demo #9
@ -8,12 +8,18 @@ import org.springframework.web.bind.annotation.RequestMapping;
|
||||
import org.springframework.web.bind.annotation.RequestMethod;
|
||||
import ru.ulstu.fc.rule.model.Antecedent;
|
||||
import ru.ulstu.fc.rule.model.InferenceForm;
|
||||
import ru.ulstu.fc.rule.service.FuzzyInferenceService;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
@Controller
|
||||
public class InferenceMvcController {
|
||||
private final FuzzyInferenceService fuzzyInferenceService;
|
||||
|
||||
public InferenceMvcController(FuzzyInferenceService fuzzyInferenceService) {
|
||||
this.fuzzyInferenceService = fuzzyInferenceService;
|
||||
}
|
||||
|
||||
@GetMapping("/")
|
||||
public String initInference(Model model) {
|
||||
@ -28,7 +34,7 @@ public class InferenceMvcController {
|
||||
model.addAttribute("ageAntecedents", getAgeAntecedents());
|
||||
model.addAttribute("incomeAntecedents", getIncomeAntecedents());
|
||||
model.addAttribute("inferenceForm", inferenceForm);
|
||||
model.addAttribute("response", "123");
|
||||
model.addAttribute("response", fuzzyInferenceService.getFuzzyInference().get(0));
|
||||
return "index";
|
||||
}
|
||||
|
||||
|
@ -1,84 +1,115 @@
|
||||
package ru.ulstu.fc.rule.service;
|
||||
|
||||
import com.fuzzylite.Engine;
|
||||
import com.fuzzylite.activation.General;
|
||||
import com.fuzzylite.defuzzifier.Centroid;
|
||||
import com.fuzzylite.norm.s.Maximum;
|
||||
import com.fuzzylite.norm.t.AlgebraicProduct;
|
||||
import com.fuzzylite.norm.t.Minimum;
|
||||
import com.fuzzylite.rule.Rule;
|
||||
import com.fuzzylite.rule.RuleBlock;
|
||||
import com.fuzzylite.term.Activated;
|
||||
import com.fuzzylite.term.Triangle;
|
||||
import com.fuzzylite.variable.InputVariable;
|
||||
import com.fuzzylite.variable.OutputVariable;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
import org.springframework.stereotype.Service;
|
||||
|
||||
import java.util.AbstractMap;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Map.Entry;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
@Service
|
||||
public class FuzzyInferenceService {
|
||||
private final static Logger LOG = LoggerFactory.getLogger(FuzzyInferenceService.class);
|
||||
private final static String OUTPUT_VARIABLE_NAME = "state";
|
||||
private final static String OUTPUT_VARIABLE_NAME = "кредит";
|
||||
private final static String RULE_TEMPLATE = "if %s is %s and %s is %s then "
|
||||
+ OUTPUT_VARIABLE_NAME
|
||||
+ " is %s";
|
||||
private final static String NO_RESULT = "Нет результата";
|
||||
|
||||
// private List<String> mapRulesToString(List<DbRule> dbRules) {
|
||||
// return dbRules.stream().map(this::getFuzzyRule).collect(Collectors.toList());
|
||||
// }
|
||||
private Map<String, List<Entry<String, Integer>>> inputFuzzyTerms = Map.of(
|
||||
"возраст",
|
||||
List.of(
|
||||
new AbstractMap.SimpleEntry("молодой", 35),
|
||||
new AbstractMap.SimpleEntry("средний", 60),
|
||||
new AbstractMap.SimpleEntry("старый", 100)),
|
||||
"доход",
|
||||
List.of(
|
||||
new AbstractMap.SimpleEntry("небольшой", 35000),
|
||||
new AbstractMap.SimpleEntry("средний", 100000),
|
||||
new AbstractMap.SimpleEntry("высокий", 500000)));
|
||||
|
||||
// private String getFuzzyRule(DbRule dbRule) {
|
||||
// return format(RULE_TEMPLATE,
|
||||
// dbRule.getFirstAntecedent().name(),
|
||||
// dbRule.getFirstAntecedentValue().getAntecedentValue(),
|
||||
// dbRule.getSecondAntecedent().name(),
|
||||
// dbRule.getSecondAntecedentValue().getAntecedentValue(),
|
||||
// dbRule.getId());
|
||||
// }
|
||||
private Map<String, List<Entry<String, Integer>>> outputFuzzyTerms = Map.of(
|
||||
"кредит", List.of(new AbstractMap.SimpleEntry("небольшой", 200000),
|
||||
new AbstractMap.SimpleEntry("средний", 100000),
|
||||
new AbstractMap.SimpleEntry("большой", 1000000)));
|
||||
|
||||
// private RuleBlock getRuleBlock(Engine engine,
|
||||
// List<DbRule> dbRules,
|
||||
// Map<String, Double> variableValues,
|
||||
// List<AntecedentValue> antecedentValues,
|
||||
// List<Integer> consequentValues) {
|
||||
// variableValues.forEach((key, value) -> {
|
||||
// InputVariable input = new InputVariable();
|
||||
// input.setName(key);
|
||||
// input.setDescription("");
|
||||
// input.setEnabled(true);
|
||||
// input.setRange(-1, 1);
|
||||
// input.setLockValueInRange(false);
|
||||
// input.addTerm(new Triangle("спад", -1, 0));
|
||||
// input.addTerm(new Triangle("стабильно", -0.1, 0.1));
|
||||
// input.addTerm(new Triangle("рост", 0, 1));
|
||||
// engine.addInputVariable(input);
|
||||
// });
|
||||
//
|
||||
// OutputVariable output = new OutputVariable();
|
||||
// output.setName(OUTPUT_VARIABLE_NAME);
|
||||
// output.setDescription("");
|
||||
// output.setEnabled(true);
|
||||
// output.setRange(0, consequentValues.size() + 0.1);
|
||||
// output.setAggregation(new Maximum());
|
||||
// output.setDefuzzifier(new Centroid(10));
|
||||
// output.setDefaultValue(Double.NaN);
|
||||
// output.setLockValueInRange(false);
|
||||
// for (int i = 0; i < consequentValues.size(); i++) {
|
||||
// output.addTerm(new Triangle(consequentValues.get(i).toString(), i, i + 1));
|
||||
// }
|
||||
// engine.addOutputVariable(output);
|
||||
//
|
||||
// RuleBlock mamdani = new RuleBlock();
|
||||
// mamdani.setName("mamdani");
|
||||
// mamdani.setDescription("");
|
||||
// mamdani.setEnabled(true);
|
||||
// mamdani.setConjunction(new Minimum());
|
||||
// //mamdani.setDisjunction(null);
|
||||
// mamdani.setImplication(new AlgebraicProduct());
|
||||
// mamdani.setActivation(new General());
|
||||
// mapRulesToString(dbRules).forEach(r -> {
|
||||
// LOG.info(r);
|
||||
// mamdani.addRule(Rule.parse(r, engine));
|
||||
// });
|
||||
// return mamdani;
|
||||
// }
|
||||
private List<String> getDemoRules() {
|
||||
return List.of(
|
||||
String.format(RULE_TEMPLATE, "возраст", "молодой", "доход", "высокий", "большой"),
|
||||
String.format(RULE_TEMPLATE, "возраст", "средний", "доход", "высокий", "средний"),
|
||||
String.format(RULE_TEMPLATE, "возраст", "старый", "доход", "высокий", "средний")
|
||||
);
|
||||
}
|
||||
|
||||
private List<InputVariable> getInputVariables() {
|
||||
return List.of(getInputVariable("возраст", inputFuzzyTerms.get("возраст")),
|
||||
getInputVariable("доход", inputFuzzyTerms.get("доход")));
|
||||
}
|
||||
|
||||
private InputVariable getInputVariable(String name, List<Entry<String, Integer>> terms) {
|
||||
final InputVariable input = new InputVariable();
|
||||
input.setName(name);
|
||||
input.setDescription("");
|
||||
input.setEnabled(true);
|
||||
input.setLockValueInRange(false);
|
||||
double prev = 0;
|
||||
for (int i = 0; i < terms.size(); i++) {
|
||||
Triangle term = new Triangle(terms.get(i).getKey(), prev, terms.get(i).getValue());
|
||||
prev = term.getVertexB();
|
||||
input.addTerm(term);
|
||||
}
|
||||
return input;
|
||||
}
|
||||
|
||||
private <T extends Enum<T>> OutputVariable getOutputVariable(String name, List<Entry<String, Integer>> terms) {
|
||||
final OutputVariable output = new OutputVariable();
|
||||
output.setName(name);
|
||||
output.setDescription("");
|
||||
output.setEnabled(true);
|
||||
output.setAggregation(new Maximum());
|
||||
output.setDefuzzifier(new Centroid(10));
|
||||
output.setDefaultValue(Double.NaN);
|
||||
output.setLockValueInRange(false);
|
||||
double prev = 0;
|
||||
for (int i = 0; i < terms.size(); i++) {
|
||||
Triangle term = new Triangle(terms.get(i).getKey(), prev, terms.get(i).getValue());
|
||||
prev = term.getVertexB();
|
||||
output.addTerm(term);
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
private RuleBlock getRuleBlock(Engine engine,
|
||||
List<String> rules) {
|
||||
getInputVariables().forEach(engine::addInputVariable);
|
||||
engine.addOutputVariable(getOutputVariable("кредит", outputFuzzyTerms.get("кредит")));
|
||||
|
||||
RuleBlock mamdani = new RuleBlock();
|
||||
mamdani.setName("mamdani");
|
||||
mamdani.setDescription("");
|
||||
mamdani.setEnabled(true);
|
||||
mamdani.setConjunction(new Minimum());
|
||||
mamdani.setImplication(new AlgebraicProduct());
|
||||
mamdani.setActivation(new General());
|
||||
rules.forEach(r -> mamdani.addRule(Rule.parse(r, engine)));
|
||||
return mamdani;
|
||||
}
|
||||
|
||||
private Engine getFuzzyEngine() {
|
||||
Engine engine = new Engine();
|
||||
@ -87,29 +118,6 @@ public class FuzzyInferenceService {
|
||||
return engine;
|
||||
}
|
||||
|
||||
// public List<Assessment> getFuzzyInference(List<DbRule> dbRules,
|
||||
// List<AntecedentValue> antecedentValues,
|
||||
// Map<String, Double> variableValues) {
|
||||
// validateVariables(variableValues, dbRules);
|
||||
// variableValues.entrySet().forEach(e -> System.out.println(e.getKey() + " " + e.getValue()));
|
||||
// Engine engine = getFuzzyEngine();
|
||||
// List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
|
||||
// engine.addRuleBlock(getRuleBlock(engine, dbRules, variableValues, antecedentValues, consequentValues));
|
||||
// Map<String, Double> consequents = getConsequent(engine, variableValues);
|
||||
// if (consequents.containsKey(NO_RESULT)) {
|
||||
// return new ArrayList<>();
|
||||
// }
|
||||
// List<Assessment> assessments = new ArrayList<>();
|
||||
// for (Map.Entry<String, Double> consequent : consequents.entrySet()) {
|
||||
// for (DbRule dbRule : dbRules) {
|
||||
// if (dbRule.getId().equals(Integer.valueOf(consequent.getKey()))) {
|
||||
// assessments.add(new Assessment(dbRule, consequent.getValue()));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// return assessments;
|
||||
// }
|
||||
|
||||
private Map<String, Double> getConsequent(Engine engine, Map<String, Double> variableValues) {
|
||||
OutputVariable outputVariable = engine.getOutputVariable(OUTPUT_VARIABLE_NAME);
|
||||
for (Map.Entry<String, Double> variableValue : variableValues.entrySet()) {
|
||||
@ -124,4 +132,25 @@ public class FuzzyInferenceService {
|
||||
? Map.of(NO_RESULT, 0.0)
|
||||
: outputVariable.fuzzyOutput().getTerms().stream().collect(Collectors.toMap(t -> t.getTerm().getName(), Activated::getDegree));
|
||||
}
|
||||
|
||||
public List<Double> getFuzzyInference() {
|
||||
//variableValues.entrySet().forEach(e -> System.out.println(e.getKey() + " " + e.getValue()));
|
||||
Engine engine = getFuzzyEngine();
|
||||
//List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
|
||||
engine.addRuleBlock(getRuleBlock(engine, getDemoRules()));
|
||||
Map<String, Double> consequents = getConsequent(engine, Map.of("возраст", 20.0, "доход", 250000.0));
|
||||
if (consequents.containsKey(NO_RESULT)) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
/*List<Assessment> assessments = new ArrayList<>();
|
||||
for (Map.Entry<String, Double> consequent : consequents.entrySet()) {
|
||||
for (DbRule dbRule : dbRules) {
|
||||
if (dbRule.getId().equals(Integer.valueOf(consequent.getKey()))) {
|
||||
assessments.add(new Assessment(dbRule, consequent.getValue()));
|
||||
}
|
||||
}
|
||||
}*/
|
||||
return List.of(0.0);
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user