Compare commits
3 Commits
a9dd12af39
...
488857052d
Author | SHA1 | Date | |
---|---|---|---|
488857052d | |||
a1d45fdc84 | |||
b9ad5bb23a |
164
main.py
164
main.py
@ -1,171 +1,13 @@
|
||||
#!/usr/bin/env python3
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import date, datetime
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from geopy.extra.rate_limiter import RateLimiter
|
||||
from geopy.geocoders import Nominatim
|
||||
|
||||
EMPTY_AGE = 0
|
||||
UNIVERSITY_AGE = 21
|
||||
SCHOOL_BEGIN_AGE = 7
|
||||
SCHOOL_GRADUATED_AGE = 17
|
||||
|
||||
geolocator = Nominatim(user_agent="MyApp")
|
||||
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
||||
|
||||
geo_cache = {}
|
||||
|
||||
|
||||
def is_empty_str(value):
|
||||
if value is None:
|
||||
return True
|
||||
return len(str(value).strip()) == 0
|
||||
|
||||
|
||||
def is_empty_number(value):
|
||||
if is_empty_str(value):
|
||||
return True
|
||||
str_val = str(value)
|
||||
if str_val.startswith('-'):
|
||||
str_val = str_val.replace('-', '', 1)
|
||||
return not str_val.isnumeric()
|
||||
|
||||
|
||||
def is_empty_collection(collection):
|
||||
if is_empty_str(collection):
|
||||
return True
|
||||
if not isinstance(collection, list):
|
||||
return True
|
||||
return len(collection) == 0
|
||||
|
||||
|
||||
def get_age(date_str):
|
||||
if is_empty_str(date_str):
|
||||
return EMPTY_AGE
|
||||
today = date.today()
|
||||
birthdate = datetime.strptime(date_str, '%d.%m.%Y')
|
||||
age = today.year - birthdate.year - ((today.month, today.day) < (birthdate.month, birthdate.day))
|
||||
return age
|
||||
|
||||
|
||||
def get_years(year1, year2):
|
||||
if year1 >= year2:
|
||||
return year1 - year2
|
||||
if year2 >= year1:
|
||||
return year2 - year1
|
||||
|
||||
|
||||
def get_age_from_education(education, value, additional_value):
|
||||
if is_empty_collection(education):
|
||||
return EMPTY_AGE
|
||||
for item in education:
|
||||
graduation = item[value]
|
||||
if is_empty_number(graduation):
|
||||
return EMPTY_AGE
|
||||
return get_years(graduation, date.today().year) + additional_value
|
||||
|
||||
|
||||
def prepare_dataset_age(df):
|
||||
df['age'] = df.loc[:, 'bdate'].apply(get_age)
|
||||
|
||||
university_mask = (df['age'] == EMPTY_AGE) & (df['universities'].str.len() > 0)
|
||||
df.loc[university_mask, 'age'] = df.loc[university_mask, 'universities'] \
|
||||
.apply(lambda val: get_age_from_education(val, 'graduation', UNIVERSITY_AGE))
|
||||
|
||||
school_mask_1 = (df['age'] == EMPTY_AGE) & (df['schools'].str.len() > 0)
|
||||
df.loc[school_mask_1, 'age'] = df.loc[school_mask_1, 'schools'] \
|
||||
.apply(lambda val: get_age_from_education(val, 'year_graduated', SCHOOL_GRADUATED_AGE))
|
||||
|
||||
school_mask_2 = (df['age'] == EMPTY_AGE) & (df['schools'].str.len() > 0)
|
||||
df.loc[school_mask_2, 'age'] = df.loc[school_mask_2, 'schools'] \
|
||||
.apply(lambda val: get_age_from_education(val, 'year_from', SCHOOL_BEGIN_AGE))
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def prepare_dataset_status(df):
|
||||
is_university_mask = ((df['age'] >= UNIVERSITY_AGE) | (df['age'] == EMPTY_AGE)) & \
|
||||
((df['universities'].str.len() > 0) | (df['occupation_type'] == 'university'))
|
||||
df['is_university'] = np.where(is_university_mask, True, False)
|
||||
|
||||
is_work_mask = ((df['age'] > SCHOOL_GRADUATED_AGE) | (df['age'] == EMPTY_AGE)) & \
|
||||
((df['is_university']) | (df['occupation_type'] == 'work')) | \
|
||||
(df['age'] > UNIVERSITY_AGE)
|
||||
df['is_work'] = np.where(is_work_mask, True, False)
|
||||
|
||||
is_student_mask = ((df['occupation_type'] == 'university') &
|
||||
((df['age'] >= SCHOOL_GRADUATED_AGE) & (df['age'] <= UNIVERSITY_AGE)))
|
||||
df['is_student'] = np.where(is_student_mask, True, False)
|
||||
|
||||
is_schoolboy_mask = ((df['age'] < SCHOOL_GRADUATED_AGE) & (df['age'] != EMPTY_AGE)) | \
|
||||
((df['age'] == EMPTY_AGE) & (df['occupation_type'] == 'school'))
|
||||
df['is_schoolboy'] = np.where(is_schoolboy_mask, True, False)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def load_geo_cache(json_file):
|
||||
with open(json_file, 'r') as rf:
|
||||
geo_cache.update(json.load(rf))
|
||||
|
||||
|
||||
def save_geo_cache(json_file):
|
||||
with open(json_file, 'w') as wf:
|
||||
json.dump(geo_cache, wf)
|
||||
print('Geocache saved')
|
||||
|
||||
|
||||
def update_geo_cache(cities, json_file):
|
||||
is_changed = False
|
||||
for city in cities:
|
||||
if is_empty_str(city):
|
||||
continue
|
||||
result = geo_cache.get(city)
|
||||
if result is not None:
|
||||
continue
|
||||
print(f'{len(geo_cache.keys())}/{len(cities)} - Try to load geocode for {city}')
|
||||
location = geocode(city)
|
||||
result = (location.latitude, location.longitude)
|
||||
geo_cache[city] = result
|
||||
is_changed = True
|
||||
if len(geo_cache.keys()) % 50 == 0:
|
||||
save_geo_cache(json_file)
|
||||
|
||||
if is_changed:
|
||||
save_geo_cache(json_file)
|
||||
|
||||
|
||||
def prepare_dataset_location(df):
|
||||
json_file = 'geocache.json'
|
||||
|
||||
load_geo_cache(json_file)
|
||||
|
||||
update_geo_cache(df['city'].unique().tolist(), json_file)
|
||||
|
||||
df['location'] = df['city'] \
|
||||
.apply(lambda val: '' if is_empty_str(val) else geo_cache[val])
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def prepare_dataset(json_file):
|
||||
df = pd.read_json(json_file)
|
||||
|
||||
df = prepare_dataset_age(df)
|
||||
|
||||
df = prepare_dataset_status(df)
|
||||
|
||||
df = prepare_dataset_location(df)
|
||||
|
||||
return df
|
||||
from src.main.df_loader import DfLoader
|
||||
|
||||
|
||||
def __main(json_file):
|
||||
df = prepare_dataset(json_file)
|
||||
df_loader: DfLoader = DfLoader(json_file)
|
||||
df = df_loader.get_data_frame()
|
||||
print('done')
|
||||
|
||||
|
||||
|
@ -6,7 +6,7 @@ import sys
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from src.person import Person
|
||||
from src.prepare_dataset.person import Person
|
||||
|
||||
|
||||
def __main(json_file_name):
|
||||
|
@ -1,2 +1,3 @@
|
||||
pandas==2.0.1
|
||||
geopy==2.3.0
|
||||
geopy==2.3.0
|
||||
numpy==1.24.3
|
16
src/main/constants.py
Normal file
16
src/main/constants.py
Normal file
@ -0,0 +1,16 @@
|
||||
class Constants:
|
||||
@staticmethod
|
||||
def empty_age() -> int:
|
||||
return 0
|
||||
|
||||
@staticmethod
|
||||
def university_gr_age() -> int:
|
||||
return 21
|
||||
|
||||
@staticmethod
|
||||
def school_st_age() -> int:
|
||||
return 7
|
||||
|
||||
@staticmethod
|
||||
def school_gr_age() -> int:
|
||||
return 17
|
72
src/main/df_loader.py
Normal file
72
src/main/df_loader.py
Normal file
@ -0,0 +1,72 @@
|
||||
from datetime import date
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
|
||||
from src.main.constants import Constants as const
|
||||
from src.main.geocache import Geocache
|
||||
from src.main.utils import Utils
|
||||
|
||||
|
||||
class DfLoader:
|
||||
def __init__(self, json_file: str) -> None:
|
||||
self.__geocache: Geocache = Geocache()
|
||||
print(f'Try to load data from the {json_file} file')
|
||||
self.__df: DataFrame = pd.read_json(json_file)
|
||||
self.__prepare_dataset_age()
|
||||
self.__prepare_dataset_status()
|
||||
self.__prepare_dataset_location()
|
||||
print(f'Data is successfully loaded')
|
||||
|
||||
@staticmethod
|
||||
def get_age_from_education(education: [], value: str, additional_value: int) -> int:
|
||||
if Utils.is_empty_collection(education):
|
||||
return const.empty_age()
|
||||
for item in education:
|
||||
graduation: int = item[value]
|
||||
if Utils.is_empty_number(graduation):
|
||||
return const.empty_age()
|
||||
return Utils.get_years(graduation, date.today().year) + additional_value
|
||||
|
||||
def __prepare_dataset_age(self) -> None:
|
||||
self.__df['age'] = self.__df.loc[:, 'bdate'].apply(Utils.get_age)
|
||||
|
||||
university_mask = (self.__df['age'] == const.empty_age()) & (self.__df['universities'].str.len() > 0)
|
||||
self.__df.loc[university_mask, 'age'] = self.__df.loc[university_mask, 'universities'] \
|
||||
.apply(lambda val: self.get_age_from_education(val, 'graduation', const.university_gr_age()))
|
||||
|
||||
school_mask_1 = (self.__df['age'] == const.empty_age()) & (self.__df['schools'].str.len() > 0)
|
||||
self.__df.loc[school_mask_1, 'age'] = self.__df.loc[school_mask_1, 'schools'] \
|
||||
.apply(lambda val: self.get_age_from_education(val, 'year_graduated', const.school_gr_age()))
|
||||
|
||||
school_mask_2 = (self.__df['age'] == const.empty_age()) & (self.__df['schools'].str.len() > 0)
|
||||
self.__df.loc[school_mask_2, 'age'] = self.__df.loc[school_mask_2, 'schools'] \
|
||||
.apply(lambda val: self.get_age_from_education(val, 'year_from', const.school_st_age()))
|
||||
|
||||
def __prepare_dataset_status(self) -> None:
|
||||
is_univer_mask = ((self.__df['age'] >= const.university_gr_age()) | (self.__df['age'] == const.empty_age())) & \
|
||||
((self.__df['universities'].str.len() > 0) | (self.__df['occupation_type'] == 'university'))
|
||||
self.__df['is_university'] = np.where(is_univer_mask, True, False)
|
||||
|
||||
is_work_mask = ((self.__df['age'] > const.school_gr_age()) | (self.__df['age'] == const.empty_age())) & \
|
||||
((self.__df['is_university']) | (self.__df['occupation_type'] == 'work')) | \
|
||||
(self.__df['age'] > const.university_gr_age())
|
||||
self.__df['is_work'] = np.where(is_work_mask, True, False)
|
||||
|
||||
is_student_mask = ((self.__df['occupation_type'] == 'university') &
|
||||
((self.__df['age'] >= const.school_gr_age()) &
|
||||
(self.__df['age'] <= const.university_gr_age())))
|
||||
self.__df['is_student'] = np.where(is_student_mask, True, False)
|
||||
|
||||
is_schoolboy_mask = ((self.__df['age'] < const.school_gr_age()) & (self.__df['age'] != const.empty_age())) | \
|
||||
((self.__df['age'] == const.empty_age()) & (self.__df['occupation_type'] == 'school'))
|
||||
self.__df['is_schoolboy'] = np.where(is_schoolboy_mask, True, False)
|
||||
|
||||
def __prepare_dataset_location(self) -> None:
|
||||
self.__geocache.update_geo_cache(self.__df['city'].unique().tolist())
|
||||
self.__df['location'] = self.__df['city'] \
|
||||
.apply(lambda val: '' if Utils.is_empty_str(val) else self.__geocache.get_location(val))
|
||||
|
||||
def get_clustering_data(self) -> DataFrame:
|
||||
return self.__df
|
50
src/main/geocache.py
Normal file
50
src/main/geocache.py
Normal file
@ -0,0 +1,50 @@
|
||||
import json
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from geopy import Point
|
||||
from geopy.extra.rate_limiter import RateLimiter
|
||||
from geopy.geocoders import Nominatim
|
||||
|
||||
from src.main.utils import Utils
|
||||
|
||||
|
||||
class Geocache:
|
||||
JSON_FILE: str = 'geocache.json'
|
||||
|
||||
def __init__(self) -> None:
|
||||
geolocator: Nominatim = Nominatim(user_agent="MyApp")
|
||||
self.__geocode: RateLimiter = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
||||
self.__geo_cache: dict = {}
|
||||
self.__load_geo_cache()
|
||||
|
||||
def __load_geo_cache(self) -> None:
|
||||
if os.path.isfile(self.JSON_FILE):
|
||||
with open(self.JSON_FILE, 'r') as rf:
|
||||
self.__geo_cache.update(json.load(rf))
|
||||
|
||||
def __save_geo_cache(self) -> None:
|
||||
with open(self.JSON_FILE, 'w') as wf:
|
||||
json.dump(self.__geo_cache, wf)
|
||||
print('Geocache saved')
|
||||
|
||||
def update_geo_cache(self, cities: List[str]) -> None:
|
||||
is_changed: bool = False
|
||||
for city in cities:
|
||||
if Utils.is_empty_str(city):
|
||||
continue
|
||||
result: () = self.__geo_cache.get(city)
|
||||
if result is not None:
|
||||
continue
|
||||
print(f'{len(self.__geo_cache.keys())}/{len(cities)} - Try to load geocode for {city}')
|
||||
location: Point = self.__geocode(city)
|
||||
result: () = (location.latitude, location.longitude)
|
||||
self.__geo_cache[city] = result
|
||||
is_changed = True
|
||||
if len(self.__geo_cache.keys()) % 50 == 0:
|
||||
self.__save_geo_cache()
|
||||
if is_changed:
|
||||
self.__save_geo_cache()
|
||||
|
||||
def get_location(self, city: str) -> ():
|
||||
return self.__geo_cache.get(city)
|
44
src/main/utils.py
Normal file
44
src/main/utils.py
Normal file
@ -0,0 +1,44 @@
|
||||
from datetime import date, datetime
|
||||
|
||||
from src.main.constants import Constants as const
|
||||
|
||||
|
||||
class Utils:
|
||||
@staticmethod
|
||||
def is_empty_str(value: any) -> bool:
|
||||
if value is None:
|
||||
return True
|
||||
return len(str(value).strip()) == 0
|
||||
|
||||
@staticmethod
|
||||
def is_empty_number(value: any) -> bool:
|
||||
if Utils.is_empty_str(value):
|
||||
return True
|
||||
str_val = str(value)
|
||||
if str_val.startswith('-'):
|
||||
str_val = str_val.replace('-', '', 1)
|
||||
return not str_val.isnumeric()
|
||||
|
||||
@staticmethod
|
||||
def is_empty_collection(collection: any) -> bool:
|
||||
if Utils.is_empty_str(collection):
|
||||
return True
|
||||
if not isinstance(collection, list):
|
||||
return True
|
||||
return len(collection) == 0
|
||||
|
||||
@staticmethod
|
||||
def get_age(date_str: str) -> int:
|
||||
if Utils.is_empty_str(date_str):
|
||||
return const.empty_age()
|
||||
today: date = date.today()
|
||||
birthdate: date = datetime.strptime(date_str, '%d.%m.%Y')
|
||||
age: int = today.year - birthdate.year - ((today.month, today.day) < (birthdate.month, birthdate.day))
|
||||
return age
|
||||
|
||||
@staticmethod
|
||||
def get_years(year1: int, year2: int) -> int:
|
||||
if year1 >= year2:
|
||||
return year1 - year2
|
||||
if year2 >= year1:
|
||||
return year2 - year1
|
@ -1,4 +1,4 @@
|
||||
from src.raw_data import RawData
|
||||
from src.prepare_dataset.raw_data import RawData
|
||||
|
||||
|
||||
class Career:
|
@ -1,4 +1,4 @@
|
||||
from src.raw_data import RawData
|
||||
from src.prepare_dataset.raw_data import RawData
|
||||
|
||||
|
||||
class Military:
|
@ -1,8 +1,8 @@
|
||||
from src.career import Career
|
||||
from src.military import Military
|
||||
from src.raw_data import RawData
|
||||
from src.school import School
|
||||
from src.university import University
|
||||
from src.prepare_dataset.career import Career
|
||||
from src.prepare_dataset.military import Military
|
||||
from src.prepare_dataset.raw_data import RawData
|
||||
from src.prepare_dataset.school import School
|
||||
from src.prepare_dataset.university import University
|
||||
|
||||
|
||||
class Person:
|
@ -1,4 +1,4 @@
|
||||
from src.raw_data import RawData
|
||||
from src.prepare_dataset.raw_data import RawData
|
||||
|
||||
|
||||
class School:
|
@ -1,4 +1,4 @@
|
||||
from src.raw_data import RawData
|
||||
from src.prepare_dataset.raw_data import RawData
|
||||
|
||||
|
||||
class University:
|
Loading…
Reference in New Issue
Block a user