендаций</div>
|
<div th:if="*{branchId == null}">Выбрерите ветку для получения оценки репозитория</div>
|
||||||
|
|
||||||
<input type="hidden" th:field="*{branchId}">
|
<input type="hidden" th:field="*{branchId}">
|
||||||
</form>
|
</form>
|
||||||
<div th:each="recommendation: ${recommendations}">
|
<div th:if="${assessments != null && #lists.size(assessments) > 0}">
|
||||||
<div th:text="${recommendation}"></div>
|
<h5>Состояние репозитория описывается следующими выражениями:</h5>
|
||||||
|
<div th:each="assessment: ${assessments}">
|
||||||
|
<span th:text="${assessment.consequent}"></span>
|
||||||
|
вследствие тенденции '<span th:text="${assessment.firstAntecedentTendency}"></span>' показателя '<span
|
||||||
|
th:text="${assessment.firstAntecedent.description}"></span>'
|
||||||
|
и тенденции '<span th:text="${assessment.secondAntecedentTendency}"></span>' показателя '<span
|
||||||
|
th:text="${assessment.secondAntecedent.description}"></span>';
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div th:if="${assessments != null && #lists.size(assessments) == 0}">
|
||||||
|
<h5>Нет результатов</h5>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</html>
|
</html>
|
@ -41,7 +41,7 @@
|
|||||||
<a class="nav-link" href="/listRules" th:text="Правила">Link</a>
|
<a class="nav-link" href="/listRules" th:text="Правила">Link</a>
|
||||||
</li>
|
</li>
|
||||||
<li class="nav-item">
|
<li class="nav-item">
|
||||||
<a class="nav-link" href="/recommendations" th:text="Рекомендации">Link</a>
|
<a class="nav-link" href="/assessments" th:text="Рекомендации">Link</a>
|
||||||
</li>
|
</li>
|
||||||
</ul>
|
</ul>
|
||||||
</div>
|
</div>
|
||||||
|
Loading…
Reference in New Issue
Block a user