Add cluster centers extraction

This commit is contained in:
Aleksey Filippov 2023-06-07 15:24:49 +04:00
parent f4a32bf57f
commit 155b350e1e
2 changed files with 63 additions and 37 deletions

88
main.py
View File

@ -1,59 +1,73 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import os import os
import sys import sys
from typing import List
import numpy import numpy
import numpy as np
import pandas as pd import pandas as pd
# import scipy.cluster.hierarchy as sc import scipy.cluster.hierarchy as sc
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from pandas import DataFrame from numpy import ndarray
from pandas import Series
from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import AgglomerativeClustering
from sklearn.decomposition import PCA from sklearn.decomposition import PCA
from src.main.df_loader import DfLoader from src.main.df_loader import DfLoader
from src.main.georeverse import Georeverse
is_plots: bool = False
default_clusters: int = 3
georeverse: Georeverse = Georeverse()
def __clustering(data: DataFrame) -> None: def __plots(data: ndarray, labels: ndarray) -> None:
# clusters = round(math.sqrt(len(data) / 2)) plt.figure(figsize=(12, 6))
# plt.figure(figsize=(20, 7)) plt.subplot(1, 2, 1)
# plt.title("Dendrograms") sc.dendrogram(sc.linkage(data, method='ward'), p=4, truncate_mode='level')
# # Create dendrogram plt.title('Dendrogram')
# sc.dendrogram(sc.linkage(data.to_numpy(), method='ward')) pca = PCA(n_components=2)
# plt.title('Dendrogram') transformed = pd.DataFrame(pca.fit_transform(data)).to_numpy()
# plt.xlabel('Sample index') plt.subplot(1, 2, 2)
# plt.ylabel('Euclidean distance') plt.scatter(x=transformed[:, 0], y=transformed[:, 1], c=labels, cmap='rainbow')
plt.title('Clustering')
clusters = 3
model = AgglomerativeClustering(n_clusters=clusters, metric='euclidean', linkage='ward')
model.fit(data)
labels = model.labels_
data_norm = (data - data.min()) / (data.max() - data.min())
pca = PCA(n_components=2) # 2-dimensional PCA
transformed = pd.DataFrame(pca.fit_transform(data_norm))
# plt.scatter(x=transformed[:, 0], y=transformed[:, 1], c=labels, cmap='rainbow')
for i in range(clusters):
series = transformed.iloc[numpy.where(labels[:] == i)]
plt.scatter(series[0], series[1], label=f'Cluster {i + 1}')
plt.legend()
plt.show() plt.show()
# fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5))
# sns.scatterplot(ax=axes[0], data=data, x='location-la,location-lo', y='age,sex').set_title('Without clustering')
# sns.scatterplot(ax=axes[1], data=data, x='location-la,location-lo', y='age,sex', hue=labels) \
# .set_title('With clustering')
# plt.show()
# s = numpy.where(labels[:] == 34) def __get_cluster_centers(data: ndarray, labels: ndarray) -> ndarray:
# print(labels) centers: List[List[float]] = list()
for label in set(labels):
center: Series = data[numpy.where(labels[:] == label)].mean(axis=0)
centers.append(list(center))
return np.array(centers)
def __print_center(center: ndarray) -> None:
location: str = georeverse.get_city(center[0], center[1])
sex = round(center[2])
age = round(center[3])
is_university = bool(round(center[4]))
is_work = bool(round(center[5]))
is_student = bool(round(center[6]))
is_schoolboy = bool(round(center[7]))
print(f'location: {location}, sex: {sex}, age: {age},'
f' univer: {is_university}, work: {is_work}, student: {is_student}, school: {is_schoolboy}')
def __clustering(data: ndarray, n_clusters: int = 3, plots: bool = False) -> None:
model = AgglomerativeClustering(n_clusters=n_clusters, metric='euclidean', linkage='ward')
model.fit(data)
labels = model.labels_
if plots:
__plots(data, labels)
centers = __get_cluster_centers(data, labels)
for center in centers:
__print_center(center)
def __main(json_file): def __main(json_file):
df_loader: DfLoader = DfLoader(json_file) data: ndarray = DfLoader(json_file).get_data()
data = df_loader.get_clustering_data() __clustering(data, default_clusters, is_plots)
print(data)
__clustering(data)
if __name__ == '__main__': if __name__ == '__main__':

12
src/main/georeverse.py Normal file
View File

@ -0,0 +1,12 @@
from functools import partial
from geopy import Nominatim
class Georeverse:
def __init__(self) -> None:
geolocator: Nominatim = Nominatim(user_agent="MyApp")
self.__reverse = partial(geolocator.reverse, language="ru")
def get_city(self, latitude: float, longitude: float) -> str:
return self.__reverse(f'{latitude}, {longitude}')