179 lines
5.1 KiB
Python
179 lines
5.1 KiB
Python
#!/usr/bin/env python3
|
|
import json
|
|
import os
|
|
import sys
|
|
from datetime import date, datetime
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from geopy.extra.rate_limiter import RateLimiter
|
|
from geopy.geocoders import Nominatim
|
|
|
|
EMPTY_AGE = 0
|
|
UNIVERSITY_AGE = 21
|
|
SCHOOL_BEGIN_AGE = 7
|
|
SCHOOL_GRADUATED_AGE = 17
|
|
|
|
geolocator = Nominatim(user_agent="MyApp")
|
|
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
|
|
|
geo_cache = {}
|
|
|
|
|
|
def is_empty_str(value):
|
|
if value is None:
|
|
return True
|
|
return len(str(value).strip()) == 0
|
|
|
|
|
|
def is_empty_number(value):
|
|
if is_empty_str(value):
|
|
return True
|
|
str_val = str(value)
|
|
if str_val.startswith('-'):
|
|
str_val = str_val.replace('-', '', 1)
|
|
return not str_val.isnumeric()
|
|
|
|
|
|
def is_empty_collection(collection):
|
|
if is_empty_str(collection):
|
|
return True
|
|
if not isinstance(collection, list):
|
|
return True
|
|
return len(collection) == 0
|
|
|
|
|
|
def get_age(date_str):
|
|
if is_empty_str(date_str):
|
|
return EMPTY_AGE
|
|
today = date.today()
|
|
birthdate = datetime.strptime(date_str, '%d.%m.%Y')
|
|
age = today.year - birthdate.year - ((today.month, today.day) < (birthdate.month, birthdate.day))
|
|
return age
|
|
|
|
|
|
def get_years(year1, year2):
|
|
if year1 >= year2:
|
|
return year1 - year2
|
|
if year2 >= year1:
|
|
return year2 - year1
|
|
|
|
|
|
def get_age_from_education(education, value, additional_value):
|
|
if is_empty_collection(education):
|
|
return EMPTY_AGE
|
|
for item in education:
|
|
graduation = item[value]
|
|
if is_empty_number(graduation):
|
|
return EMPTY_AGE
|
|
return get_years(graduation, date.today().year) + additional_value
|
|
|
|
|
|
def prepare_dataset_age(df):
|
|
df['age'] = df.loc[:, 'bdate'].apply(get_age)
|
|
|
|
university_mask = (df['age'] == EMPTY_AGE) & (df['universities'].str.len() > 0)
|
|
df.loc[university_mask, 'age'] = df.loc[university_mask, 'universities'] \
|
|
.apply(lambda val: get_age_from_education(val, 'graduation', UNIVERSITY_AGE))
|
|
|
|
school_mask_1 = (df['age'] == EMPTY_AGE) & (df['schools'].str.len() > 0)
|
|
df.loc[school_mask_1, 'age'] = df.loc[school_mask_1, 'schools'] \
|
|
.apply(lambda val: get_age_from_education(val, 'year_graduated', SCHOOL_GRADUATED_AGE))
|
|
|
|
school_mask_2 = (df['age'] == EMPTY_AGE) & (df['schools'].str.len() > 0)
|
|
df.loc[school_mask_2, 'age'] = df.loc[school_mask_2, 'schools'] \
|
|
.apply(lambda val: get_age_from_education(val, 'year_from', SCHOOL_BEGIN_AGE))
|
|
|
|
return df
|
|
|
|
|
|
def prepare_dataset_status(df):
|
|
is_university_mask = ((df['age'] >= UNIVERSITY_AGE) | (df['age'] == EMPTY_AGE)) & \
|
|
((df['universities'].str.len() > 0) | (df['occupation_type'] == 'university'))
|
|
df['is_university'] = np.where(is_university_mask, True, False)
|
|
|
|
is_work_mask = ((df['age'] > SCHOOL_GRADUATED_AGE) | (df['age'] == EMPTY_AGE)) & \
|
|
((df['is_university']) | (df['occupation_type'] == 'work')) | \
|
|
(df['age'] > UNIVERSITY_AGE)
|
|
df['is_work'] = np.where(is_work_mask, True, False)
|
|
|
|
is_student_mask = ((df['occupation_type'] == 'university') &
|
|
((df['age'] >= SCHOOL_GRADUATED_AGE) & (df['age'] <= UNIVERSITY_AGE)))
|
|
df['is_student'] = np.where(is_student_mask, True, False)
|
|
|
|
is_schoolboy_mask = ((df['age'] < SCHOOL_GRADUATED_AGE) & (df['age'] != EMPTY_AGE)) | \
|
|
((df['age'] == EMPTY_AGE) & (df['occupation_type'] == 'school'))
|
|
df['is_schoolboy'] = np.where(is_schoolboy_mask, True, False)
|
|
|
|
return df
|
|
|
|
|
|
def load_geo_cache(json_file):
|
|
with open(json_file, 'r') as rf:
|
|
geo_cache.update(json.load(rf))
|
|
|
|
|
|
def save_geo_cache(json_file):
|
|
with open(json_file, 'w') as wf:
|
|
json.dump(geo_cache, wf)
|
|
print('Geocache saved')
|
|
|
|
|
|
def update_geo_cache(cities, json_file):
|
|
is_changed = False
|
|
for city in cities:
|
|
if is_empty_str(city):
|
|
continue
|
|
result = geo_cache.get(city)
|
|
if result is not None:
|
|
continue
|
|
print(f'{len(geo_cache.keys())}/{len(cities)} - Try to load geocode for {city}')
|
|
location = geocode(city)
|
|
result = (location.latitude, location.longitude)
|
|
geo_cache[city] = result
|
|
is_changed = True
|
|
if len(geo_cache.keys()) % 50 == 0:
|
|
save_geo_cache(json_file)
|
|
|
|
if is_changed:
|
|
save_geo_cache(json_file)
|
|
|
|
|
|
def prepare_dataset_location(df):
|
|
json_file = 'geocache.json'
|
|
|
|
load_geo_cache(json_file)
|
|
|
|
update_geo_cache(df['city'].unique().tolist(), json_file)
|
|
|
|
df['location'] = df['city'] \
|
|
.apply(lambda val: '' if is_empty_str(val) else geo_cache[val])
|
|
|
|
return df
|
|
|
|
|
|
def prepare_dataset(json_file):
|
|
df = pd.read_json(json_file)
|
|
|
|
df = prepare_dataset_age(df)
|
|
|
|
df = prepare_dataset_status(df)
|
|
|
|
df = prepare_dataset_location(df)
|
|
|
|
return df
|
|
|
|
|
|
def __main(json_file):
|
|
df = prepare_dataset(json_file)
|
|
print('done')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if len(sys.argv) != 2:
|
|
print('You must specify the raw_dataset json file')
|
|
exit(1)
|
|
if not os.path.isfile(sys.argv[1]):
|
|
print(f'File {sys.argv[1]} is not exists')
|
|
__main(sys.argv[1])
|