Add figures
This commit is contained in:
parent
0069162bf5
commit
099bacbc4f
2
Jenkinsfile
vendored
2
Jenkinsfile
vendored
@ -16,7 +16,7 @@ pipeline {
|
|||||||
script {
|
script {
|
||||||
docker.image('aergus/latex').inside {
|
docker.image('aergus/latex').inside {
|
||||||
sh 'latexmk -pdf paper.tex'
|
sh 'latexmk -pdf paper.tex'
|
||||||
sh 'git add paper.pdf'
|
sh 'git add -f paper.pdf'
|
||||||
sh 'git commit -a -m "add pdf"'
|
sh 'git commit -a -m "add pdf"'
|
||||||
sh 'git push origin master'
|
sh 'git push origin master'
|
||||||
}
|
}
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 19 KiB |
BIN
figures/li.png
Normal file
BIN
figures/li.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 25 KiB |
29
paper.tex
29
paper.tex
@ -179,6 +179,7 @@ $Y=\{y^i\}, i = [1,n], n \in N$, -- $n$ состояний интегрируе
|
|||||||
Состояние системы $y^i$ определяется вектором входных значений $\{v_1^i, ..., v_m^i\}$,
|
Состояние системы $y^i$ определяется вектором входных значений $\{v_1^i, ..., v_m^i\}$,
|
||||||
Таким образом, для формирования правила управления системы для перевода ее в состояние (выдачи управляющих воздействий) $y^i$ необходимо в антецедент правила включить сравнение вектора параметров $X$ со значениями $\{v_1^i, ..., v_m^i\}$:
|
Таким образом, для формирования правила управления системы для перевода ее в состояние (выдачи управляющих воздействий) $y^i$ необходимо в антецедент правила включить сравнение вектора параметров $X$ со значениями $\{v_1^i, ..., v_m^i\}$:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{eq:comparison}
|
||||||
p^i (X, \{v_1^i, ..., v_m^i\}) \rightarrow y^i.
|
p^i (X, \{v_1^i, ..., v_m^i\}) \rightarrow y^i.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@ -186,6 +187,34 @@ $Y=\{y^i\}, i = [1,n], n \in N$, -- $n$ состояний интегрируе
|
|||||||
|
|
||||||
Для учета неопределенности во входных значениях будем использовать нечеткие функции принадлежности треугольной формы $\mu_(y^i ) (x^i)$ \cite{Mamdani-1974}. Данная функция значений входных параметров $x^i$, присущих состоянию системы $i$ позволяет выполнять логический вывод даже в том случае, когда вектор входных значений содержит значения, не совпадающие в точности со значениями, использующимися в антецедентах правил.
|
Для учета неопределенности во входных значениях будем использовать нечеткие функции принадлежности треугольной формы $\mu_(y^i ) (x^i)$ \cite{Mamdani-1974}. Данная функция значений входных параметров $x^i$, присущих состоянию системы $i$ позволяет выполнять логический вывод даже в том случае, когда вектор входных значений содержит значения, не совпадающие в точности со значениями, использующимися в антецедентах правил.
|
||||||
|
|
||||||
|
\section{Алгоритм формирования выходных данных на основе иерархической базы правил}
|
||||||
|
На рисунке \ref{fig:algorithm} представлен алгоритм принятия решения с использованием иерархической нечеткой базы правил с нечетким логическим выводом, основанном на подходе Мамдани \cite{Mamdani-1974}.
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=1.0\linewidth]{figures/li}
|
||||||
|
\caption{Алгоритм принятия решений}
|
||||||
|
\label{fig:algorithm}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Предварительно на основе метамодели формируется первый уровень базы правил (generate abstract level rule base), который не будет изменяться до тех пор, пока не произойдут изменения в самой метамодели интегрируемой ИС.
|
||||||
|
|
||||||
|
Алгоритм, представленный на рисунке \ref{fig:algorithm}, состоит из нескольких шагов:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Входные данные (input data), представленные в виде кортежа данных ключ-значение ($inp1 = 7$) разного типа (целочисленные, строковые, дата и логические переменные типа boolean), преобразуются в лингвистические термы (transfer to terms), представленные в виде $INP=\{INP_1, INP_2, ..., INP_z\}, z \in N$.
|
||||||
|
|
||||||
|
\item Используя базу правил первого уровня (abstract level rule base) и преобразованные входные данные ($INP$), осуществляется логический вывод (search in abstract level rule base), представленный в виде $\{\{INP^{OUT_s}\}, OUT_s\}, s \in N$.
|
||||||
|
|
||||||
|
\item Результат выполнения правила первого уровня ($\{INP^{OUT_s}\}, OUT_s$), исходные входные данные (input data), представленные в виде кортежа данных ключ-значение ($inp1 = 7$) разного типа (целочисленные, строковые, дата и логические переменные типа boolean), и база данных интегрируемой ИС (data base) участвуют в динамическом формировании правил второго уровня (generate key level rule base), математическое представление которых представлено в формуле \ref{eq:comparison}.
|
||||||
|
|
||||||
|
\item В процессе нечеткого логического вывода (logic inference by Mamdani), основанного на подходе Мамдани, получается результат выполнения правила ($y^i$) на основе базы правил второго уровня.
|
||||||
|
|
||||||
|
\item На заключительном этапе (generate out) формируются подходящие выходные данные (output data), представленные в виде картежа данных ключ-значение ($out1 = 7$) разного типа (целочисленные, строковые, дата и логические переменные типа boolean). Заключительный этап использует в качестве входных данных базу данных интегрируемой ИС (data base) и результат выполнения правила ($y^i$) на основе базы правил второго уровня.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Таким образом, происходит процесс принятия решений на основе иерархической нечеткой базы правил с нечетким логическим выводом.
|
||||||
|
|
||||||
|
|
||||||
\begin{credits}
|
\begin{credits}
|
||||||
\subsubsection{\ackname} This study was supported the Ministry of Science and Higher Education of Russia in framework of project No. 075-03-2023-143 "The study of intelligent predictive analytics based on the integration of methods for constructing features of heterogeneous dynamic data for machine learn-ing and methods of predictive multimodal data analysis".
|
\subsubsection{\ackname} This study was supported the Ministry of Science and Higher Education of Russia in framework of project No. 075-03-2023-143 "The study of intelligent predictive analytics based on the integration of methods for constructing features of heterogeneous dynamic data for machine learn-ing and methods of predictive multimodal data analysis".
|
||||||
\end{credits}
|
\end{credits}
|
||||||
|
Loading…
Reference in New Issue
Block a user