#8 -- Add some fuzzy

This commit is contained in:
Anton Romanov 2023-09-07 16:06:37 +04:00
parent 75765558d4
commit ab9a60cdd2
2 changed files with 117 additions and 82 deletions

View File

@ -8,12 +8,18 @@ import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import ru.ulstu.fc.rule.model.Antecedent;
import ru.ulstu.fc.rule.model.InferenceForm;
import ru.ulstu.fc.rule.service.FuzzyInferenceService;
import java.util.Arrays;
import java.util.List;
@Controller
public class InferenceMvcController {
private final FuzzyInferenceService fuzzyInferenceService;
public InferenceMvcController(FuzzyInferenceService fuzzyInferenceService) {
this.fuzzyInferenceService = fuzzyInferenceService;
}
@GetMapping("/")
public String initInference(Model model) {
@ -28,7 +34,7 @@ public class InferenceMvcController {
model.addAttribute("ageAntecedents", getAgeAntecedents());
model.addAttribute("incomeAntecedents", getIncomeAntecedents());
model.addAttribute("inferenceForm", inferenceForm);
model.addAttribute("response", "123");
model.addAttribute("response", fuzzyInferenceService.getFuzzyInference().get(0));
return "index";
}

View File

@ -1,84 +1,115 @@
package ru.ulstu.fc.rule.service;
import com.fuzzylite.Engine;
import com.fuzzylite.activation.General;
import com.fuzzylite.defuzzifier.Centroid;
import com.fuzzylite.norm.s.Maximum;
import com.fuzzylite.norm.t.AlgebraicProduct;
import com.fuzzylite.norm.t.Minimum;
import com.fuzzylite.rule.Rule;
import com.fuzzylite.rule.RuleBlock;
import com.fuzzylite.term.Activated;
import com.fuzzylite.term.Triangle;
import com.fuzzylite.variable.InputVariable;
import com.fuzzylite.variable.OutputVariable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
import java.util.AbstractMap;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.stream.Collectors;
@Service
public class FuzzyInferenceService {
private final static Logger LOG = LoggerFactory.getLogger(FuzzyInferenceService.class);
private final static String OUTPUT_VARIABLE_NAME = "state";
private final static String OUTPUT_VARIABLE_NAME = "кредит";
private final static String RULE_TEMPLATE = "if %s is %s and %s is %s then "
+ OUTPUT_VARIABLE_NAME
+ " is %s";
private final static String NO_RESULT = "Нет результата";
// private List<String> mapRulesToString(List<DbRule> dbRules) {
// return dbRules.stream().map(this::getFuzzyRule).collect(Collectors.toList());
// }
private Map<String, List<Entry<String, Integer>>> inputFuzzyTerms = Map.of(
"возраст",
List.of(
new AbstractMap.SimpleEntry("молодой", 35),
new AbstractMap.SimpleEntry("средний", 60),
new AbstractMap.SimpleEntry("старый", 100)),
"доход",
List.of(
new AbstractMap.SimpleEntry("небольшой", 35000),
new AbstractMap.SimpleEntry("средний", 100000),
new AbstractMap.SimpleEntry("высокий", 500000)));
// private String getFuzzyRule(DbRule dbRule) {
// return format(RULE_TEMPLATE,
// dbRule.getFirstAntecedent().name(),
// dbRule.getFirstAntecedentValue().getAntecedentValue(),
// dbRule.getSecondAntecedent().name(),
// dbRule.getSecondAntecedentValue().getAntecedentValue(),
// dbRule.getId());
// }
private Map<String, List<Entry<String, Integer>>> outputFuzzyTerms = Map.of(
"кредит", List.of(new AbstractMap.SimpleEntry("небольшой", 200000),
new AbstractMap.SimpleEntry("средний", 100000),
new AbstractMap.SimpleEntry("большой", 1000000)));
// private RuleBlock getRuleBlock(Engine engine,
// List<DbRule> dbRules,
// Map<String, Double> variableValues,
// List<AntecedentValue> antecedentValues,
// List<Integer> consequentValues) {
// variableValues.forEach((key, value) -> {
// InputVariable input = new InputVariable();
// input.setName(key);
// input.setDescription("");
// input.setEnabled(true);
// input.setRange(-1, 1);
// input.setLockValueInRange(false);
// input.addTerm(new Triangle("спад", -1, 0));
// input.addTerm(new Triangle("стабильно", -0.1, 0.1));
// input.addTerm(new Triangle("рост", 0, 1));
// engine.addInputVariable(input);
// });
//
// OutputVariable output = new OutputVariable();
// output.setName(OUTPUT_VARIABLE_NAME);
// output.setDescription("");
// output.setEnabled(true);
// output.setRange(0, consequentValues.size() + 0.1);
// output.setAggregation(new Maximum());
// output.setDefuzzifier(new Centroid(10));
// output.setDefaultValue(Double.NaN);
// output.setLockValueInRange(false);
// for (int i = 0; i < consequentValues.size(); i++) {
// output.addTerm(new Triangle(consequentValues.get(i).toString(), i, i + 1));
// }
// engine.addOutputVariable(output);
//
// RuleBlock mamdani = new RuleBlock();
// mamdani.setName("mamdani");
// mamdani.setDescription("");
// mamdani.setEnabled(true);
// mamdani.setConjunction(new Minimum());
// //mamdani.setDisjunction(null);
// mamdani.setImplication(new AlgebraicProduct());
// mamdani.setActivation(new General());
// mapRulesToString(dbRules).forEach(r -> {
// LOG.info(r);
// mamdani.addRule(Rule.parse(r, engine));
// });
// return mamdani;
// }
private List<String> getDemoRules() {
return List.of(
String.format(RULE_TEMPLATE, "возраст", "молодой", "доход", "высокий", "большой"),
String.format(RULE_TEMPLATE, "возраст", "средний", "доход", "высокий", "средний"),
String.format(RULE_TEMPLATE, "возраст", "старый", "доход", "высокий", "средний")
);
}
private List<InputVariable> getInputVariables() {
return List.of(getInputVariable("возраст", inputFuzzyTerms.get("возраст")),
getInputVariable("доход", inputFuzzyTerms.get("доход")));
}
private InputVariable getInputVariable(String name, List<Entry<String, Integer>> terms) {
final InputVariable input = new InputVariable();
input.setName(name);
input.setDescription("");
input.setEnabled(true);
input.setLockValueInRange(false);
double prev = 0;
for (int i = 0; i < terms.size(); i++) {
Triangle term = new Triangle(terms.get(i).getKey(), prev, terms.get(i).getValue());
prev = term.getVertexB();
input.addTerm(term);
}
return input;
}
private <T extends Enum<T>> OutputVariable getOutputVariable(String name, List<Entry<String, Integer>> terms) {
final OutputVariable output = new OutputVariable();
output.setName(name);
output.setDescription("");
output.setEnabled(true);
output.setAggregation(new Maximum());
output.setDefuzzifier(new Centroid(10));
output.setDefaultValue(Double.NaN);
output.setLockValueInRange(false);
double prev = 0;
for (int i = 0; i < terms.size(); i++) {
Triangle term = new Triangle(terms.get(i).getKey(), prev, terms.get(i).getValue());
prev = term.getVertexB();
output.addTerm(term);
}
return output;
}
private RuleBlock getRuleBlock(Engine engine,
List<String> rules) {
getInputVariables().forEach(engine::addInputVariable);
engine.addOutputVariable(getOutputVariable("кредит", outputFuzzyTerms.get("кредит")));
RuleBlock mamdani = new RuleBlock();
mamdani.setName("mamdani");
mamdani.setDescription("");
mamdani.setEnabled(true);
mamdani.setConjunction(new Minimum());
mamdani.setImplication(new AlgebraicProduct());
mamdani.setActivation(new General());
rules.forEach(r -> mamdani.addRule(Rule.parse(r, engine)));
return mamdani;
}
private Engine getFuzzyEngine() {
Engine engine = new Engine();
@ -87,29 +118,6 @@ public class FuzzyInferenceService {
return engine;
}
// public List<Assessment> getFuzzyInference(List<DbRule> dbRules,
// List<AntecedentValue> antecedentValues,
// Map<String, Double> variableValues) {
// validateVariables(variableValues, dbRules);
// variableValues.entrySet().forEach(e -> System.out.println(e.getKey() + " " + e.getValue()));
// Engine engine = getFuzzyEngine();
// List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
// engine.addRuleBlock(getRuleBlock(engine, dbRules, variableValues, antecedentValues, consequentValues));
// Map<String, Double> consequents = getConsequent(engine, variableValues);
// if (consequents.containsKey(NO_RESULT)) {
// return new ArrayList<>();
// }
// List<Assessment> assessments = new ArrayList<>();
// for (Map.Entry<String, Double> consequent : consequents.entrySet()) {
// for (DbRule dbRule : dbRules) {
// if (dbRule.getId().equals(Integer.valueOf(consequent.getKey()))) {
// assessments.add(new Assessment(dbRule, consequent.getValue()));
// }
// }
// }
// return assessments;
// }
private Map<String, Double> getConsequent(Engine engine, Map<String, Double> variableValues) {
OutputVariable outputVariable = engine.getOutputVariable(OUTPUT_VARIABLE_NAME);
for (Map.Entry<String, Double> variableValue : variableValues.entrySet()) {
@ -124,4 +132,25 @@ public class FuzzyInferenceService {
? Map.of(NO_RESULT, 0.0)
: outputVariable.fuzzyOutput().getTerms().stream().collect(Collectors.toMap(t -> t.getTerm().getName(), Activated::getDegree));
}
public List<Double> getFuzzyInference() {
//variableValues.entrySet().forEach(e -> System.out.println(e.getKey() + " " + e.getValue()));
Engine engine = getFuzzyEngine();
//List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
engine.addRuleBlock(getRuleBlock(engine, getDemoRules()));
Map<String, Double> consequents = getConsequent(engine, Map.of("возраст", 20.0, "доход", 250000.0));
if (consequents.containsKey(NO_RESULT)) {
return new ArrayList<>();
}
/*List<Assessment> assessments = new ArrayList<>();
for (Map.Entry<String, Double> consequent : consequents.entrySet()) {
for (DbRule dbRule : dbRules) {
if (dbRule.getId().equals(Integer.valueOf(consequent.getKey()))) {
assessments.add(new Assessment(dbRule, consequent.getValue()));
}
}
}*/
return List.of(0.0);
}
}