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Abstract. In production, there are tasks of the integration of a PLM
systems and a third-party information system. This system may not be
part of the PLM complex, but provides information support for manag-
ing production processes. An analyst is currently responsible for carrying
out the integration. He must form a structural and process models of the
integrated information system to make interaction rules with the system.
During the operation process, besides the analyst, there is an operator
involved, who performs maintaining the relevance of the integrated infor-
mation system data and the entire complex, and a decision maker, who
performs managing the integrated information system, namely maintain-
ing its operational state. An approach is to reduce the load both on the
analyst, who configures the interaction and display of data, and on the
operator, who is involved in ensuring the relevance of data structures,
and on the decision-maker, who is involved in making important decisions
related to risks in production. We propose using data-based management
by forming a data meta-model of the integrated information system based
on the analysis of its storage; mapping of the data of PLM systems and
the integrated information system on the enterprise through the use of
a rule base for the behavior of the integrated information system.
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1 Introduction

As of today, many large manufacturing facilities use PLM systems [1] to manage
the product lifecycle. PLM systems are used to control data flows in produc-
tion, including tasks such as storing, integrating, and maintaining data in each
information subsystem within the complex. The data bus plays a key role in
this [2]. Each complex of systems with a data bus has its own implementation
features [3]. However, the common feature of data bus-based integration is the
use of rule-based interaction. To configure the interaction between subsystems,
analysts perform the following tasks: building a model of the information system
behavior, identifying key features, forming system behavior rules.

This work considers not only the approach to forming interactions between
systems, but also the approach to managing PLM subsystems. There is often a
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need to integrate a PLM system with an external information system (referred
to here as the integrable IS) that is not part of the PLM complex but is involved
in tasks related to supporting information for managing production processes.
At present, an analyst or decision-maker (DM) performs integrating the two sys-
tems. The analyst must create structural and process models of the integrable IS
based on which interaction rules with the system are formed. During operation,
the analyst’s (DM) tasks include managing the integrable IS, ensuring the data
is up to date, and maintaining the system’s operational state.

Fig. 1. The process of organizing interaction and maintaining a system in a state of
operability with human participation

It is worth separately considering the process where the interaction between
the integrable IS and the entire PLM complex involves the operator. In this
process, the amount of work required by the operator for setting up interaction,
data display, and maintaining the system’s operational state is considerable. The
role of the operator in this process is shown in figure 1.

The analyst must take into account changes in the data structure of the in-
tegrable IS. The operator monitors potential risks associated with ensuring the
data matches the PLM complex. The DM makes decisions regarding minimizing
possible risks. An approach is proposed that helps reduce the workload on both
the analyst responsible for setting up interaction and data display and the op-
erator involved in ensuring the data structure’s timeliness, and the DM making
crucial decisions related to potential risks in production.
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1.1 Overview of existing methods and approaches to management

Currently, approaches to managing production information systems are discussed
in the following sources: [5–10]. Sources [5, 6, 8] suggest using an integrated IS
model. These approaches directly depend on the accuracy and completeness of
the model, with the model being formulated either by an analyst [5, 8] or au-
tomatically [6], which does not always guarantee the adequacy and accuracy of
the model. Source [5] presents classical control based on the model of processes
and data in the information system, where the role of the analyst is significant.
Source [6] suggests using a framework for model formation. Despite the fact
that the model formation process occurs automatically, the controlling compo-
nent still depends on the accuracy and completeness of the model. Source [7]
proposes using a training sample and unsupervised machine learning. However,
depending on the completeness and quality of the data sample, the model of the
integrated IS being formed may lead to misinterpretation of the results of control
mechanisms forecasting, especially if the data contains errors or is heavily noisy.
In source [8], a digital twins approach is proposed. Despite the advantages of
this approach overall, in the context of the set task, namely integration of in-
formation systems, data representation, and reducing the workload of analysts,
operators, and managers, the digital twins approach requires additional quali-
tative analysis and building a model of the information system, leading to an
increased workload on the analyst.

In source [9], an approach to human-in-the-loop management is described.
The main idea of this approach is complete control of the control system behavior
by a human and boils down to supervised machine learning. This approach is the
safest in terms of preventing production-related risks, but it is more complex and
requires the involvement of managers at all stages of the control system lifecycle,
from forming the training sample to monitoring the control system behavior.
Therefore, a data-driven control approach is proposed [10]. It is assumed to
reduce the workload of the analyst and operator by integrating and partially
managing the tasks of the production information system with the developed
control system.

To solve the control problem, it is proposed to use a production rule-based
model. Classical fuzzy systems are based on the Mamdani approach [11]. In such
systems, there are 2 modules for converting regular data into fuzzy data. The
fuzzification module establishes a correspondence between real values of input
data and fuzzy values, based on the membership function. On the other hand,
the defuzzification module establishes a correspondence between fuzzy values and
real values of output data of the subject area. Fuzzy rule bases (systems based
on fuzzy rules) are based on the principle of converting crisp values into fuzzy
values. In this case, rules represent a set of linguistic terms, and output data
is associated with them; for example, a rule may have multiple input data and
only a certain value of the output parameter. There are variants of non-classical
systems based on fuzzy rules:Hierarchical fuzzy systems [13–15], Neuro-fuzzy
systems [16], Evolutionary fuzzy systems [17].
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To solve the research problem in data organization, it was decided to combine
the hierarchical fuzzy rule base and neuro-fuzzy rule base approaches with a
result based on Mamdani fuzzy rules, using an evolutionary algorithm approach
for rule formation based on changes in the metamodel. Thus, the rule base will
be structured as shown in Figure 2. According to the diagram, the knowledge

Fig. 2. Structure of the hybrid base with fuzzy logical inference

base consists of several levels of conditions taking into account possible changes
in the metamodel and in the database of the integrated information system,
and several levels of consequences forming a clear logical inference based on the
linguistic representation of rules in the rule base.

2 Model of the knowledge base of behavior of the
integrated information system

According to figure 2, the rule base will be represented as a hierarchical structure
with two levels of rules. Previously, the authors obtained a structural model of
the metadataM of the integrated IS [18]. Thus, the first level will be represented
as rules consisting of linguistic terms and will depend on changes in the meta-
model. The second level of rules will be dynamically formed based on the results
obtained at the first level.

Let INP = {INP1, INP2, ..., INPz}, z ∈ N be the set of linguistic terms rep-
resenting the input data of the metadata modelM , andOUT = {OUT1, OUT2, ...,
OUTw}, w ∈ N be the set of linguistic terms representing the key processes of
the metadata model M . Hence, the rule describing the first level will have a
set-theoretic representation as follows:

P (INP ) → {INPOUTs}, OUTs, (1)

where OUTs is a linguistic term reflecting a specific key process of the metadata
model M , and {INPOUTs} is a set of linguistic terms reflecting the input data
for a specific key process of the metadata model M .

Let’s represent {INPOUTs} as X and OUTs as Y . Table 1 shows the input
data for the second-level rule, which will be used to generate the final values of
the behavior of the integrated IS.
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Table 1. Tabular representation of the input data for the second level rule

X1 X2 ... Xm Y

v11 v12 ... v1m y1

v21 v12 ... v2m y2

... ... ... ... ...

vn1 vn2 ... vnm yn

The columns 1-4 represent the input data values for the key processes of the
information system, and column 5 represents the values that are the system’s
reaction to the input data values.

To form second-level rules of controlling the integrated IS, let’s define the
following functionality:

p(X,V ) → Y, (2)

where V = {{v11 , ..., v1m}, {v21 , ..., v2m}, ..., {vn1 , ..., vnm}} - the input values of m
parameters X = {xk}, k = [1,m],m ∈ N,n ∈ N , Y = {yi}, i = [1, n], n ∈ N - n
states of the integrated IS.

The system state yi is determined by the vector of input values {vi1, ..., vim}.
Thus, to form a rule for controlling the system to transition to a state (issuing
control actions) yi, it is necessary to include a comparison of the parameter vector
X with the values {vi1, ..., vim} in the rule’s antecedent as shown in equation 3.

pi(X, {vi1, ..., vim}) → yi. (3)

During the operation of the integrated IS, there may be situations where
different input parameter values lead to the same state yi. In this case, they
should be grouped, explicitly specifying the same output state.

To account for uncertainty in input values, fuzzy membership functions of
triangular form µ(y

i)(xi) [11] will be used. This function of input parameter
values xi inherent in system state i allows for logical inference even when the
input value vector contains values that do not precisely match the values used
in the rule antecedents.

3 Algorithm for generating output data based on a
hierarchical rule base

Figure 3 depicts the decision-making algorithm using a hierarchical fuzzy rule
base with fuzzy logical inference based on the Mamdani approach [11].

The algorithm presented in Figure 3 consists of the following steps:

– Input data, represented as key-value data tuples (inp1 = 7) of different types
(integer, string, date, and boolean variables), are transformed into linguistic
terms represented as INP = {INP1, INP2, ..., INPz}, z ∈ N .
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Fig. 3. Decision making algorithm

– Using the first level rule base (abstract level rule base) and the trans-
formed input data (INP ), a logical inference is performed, represented as
{{INPOUTs}, OUTs}, s ∈ N .

– The result of the first level rule execution ({INPOUTs}, OUTs), the original
input data (key-value data tuples such as inp1 = 7) of different types, and the
data base of the integrated IS participate in the dynamic formation of second-
level rules (generate key level rule base), whose mathematical representation
is given in equation 3.

– Through fuzzy logical inference (logic inference by Mamdani) based on the
Mamdani approach, the result of rule execution (yi) is obtained based on
the second-level rule base.

– In the final stage (generate out), suitable output data are formed as key-
value data tuples (out1 = 7) of different types (integer, string, date, and
boolean variables). The final stage uses the data base of the integrated IS
and the result of rule execution (yi) based on the second-level rule base as
input data.

Thus, the decision-making process is based on a hierarchical fuzzy rule base with
fuzzy logical inference.

4 Illustrative example of a hierarchical rule base

As an example, let’s consider the rule base obtained based on the information
system designed for processing requests, faveo service desk [19]. The data meta-
model depicted in [20] is shown in Figure 4.

Based on the metamodel, a first-level rule base is built, as shown in Figure
5. The first level contains linguistic terms that reflect the dependency of key
processes on input data. The input data has been transformed into a linguistic
description beforehand. When comparing the figures 4 and 5, differences can
be seen between the names of the input entities for the metamodel and the
input data presented as linguistic terms in the rule condition. This is because
the input data is transformed before forming the first-level rule base. When
following the link of one of the rules presented in figure 5, a second-level rule
base is dynamically formed. Figure 6 shows an example of a second-level rule
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Fig. 4. Metamodel of the Faveo information system

Fig. 5. Base of rules of the first level of the Faveo information system

base for the key process ticket_thread, depicted in figure 4. The conditions of
the rules contain key parameters with integer values. In the process of fuzzy
logical inference, a search for a suitable rule is carried out using the membership
function, as a result of which user-friendly data corresponding to the state of
the key process with the given input data are generated. An example of the
output result is presented in Table 2. Thus, with the given input data, a result
is generated that reflects the state of the key process of the faveo service desk
information system. This output confirms the feasibility of applying the proposed
approach, as the generated result reflects real data when working with the faveo
service desk ticketing system, and obtaining the result does not depend on the

Fig. 6. Base of rules of the second level of the Faveo information system for the key
process ticket_thread
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Table 2. Result of rule 31

id 31 body Ticket have been deleted by Lily Kamaletdinova

ticket_id 9 created_at 2023-11-29 14:27

user_id 1 updated_at 2023-11-29 14:27

format 0 reply_rating 0

source is_internal 1

title ip_address

poster rating_count

launch of the integrated information system itself, which is an advantage when
displaying data and the parallel operation of the integrated information system
with the PLM complex.

5 Control system of the control complex

The proposed approach involves using a control system to reduce the time and
effort of the operator involved in the control process. The control system (CS) is
a software tool that implements the proposed management approach based on
data [18]. Control involves configuration and data exchange, in this case, through
the use of the metamodel of the integrated IS and a hierarchical rule base with
fuzzy logic inference. The control system acts as an adapter to facilitate the
interaction of the integrated IS with the PLM software complex.

Figure 7 shows the process of organizing the management of an information
system with the involvement of a control system. When comparing Figures 1 and

Fig. 7. The process of organizing interaction and maintaining the system in a state of
operability with the participation of the management system and the decision maker

7, it is noted that the role of the analyst and the operator is excluded from the
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control process, their functions are performed by the CS. It is also worth noting
that in the management process, there are several conditions in both cases:

1. The possible reaction of the integrated IS to input data exists;
2. The influence of the received reaction on the state of the PLM system (the

possibility of adding data to the complex without errors and risks to the
entire production complex).

Thus, it can be seen that the main task of the CS is to adjust the data of
the overall PLM complex without interacting with the integrated information
system. The overall percentage of scenarios in which a person should be involved
in working with the system without the CS is 85%, while the total number of
scenarios when working with the CS is 18%. The main task, in the case of using
the CS, is to react to errors in generating results from the integrated IS. This
results in a 67% reduction in the role of the decision maker.

6 Conclusion

The article presents a data-driven management approach applied to production
processes. The approach involves using the data metamodel of an information
system and a hierarchical rule base for the behavior of the information system
with fuzzy logic inference. The main conclusions are provided, confirming the
feasibility of using this approach in tasks related to data representation in infor-
mation systems and managing information systems to reduce the human factor
in organizing control of external systems in production. The tasks are relevant
in many production facilities of the Russian Federation, including industrial en-
terprises in the Ulyanovsk region.
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