{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "|--- T <= 32.50\n", "| |--- TiO2 <= 0.18\n", "| | |--- Al2O3 <= 0.18\n", "| | | |--- T <= 22.50\n", "| | | | |--- TiO2 <= 0.03\n", "| | | | | |--- Al2O3 <= 0.03\n", "| | | | | | |--- value: [3.71]\n", "| | | | | |--- Al2O3 > 0.03\n", "| | | | | | |--- value: [4.66]\n", "| | | | |--- TiO2 > 0.03\n", "| | | | | |--- value: [4.88]\n", "| | | |--- T > 22.50\n", "| | | | |--- TiO2 <= 0.03\n", "| | | | | |--- Al2O3 <= 0.03\n", "| | | | | | |--- value: [3.18]\n", "| | | | | |--- Al2O3 > 0.03\n", "| | | | | | |--- value: [3.38]\n", "| | | | |--- TiO2 > 0.03\n", "| | | | | |--- value: [4.24]\n", "| | |--- Al2O3 > 0.18\n", "| | | |--- T <= 22.50\n", "| | | | |--- value: [6.67]\n", "| | | |--- T > 22.50\n", "| | | | |--- T <= 27.50\n", "| | | | | |--- value: [5.59]\n", "| | | | |--- T > 27.50\n", "| | | | | |--- value: [4.73]\n", "| |--- TiO2 > 0.18\n", "| | |--- T <= 22.50\n", "| | | |--- value: [7.13]\n", "| | |--- T > 22.50\n", "| | | |--- T <= 27.50\n", "| | | | |--- value: [5.87]\n", "| | | |--- T > 27.50\n", "| | | | |--- value: [4.94]\n", "|--- T > 32.50\n", "| |--- T <= 47.50\n", "| | |--- TiO2 <= 0.18\n", "| | | |--- Al2O3 <= 0.18\n", "| | | | |--- T <= 42.50\n", "| | | | | |--- TiO2 <= 0.03\n", "| | | | | | |--- Al2O3 <= 0.03\n", "| | | | | | | |--- value: [2.36]\n", "| | | | | | |--- Al2O3 > 0.03\n", "| | | | | | | |--- value: [2.68]\n", "| | | | | |--- TiO2 > 0.03\n", "| | | | | | |--- T <= 37.50\n", "| | | | | | | |--- value: [3.12]\n", "| | | | | | |--- T > 37.50\n", "| | | | | | | |--- value: [2.65]\n", "| | | | |--- T > 42.50\n", "| | | | | |--- TiO2 <= 0.03\n", "| | | | | | |--- value: [1.83]\n", "| | | | | |--- TiO2 > 0.03\n", "| | | | | | |--- value: [2.40]\n", "| | | |--- Al2O3 > 0.18\n", "| | | | |--- T <= 37.50\n", "| | | | | |--- value: [4.12]\n", "| | | | |--- T > 37.50\n", "| | | | | |--- value: [3.56]\n", "| | |--- TiO2 > 0.18\n", "| | | |--- T <= 40.00\n", "| | | | |--- value: [4.35]\n", "| | | |--- T > 40.00\n", "| | | | |--- value: [3.56]\n", "| |--- T > 47.50\n", "| | |--- TiO2 <= 0.18\n", "| | | |--- Al2O3 <= 0.18\n", "| | | | |--- T <= 52.50\n", "| | | | | |--- TiO2 <= 0.03\n", "| | | | | | |--- Al2O3 <= 0.03\n", "| | | | | | | |--- value: [1.63]\n", "| | | | | | |--- Al2O3 > 0.03\n", "| | | | | | | |--- value: [1.90]\n", "| | | | | |--- TiO2 > 0.03\n", "| | | | | | |--- value: [2.11]\n", "| | | | |--- T > 52.50\n", "| | | | | |--- T <= 65.00\n", "| | | | | | |--- TiO2 <= 0.03\n", "| | | | | | | |--- value: [1.55]\n", "| | | | | | |--- TiO2 > 0.03\n", "| | | | | | | |--- value: [1.66]\n", "| | | | | |--- T > 65.00\n", "| | | | | | |--- TiO2 <= 0.03\n", "| | | | | | | |--- value: [1.19]\n", "| | | | | | |--- TiO2 > 0.03\n", "| | | | | | | |--- value: [1.29]\n", "| | | |--- Al2O3 > 0.18\n", "| | | | |--- T <= 65.00\n", "| | | | | |--- T <= 57.50\n", "| | | | | | |--- value: [2.43]\n", "| | | | | |--- T > 57.50\n", "| | | | | | |--- value: [2.16]\n", "| | | | |--- T > 65.00\n", "| | | | | |--- value: [1.73]\n", "| | |--- TiO2 > 0.18\n", "| | | |--- T <= 65.00\n", "| | | | |--- T <= 57.50\n", "| | | | | |--- value: [2.84]\n", "| | | | |--- T > 57.50\n", "| | | | | |--- value: [2.54]\n", "| | | |--- T > 65.00\n", "| | | | |--- value: [1.91]\n", "\n" ] } ], "source": [ "import pickle\n", "import pandas as pd\n", "from sklearn import tree\n", "\n", "model = pickle.load(open(\"data/vtree.model.sav\", \"rb\"))\n", "features = (\n", " pd.read_csv(\"data/viscosity_train.csv\", sep=\";\", decimal=\",\")\n", " .drop([\"Viscosity\"], axis=1)\n", " .columns.values.tolist()\n", ")\n", "\n", "rules = tree.export_text(model, feature_names=features)\n", "print(rules)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "35" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T > 65.0) and (TiO2 <= 0.025) -> 1.194,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T > 65.0) and (TiO2 > 0.025) -> 1.289,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 22.5) and (TiO2 > 0.025) -> 4.885,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 22.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 3.18,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 22.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 3.38,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 22.5) and (TiO2 > 0.025) -> 4.236,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 22.5) -> 6.67,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 22.5) and (T <= 27.5) -> 5.594,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 22.5) and (T > 27.5) -> 4.731,\n", " if (T <= 32.5) and (TiO2 > 0.175) and (T <= 22.5) -> 7.132,\n", " if (T <= 32.5) and (TiO2 > 0.175) and (T > 22.5) and (T <= 27.5) -> 5.865,\n", " if (T <= 32.5) and (TiO2 > 0.175) and (T > 22.5) and (T > 27.5) -> 4.944,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 2.361,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 2.682,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 > 0.025) and (T <= 37.5) -> 3.121,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 > 0.025) and (T > 37.5) -> 2.655,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 42.5) and (TiO2 <= 0.025) -> 1.832,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 42.5) and (TiO2 > 0.025) -> 2.402,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 37.5) -> 4.118,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 37.5) -> 3.565,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) and (T <= 40.0) -> 4.354,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) and (T > 40.0) -> 3.561,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 52.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 1.629,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 52.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 1.897,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 52.5) and (TiO2 > 0.025) -> 2.109,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T <= 65.0) and (TiO2 <= 0.025) -> 1.548,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T <= 65.0) and (TiO2 > 0.025) -> 1.662,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 22.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 3.707,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 22.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 4.66,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 65.0) and (T <= 57.5) -> 2.426,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 65.0) and (T > 57.5) -> 2.16,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 65.0) -> 1.728,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 > 0.175) and (T <= 65.0) and (T <= 57.5) -> 2.838,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 > 0.175) and (T <= 65.0) and (T > 57.5) -> 2.538,\n", " if (T > 32.5) and (T > 47.5) and (TiO2 > 0.175) and (T > 65.0) -> 1.91]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import get_rules\n", "\n", "\n", "rules = get_rules(model, features)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "35" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.194,\n", " if (T > 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.289,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.885,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.18,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 3.38,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.236,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 6.67,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 5.594,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 4.731,\n", " if (T <= 32.5) and (TiO2 > 0.175) -> 7.132,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 > 0.175) -> 5.865,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 > 0.175) -> 4.944,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 2.361,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 2.682,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 3.121,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.655,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.832,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.402,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 4.118,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 3.565,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) -> 4.354,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) -> 3.561,\n", " if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.629,\n", " if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 1.897,\n", " if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.109,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.548,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.662,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.707,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 4.66,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 2.426,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 2.16,\n", " if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 1.728,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 > 0.175) -> 2.838,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 > 0.175) -> 2.538,\n", " if (T > 32.5) and (TiO2 > 0.175) -> 1.91]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import normalise_rules\n", "\n", "\n", "rules = normalise_rules(rules)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "26" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.194,\n", " if (T > 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.289,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.885,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.18,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 3.38,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.236,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 6.67,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 5.162,\n", " if (T <= 32.5) and (TiO2 > 0.175) -> 7.132,\n", " if (T <= 32.5) and (T > 22.5) and (TiO2 > 0.175) -> 5.405,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 2.682,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 2.097,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.726,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 3.842,\n", " if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) -> 3.958,\n", " if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.629,\n", " if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 1.897,\n", " if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.109,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.548,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.662,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.707,\n", " if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 4.66,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 2.293,\n", " if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 1.728,\n", " if (T > 32.5) and (T <= 65.0) and (TiO2 > 0.175) -> 2.688,\n", " if (T > 32.5) and (TiO2 > 0.175) -> 1.91]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import delete_same_rules\n", "\n", "\n", "rules = delete_same_rules(rules)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2Viscosity
0200.00.03.707
1250.00.03.180
2350.00.02.361
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Viscosity\n", "0 20 0.0 0.0 3.707\n", "1 25 0.0 0.0 3.180\n", "2 35 0.0 0.0 2.361" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2Viscosity
0300.00.02.716
1400.00.02.073
2600.00.01.329
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Viscosity\n", "0 30 0.0 0.0 2.716\n", "1 40 0.0 0.0 2.073\n", "2 60 0.0 0.0 1.329" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "viscosity_train = pd.read_csv(\"data/viscosity_train.csv\", sep=\";\", decimal=\",\")\n", "viscosity_test = pd.read_csv(\"data/viscosity_test.csv\", sep=\";\", decimal=\",\")\n", "\n", "display(viscosity_train.head(3))\n", "display(viscosity_test.head(3))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "26" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (T = 70) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 1.194,\n", " if (T = 70) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 1.289,\n", " if (T = 20) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 4.885,\n", " if (T = 27.5) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 3.18,\n", " if (T = 27.5) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 3.38,\n", " if (T = 27.5) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 4.236,\n", " if (T = 20) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 6.67,\n", " if (T = 27.5) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 5.162,\n", " if (T = 20) and (TiO2 = 0.3) -> 7.132,\n", " if (T = 27.5) and (TiO2 = 0.3) -> 5.405,\n", " if (T = 40.0) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 2.682,\n", " if (T = 40.0) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 2.097,\n", " if (T = 40.0) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 2.726,\n", " if (T = 40.0) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 3.842,\n", " if (T = 40.0) and (TiO2 = 0.3) -> 3.958,\n", " if (T = 42.5) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 1.629,\n", " if (T = 42.5) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 1.897,\n", " if (T = 42.5) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 2.109,\n", " if (T = 48.75) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 1.548,\n", " if (T = 48.75) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 1.662,\n", " if (T = 20) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 3.707,\n", " if (T = 20) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 4.66,\n", " if (T = 48.75) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 2.293,\n", " if (T = 70) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 1.728,\n", " if (T = 48.75) and (TiO2 = 0.3) -> 2.688,\n", " if (T = 70) and (TiO2 = 0.3) -> 1.91]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import simplify_rules\n", "\n", "rules = simplify_rules(viscosity_train, rules)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/user/Projects/python/fuzzy-rules-generator/.venv/lib/python3.12/site-packages/skfuzzy/control/fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", " fig.show()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2J0lEQVR4nOzdd3hU153/8fc0zajMqHfURZNAVGPTwRRJIFzYdbKOEztO7PzSNna8WTteO3YSx3Z6spuyjh0nTjZO4k0WsA1oJIoFphiQME0I0AgVEJJGfUZtNO33hyxigQCVmblTzut59CRMufcjrgd9db73nCNzOp1OBEEQBEEQAohc6gCCIAiCIAieJgogQRAEQRACjiiABEEQBEEIOKIAEgRBEAQh4IgCSBAEQRCEgCMKIEEQBEEQAo4ogARBEARBCDiiABIEQRAEIeCIAkgQBEEQhIATcAWQ0+nEZDIhFsAWBEEQhMAlaQG0f/9+Nm3aRFJSEjKZjG3btt3yPWVlZcyfPx+1Wk12djZvvPHGuM5pNpsJDw/HbDZPLLQgCIIgCD5P0gKot7eXOXPm8Ktf/WpMr6+trWXjxo2sXr2aEydO8Pjjj/PII49QUlLi5qSCIAiCIPgTmbdshiqTydi6dSv33HPPDV/z1FNPsWPHDs6cOXP1sX/5l3+hq6sLvV4/pvOYTCbCw8Pp7u5Gp9NNNrYgCIIgCB7gsDuQK1w3buNT9wAdPnyYtWvXjngsPz+fw4cP3/A9FosFk8k04gvA7vCKuk8QBBc60HiAz5V8DrvDLnUUQRBcrPpYi0uP51MFUHNzM/Hx8SMei4+Px2Qy0d/fP+p7Xn75ZcLDw69+paSkAFBR1+n2vIIgeNZfzv2FY83HqGipkDqKIAguZqgwuvR4PlUATcTTTz9Nd3f31a9Lly4BoK9skjiZIAiu1G3p5tCVQwCU1In7AgXBnwz0Wmk42+HSYypdejQ3S0hIoKVl5BBYS0sLOp2O4ODgUd+jVqtRq9XXPb77bAs2uwOlC/uJguCLnE4nNptN6hiTVlZXRpg8jLXpaznSeIR+Sz9KuU/9EzcqhUKBXC7+nRICW+3JVhwuvnXFp/51WLx4MTt37hzx2K5du1i8ePG4j9XRZ+XwxXaWT411VTxB8Dk2m43W1la/WBfLZrbxr9P+ldzoXOKccZy/dJ64kDipY7lESEgI4eHhyGQyqaMIgiQM5UaSsiNcekxJC6Cenh4MBsPVP9fW1nLixAmioqJITU3l6aefprGxkT/+8Y8AfPGLX+SXv/wlTz75JJ/73OfYu3cv//u//8uOHTvGfe6UqGB2nGoSBZAQsJxOJ11dXcjlciIjI336h2u/rZ8uYxeLEhYxNWoqpwdO06XsIjc2V+pok+J0OhkcHLw6eSMiIkLaQIIggYEeK5fOdbLik1NdelxJC6Dy8nJWr1599c9PPPEEAA899BBvvPEGTU1NNDQ0XH0+IyODHTt28PWvf53//M//ZMqUKfz2t78lPz9/3OcuyE3g/84088I9s1CJNpgQgBwOB4ODg0RGRhIUFCR1nEmpNlUzKBskKzqLIFUQ6ZHpVLZVsly5HIVMIXW8SRm+NiaTCZ1OJ9phQsCp+dAITieZ81w7oitpAbRq1aqbDr2PtsrzqlWr+PDDDyd97vzcBF4/2sIBQxurp/vHMLkgjIfD4QCG7jHxdYYuA8lhyYSoQgDIjsjmeMtxLpsvk6ZLkzjd5A0XQXa7XRRAQsAxVBhJnh5JiM61v6gF7CdpeoKWzNhQtp8Us8GEwObLrS+APmsfjT2NZEdkX30sWhNNhDoCQ5fhJu/0Hb5+jQRhovpMgzSe7yR7gesHKgK2AJLJZBTlJVF6thmLTSyaJgi+6mL3RWTIyAzPvPqYTCYjOzKbuu46sSiiIPiwix8aQSYjy8XtLwjgAgigKC8R84CN9y+0SR1FEIQxWrVqFY8//vjVPxu6DEwJm4JGqRnxuuzwbCx2C5fMlzycUBAEV6kuN5IyIxJNmMrlxw7oAmhavJZp8WFsP3VF6iiCIExAr7WXpp4msiKyrnsuKjiKKE2U37TBBCHQ9HZZuGLoInuhe+7TDegCCKAoL4ldZ1sYsIphckHwNTVdNchkMjLCM0Z9Pjsim9ruWmwO9yz0ODg46JbjCoIAhuNG5HIZGXPcs1yNKIDyEukdtFN2vlXqKIIgjNOJ+hP87dt/IzE2kZCQEAoLC6murgaG1tApmF3AkZIjNJiGltOYO3cuiYmJV99/4MAB1Go1fX19AHR1dfHII48QGxuLTqfjzjvv5OTJk1df/+1vf5u5c+fy29/+loyMDDSakW03QRBcp6bCSGpOFJpQ17e/QBRAZMaGkZOoE20wQfAxPYM9/PgbP6b+bD3vvPMOhw8fxul0smHDBqxWKzKZjJUrVnL5xGUMXQY6Ozupqqqiv7+fc+fOAbBv3z5uu+02QkKGps/fd999GI1GiouLqaioYP78+axZs4aOjn/sQWQwGPi///s/tmzZwokTJ6T41gXB75k7Bmiq6XbL7K9hPrUVhrtszEvkl3sN9A3aCAkSfyVC4OoftFPT2uPx82bFhhEcNL71iPYc38Ppfacp21/G8uXLAXjzzTdJSUlh27Zt3HfffaxatYr//NV/Um+qx/yhmXnz5pGQkEBZWRkzZsygrKyMlStXAkOjQUePHsVoNF7dP/DHP/4x27Zt4+9//ztf+MIXgKG21x//+EdiY8Uq8oLgLjXHjSiUcre1v0AUQABsykviRyXn2XvOSFFektRxBEEyNa09FP3igMfPu/1flzErOXxc7zn84WEUSgXLliy7+lh0dDTTp0+nqqoKgJUrV/LYY4/R0dbB4d2HWbVq1dUC6POf/zyHDh3iySefBODkyZP09PQQHR094jz9/f3U1NRc/XNaWpoofgTBzarLjaTmRhEU7L4yRRRAQGp0CHlTwtlxqkkUQEJAy4oNY/u/Lrv1C91w3vEYtA8yYBlAxs0XCJw9ezZRUVEYzxh5f//7/OJHvyAhIYEf/OAHHDt2DKvVypIlS4ChvQkTExMpKyu77jgf34MrNDR0XFkFQRgfU1s/xjoT6z/v3r38RAH0kaK8RH5SeoEei40wtfhrEQJTcJBi3CMxUuiydDEzayY2m40jR45cLWLa29s5f/48OTk5wNCCiMuXL+fc++eou1DHosWLiNBGYLFY+M1vfsPChQuvFjTz58+nubkZpVJJenq6VN+aIAQ8Q4URpUpO2uzoW794EgL+JuhhG2YnYrE52FPVInUUQRBuodvSzaLZi7j77rt59NFHOXDgACdPnuTTn/40ycnJ3H333Vdfu2rVKkq2ljBl+hTaHG3I5XJWrFjBm2++efX+H4C1a9eyePFi7rnnHkpLS6mrq+PQoUM888wzlJeXS/FtCkJAMlQYSZsdTZDGvYMRogD6yJTIEOalRvCu2BtMELyazWGj39ZPdkQ2v//971mwYAFFRUUsXrwYp9PJzp07Uan+MW125cqV2O125t4x9+qiiKtWrcJut7Nq1aqrr5PJZOzcuZMVK1bw8MMPM23aNP7lX/6F+vp64uPjPf1tCkJA6jL20dpgJnuB+z9zMufNtmP3QyaTifDwcLq7u9HpdCOee/1ALT8oPkf5t9ai07hn3QFB8BZWq5XW1lZiY2NHFAzerqKlguMtx/nsrM+iko8998nWk3xw5QM+O+uzqBVqNyZ0PV+9VoIwXuXFdVTo6/ncj5ahGufM0PESI0Afs3F2IoN2B7sqRRtMELyVoctAui59XMUPQFZ4FnannbruOvcEEwRh0gzlRjJmR7u9+AFRAI2QEK7htvRIsSiiIHipzoFO2vvbyYq8fu+vWwkLCiMxNFHsDSYIXqqzuZf2xh6yF3qm5SwKoGsU5SXxfnUbXX1ijx9B8DaGLgNBiiBStakTen92RDaXzJcYsA24OJkgCJNVXW4kSKMgNTfKI+cTBdA1Cmcn4HA6KRVtMEHwKk6nE0OXgQxdBkr5xGaHZEVk4XQ6qe2udXE6QRAmy1BhJGNOLEqV+9tfIAqg68RpNdyeEc27og0mCF6lY6CDzoFOsiLG3/4aFqIKISksSbTBBMHLtDf20NnU69a9v64lCqBRbMxL5FBNO+09FqmjCILwEUOXAbVCTYo2ZVLHyY7IprGnkX5bv4uSCYIwWYYKI+oQJSk5nml/gSiARlU4KwEAfWWzxEkEQYCh9ldNVw0Z4Rko5JMbHs+MyATgYtdFV0QTBGGSnE4n1eUtZMyNRaH0XFkiCqBRRIepWZIVzY5TYlFEQfAGbf1tdFm6yI7InvSxgpXBJIclizaYIHiJtss9dBv7merB9heIAuiGNs5O5IOL7bSaRRtMEKRW01WDRqkhWZvskuNlRWRxpfcKfdY+lxxPEISJM5Qb0YSqSJ4R6dHzigLoBgpmJSCXySg+I0aBBEFKw7O/MsMzUcgUrFq1iscff3xSx8wMz0SGjJruGteEFARhQpxOJ4aKFjLnxaJQeLYkEQXQDUSEBLFsagzbxd5ggiCp1v5WTIMml7S/hmmUGqZop2DoFG0wQZCSsd6MqW2A7IWebX+BKIBuqigviWP1HTR3i0XTBEEqhk4DwcpgksKSXHrc7Ihsmnub6RnscelxBUEYO0OFkWCtiuSpER4/tyiAbmJdTjwquZydp8UokCBIwel0Yug2kBWRhVx2/T9XnZ2dPPjgg0RGRhISEkJhYSHV1dVX3xsbG8vf//73q6+fO3cuiYmJAGSEZ3DxxEWitFH09Yl7gQTB04bbX1nz4pB7uP0FogC6qfBgFSumxYi9wQRBIi19LfQM9txw8cPPfvazlJeX884773D48GGcTicbNmzAarUik8lYsWIFZWVlwFCxVFVVRX9/P+fOnUOtUNNyuoWsWVmEhIR48LsSBAGgpdZET4dFkvYXwMTWkw8gRXlJPP7WCRq7+kmOCJY6jiC412AftF3w/HljpkHQ9UWIoctAqCqUxNDE656rrq7mnXfe4eDBgyxZsgSAN998k5SUFLZt28Z9993HqlWr+M1vfgPA/v37mTdvHgkJCZSVlTFjxgxqKmpIm5eGedCMNkjr3u9REIQRqstbCAkPIjE7QpLziwLoFtbmxBOklLPzVBOPrsiUOo4guFfbBXh1pefP+4V9kDR3xEPDix/eqP1VVVWFUqnk9ttvv/pYdHQ006dPp6qqCoCVK1fy2GOP0drayr59+1i1atXVAujzn/88J46d4JF/eYSarhrmxs297hyCILiH0+GkpsJI1vw45HKZJBlEAXQLYWolq6fHsv3UFVEACf4vZtpQMSLFea/R1NtEr7V3Unt/zZ49m6ioKPbt28e+fft48cUXSUhI4Ac/+AHHjh3DarWyevlqDF0GUQAJggc11XTT2z3o8cUPP04UQGNQlJfEv/7lQxra+0iNFvcKCH4sKOS6kRipGLoMhKnCSAhJGPX5mTNnYrPZOHLkyNUWWHt7O+fPnycnJwcAmUzG8uXLefvtt6msrGTZsmWEhIRgsVj4zW9+w8KFC5mVNIvS+lK6Ld2Eq8M99v0JQiAzlLcQFqkmIVO6z5y4CXoM1syMI1ilYPtpcTO0IHiCw+ngYtdFsiKykMlGHx6fOnUqd999N48++igHDhzg5MmTfPrTnyY5OZm777776utWrVrFX/7yF+bOnUtYWBhyuZwVK1bw5ptvsnLlStJ0aajkKmq6xKKIguAJDocTw4etZC2IQyZR+wtEATQmIUFK7pwZJ/YGEwQPudJzhT5b3y0XP/z973/PggULKCoqYvHixTidTnbu3IlKpbr6mpUrV2K321m1atXVx1atWnX1MZVCRZouTewNJggecqW6i37TINkStr9AtMDGrGh2Il968zi1bb1kxIRKHUcQ/FpNVw26IB1xIdf/Azk8rR0gMjKSP/7xjzc91ty5c3E6nSMee/zxx0dsp5EVkUVJXQldA11EaCImE10QhFswlLegjdYQn66TNIcYARqj1TPiCA1SsP2kaIMJgjs5nA4udt+8/eVqw20wMQokCO7lsDuo+bCV7AVxHvt834gogMZIo1KwNiee7aINJghu1WhupN/W79K9v25FKVeSHp4uCiBBcLPL5zsZ6LEydWG81FFEATQeRXlJnG8xU91iljqKIPgtQ5eBcHU4McExHj1vdkQ2HQMddAx0ePS8ghBIDBVGdLHBxKSESR1FFEDjsWJaDFq1UowCCYKb2B12LnZfJDsi2+PD46naVIIUQWI2mCC4id3m4OKHrUz1gvYXiAJoXNRKBety49l+6sp1N1UKgjB5l3suY7FbJrX44UQp5AoywjMwdBnE51sQ3OBSVQeWPhvZXtD+AlEAjdumvCRqWns51yzaYILgaoYuA5GaSKI10ZKcPzsim86BTtoH2iU5vyD4M0OFkciEEKKTvWMmtSiAxmlpdgzhwSqxJpAguJjNYaO2u1aS9tewKWFTUCvUog0mCC5mtzqoPfHR4ode0P4CUQCNW5BSTr5ogwmCy10yX2LQPihJ+2uYQq4gMzxTtMEEwcUazrYzOGBn6gLvaH+BKIAmpCgvibr2PiqvmKSOIgh+w9BlIEoTRZQmStIc2RHZdFu6aetvkzSHIPiT6nIjUUmhRCV5R/sLRAE0IUuyookKDeLdU2JRREFwBZvDRl13nUfX/rmRZG0ywcpgsSaQILiIbdBO3ak2pi6UduuLa4kCaAKUCjkFsxLYcapJDJMLggvUm+qxOqxeUQDJZXIywzOp6aoRn29BcIH6ynasFjvZXtT+AlEATVjR7EQud/Zz8nK31FEEwefVdNUQExzjNftwZUVkYRo0YewzAmC323E4HBKnEgTfZCg3EpMSRkR8iNRRRhAF0ATdnhlNTJha7A0mCJNktVupN9WPa/RHr9ezbNkyIiIiiI6OpqioiJqaoZlbS5Ys4amnnhrx+tbWVlQqFfv37wfAYrHwjW98g+TkZEJDQ7n99ttHbLJa+vdSvrHiG7zxv2+Qk5ODWq2moaGBY8eOsW7dOmJiYggPD2flypUcP358xLnOnTvHsmXL0Gg05OTksHv3bmQyGdu2bbv6mkuXLvGJT3yCiIgIoqKiuPvuu6mrqxvfX5wg+ACrxU7d6TbJd34fjSiAJkghl7FhdgI7TjfhcIhhckGYqOH213hmf/X29vLEE09QXl7Onj17kMvl3HvvvTgcDh544AH++te/jmhfvfXWWyQlJbF8+XIAvvrVr3L48GH++te/curUKe677z4KCgqorq4Ghtpg1gErv/2v3/Laa69RWVlJXFwcZrOZhx56iAMHDvDBBx8wdepUNmzYgNk8tC6Y3W7nnnvuISQkhCNHjvDqq6/yzDPPjMhutVrJz89Hq9Xy/vvvc/DgQcLCwigoKGBwcHCyf52C4FXqTrdhG3R4XfsLQCl1AF9WlJfEHw/X8+GlThakSTtzRRBcod/WT213rUfPeajxEJHqSMLV4WN+zz/90z+N+PPvfvc7YmNjOXv2LJ/4xCd4/PHHOXDgwNWC589//jP3338/MpmMhoYGfv/739PQ0EBSUhIA3/jGN9Dr9fz+97/npZdeAsBmtXHfN+8jc24miaGJANx5550jzvvqq68SERHBvn37KCoqYteuXdTU1FBWVkZCQgIAL774IuvWrbv6nrfeeguHw8Fvf/vbq+uh/P73vyciIoKysjLWr18/nr8+QfBqhgojcWlawmODpY5yHVEATcLCtEjidWrePdkkCiDBL9R21/LJ7Z/0+HlfWPLCuF5fXV3Nc889x5EjR2hra7t6f05DQwOzZs1i/fr1vPnmmyxfvpza2loOHz7Mb37zGwBOnz6N3W5n2rRpI45psViIjv7HCtRBQUFMy51GTVfN1QKopaWFZ599lrKyMoxGI3a7nb6+PhoaGgA4f/48KSkpV4sfgEWLFo04z8mTJzEYDGi12hGPDwwMXG3jCYI/GBywUX+mnds3ZUodZVSiAJoEuVzGhtmJ7DjVxLeKclDIvWN1S0GYqIzwDN4qestj52swNXCk6QhLk5eO632bNm0iLS2N1157jaSkJBwOB7NmzbraQnrggQf42te+xi9+8Qv+/Oc/M3v2bGbPng1AT08PCoWCiooKFArFiOOGhf1jh+rg4GCyI7Op6aphSdIS5DI5Dz30EO3t7fznf/4naWlpqNVqFi9ePK7WVU9PDwsWLODNN9+87rnY2Nhx/T0IgjerPdmG3eog28umvw8TBdAkFeUl8fuDdRyr6+COTGn2LxIEVwlWBpMTneOx89V11zE7djaxIWP/wd/e3s758+d57bXXrra4Dhw4MOI1d999N1/4whfQ6/X8+c9/5sEHH7z63Lx587Db7RiNxqvvv5HsiGxOtZ6iqbeJ5LBkDh48yK9//Ws2bNgADN3M3Nb2jwUTp0+fzqVLl2hpaSE+fuieh2PHjo045vz583nrrbeIi4tDp9ON+fsWBF9jqDCSkKlDG6WROsqoxE3QkzQ/NYLkiGCxN5ggjJPFbqHB3DDutX8iIyOJjo7m1VdfxWAwsHfvXp544okRrwkNDeWee+7hW9/6FlVVVdx///1Xn5s2bRoPPPAADz74IFu2bKG2tpajR4/y8ssvs2PHjhHHiQ+JRxukvbo32NSpU/mf//kfqqqqOHLkCA888ADBwf+4t2HdunVkZWXx0EMPcerUKQ4ePMizzz4LcPV+nwceeICYmBjuvvtu3n//fWpraykrK+NrX/saly9fHtffhSB4K0uflYaz7V558/MwUQBNkkw2NBus+EwTNrtYJ0QQxqq2uxan00lm+PjuD5DL5fz1r3+loqKCWbNm8fWvf50f/ehH173ugQce4OTJkyxfvpzU1NQRz/3+97/nwQcf5N/+7d+YPn0699xzD8eOHbvudTKZjKzwLGq6anA4Hbz++ut0dnYyf/58PvOZz/C1r32NuLh/DO8rFAq2bdtGT08Pt912G4888sjVWWAazdBvwSEhIezfv5/U1FQ2b97MzJkz+fznP8/AwIAYERL8Ru3JNhx2J1nzvbP9BSBzBthSpyaTifDwcLq7u132j83JS13c/auDvPnI7SzNjnHJMQXB3axWK62trcTGxqJSqTx+/u0Xt2O1W7l36r0eP/d4GPuM/P3C37kr6y6maKeM+/0HDx5k2bJlGAwGsrImttGr1NdKEMbr3V+cxGqxsfkbC6SOckNiBMgF8qaEkxoVwnaxN5ggjMmAbYDL5stkR0q/9cWtxAbHogvSjXlvsK1bt7Jr1y7q6urYvXs3X/jCF1i6dOmEix9B8DUDPVYuV3UwdaH3tr9AFEAuIZPJ2JiXiP5MM1bRBhOEW7rYfREnTrLCvb8okMlkZEdkc7H7Inan/ZavN5vNfOUrX2HGjBl89rOf5bbbbuPtt9/2QFJB8A4XT7YOtbfnefesRlEAucjG2Yl09lk5VNMudRRB8Ho1XTUkhSYRovKuvYFuJCsiiwHbAI3mxlu+9sEHH+TChQsMDAxw+fJl3njjjRHrCwmCvzOUt5A0LYLQcLXUUW5KFEAukpukIyMmVOwNJgi30G/rp7Gn0St2fh+rmOAYItQRY26DCUKg6jcPcvl8l1fP/homCiAXkclkFOUlUlLZzKBNtMEE4UYudl0EIDPCO1eHHY1MJiMrIova7lrsjlu3wQQhUNV82ApAlpe3v0AUQC5VlJeEacDGAUOr1FEEwWsZugwkhyUTrPS+vYFuJjsiG4vdwiXzJamjCILXMlS0MGV6BMHaIKmj3JLkBdCvfvUr0tPT0Wg03H777Rw9evSmr//5z3/O9OnTCQ4OJiUlha9//esMDAx4KO3NTYsPIzsujO0nxaKIgjCaPmsfV3qu+FT7a1iUJopITeTVRREFQRipt9vClQtdZHv57K9hkhZAb731Fk888QTPP/88x48fZ86cOeTn52M0Gkd9/Z///Ge++c1v8vzzz1NVVcXrr7/OW2+9xX/8x394OPnohttgpWdbGLCKYXJBuFZNVw0ymYyM8Aypo4zb8GywWlMtNodN6jiC4HVqjrcik8nInOv97S+QuAD66U9/yqOPPsrDDz9MTk4Or7zyCiEhIfzud78b9fWHDh1i6dKlfOpTnyI9PZ3169dz//3333LUyJOK8pLosdjYd0G0wQThWoYuAynaFDRK79wb6FayI7IZtA/SYG6QOoogeB1DRQspOVFoQn1jsU7JNkMdHBykoqKCp59++upjcrmctWvXcvjw4VHfs2TJEv70pz9x9OhRFi1axMWLF9m5cyef+cxnbngei8WCxWK5+meTyeS6b2IU2XFhzEjQsuNUE/m5CW49l8/rbYN3vgbWPqmTTF72WljyValTeLWewR6aeptYk7pmUsdZtWoVc+fO5ec///moz8tkMrZu3co999wzpuOVlZWxevVqOjs7iYiIuOlrIzWRRAdHU9NZM+4tPAKNraODpm89h7O/X+ookxa6fDnRD39W6hherafTQpOhmzUPzZQ6yphJVgC1tbVht9uv7pg8LD4+nnPnzo36nk996lO0tbWxbNkynE4nNpuNL37xizdtgb388st85zvfcWn2WynKS+TXZTX0D9oJDlJ49Nw+5dT/gmEXTN8gdZLJ6WqA916ChZ+DIN9Y10YKNd01KGQK0sPT3XqepqYmIiMj3Xb87Ihsjrccx+qwopL7xm+6UjC9+y69+/cTtmZyBa/UrI2NtP7iF0T+yyeRB/vWjfueVHPciFwpI8NH2l8gYQE0EWVlZbz00kv8+te/5vbbb8dgMPDYY4/xwgsv8K1vfWvU9zz99NMjdoo2mUykpKS4NWdRXhI/Lr3Ae+eNbJid6NZz+bTKLUMjJ5/4g9RJJqe9Bn4xH6pLIfceqdN4LUOXgRRdCmqFexdHS0hw78hrdkQ2R5qO0GBqICvC+1eyloppZzGhy5cz5ec/kzrKpAzW1VFTUEjPvv3oCvKljuO1qstbSM2JRh3sO2WFZPcAxcTEoFAoaGlpGfF4S0vLDf8B+9a3vsVnPvMZHnnkEWbPns29997LSy+9xMsvv4zDMfraO2q1Gp1ON+LL3dJjQpmVrBN7g91MVwNcPga53r0R5phEZ0FC3lBBJ4zKPGimpbfFZbO/HA4HTz75JFFRUSQkJPDtb3/76nMymYxt27Zd/fOhQ4eYO3cuGo2GhQsXsm3bNmQyGSdOnBhxzIqKChYuXEhISAhLlizh/Pnzo547XB1ObHCsWBTxJqyNjfSfPImusEDqKJMWlJ6OOmcmpuJiqaN4LVN7Py21JqYu9N6d30cjWQEUFBTEggUL2LNnz9XHHA4He/bsYfHixaO+p6+vD7l8ZGSFYqjF5G2b2m+cncTec0Z6LWK2yKgqt4FSA9MLpU7iGrM2w4VSsPRIncQrGboMKOVK0nXpLjneH/7wB0JDQzly5Ag//OEP+e53v8uuXbuue53JZGLTpk3Mnj2b48eP88ILL/DUU0+NesxnnnmGn/zkJ5SXl6NUKvnc5z53w/NnR2ZTb6rHare65PvxNya9HplaTdjqO6WO4hK6wkJ69u3D0dsrdRSvVFPRikIlJz0vRuoo4yLpWNUTTzzBQw89xMKFC1m0aBE///nP6e3t5eGHHwaG9tRJTk7m5ZdfBmDTpk389Kc/Zd68eVdbYN/61rfYtGnT1ULIWxTlJfID/Tn2nDNy15wkqeN4n8otMHUdqLVSJ3GN3Hth97fhgh5m/7PUaSbM0d+P5eJFlx+3seF9spXB2BXVjHZLrDozc1z3V+Tl5fH8888DMHXqVH75y1+yZ88e1q1bN+J1f/7zn5HJZLz22mtoNBpycnJobGzk0Ucfve6YL774IitXrgTgm9/8Jhs3bmRgYACN5voZa1nhWRy+cpg6Ux1TI6eOOXegMBXrCVuxAkVYqNRRXEJXWEjrT36KuayM8I0bpY7jdQwVLaTNiiZI4zvtL5C4APrkJz9Ja2srzz33HM3NzcydOxe9Xn/1xuiGhoYRIz7PPvssMpmMZ599lsbGRmJjY9m0aRMvvviiVN/CDaVEhTAnJYLtJ6+IAuhaHRfhyoew5GtSJ3GdyHRIXgCVW326ALJcvEjdP7k+//CdMnX8dNTn0//v7wTn5o75eHl5eSP+nJiYOOr6YefPnycvL29EEbNo0aJbHjMxcejePaPRSGpq6nWv1al1xIfEY+gyiALoGoMNDQycOUP05288guZrgqZMQZOXh6m4WBRA1+hu7cNYb2buuus/J95O8nLtq1/9Kl/96ujTh8vKykb8WalU8vzzz1/9zc/bbcpL5Icl5zEPWNFqxGyRqyq3gioEpvnZDYW598KeF2DABBr332vmDurMTNL/7+8uPea5jnNUtVexKWsTSvno/+SoM8c3pVylGvl5kslkN7wPcCLHlMlkADc9ZlZEFkeajjBoHyRI4f3L/nuKqViPLDiYsI9G0/yFrqCA1p//HHtPD4qwMKnjeA1DhRFlkJz02b7V/gIvKID82YbZiXxvRxW7q1q4d94UqeN4j8qtQ8VPkH8Mj1+Vey+UPgvni2HOJ6VOMyHy4OBxjcSMRfX5SmJSFqFNn+PS447F9OnT+dOf/oTFYkGtHpp9duzYMZccOzsim0NXDlHbXcv0qOkuOaY/MOn1hK1aiTzEv5aE0BUWYPzhD+nZs4fwu++WOo7XMFQYSZ8dg0rtXbehjIXke4H5s6SIYBakRYq9wT6uzQDNpyF3s9RJXC98CqTcLmaDfUznQCdt/W2S7f31qU99CofDwRe+8AWqqqooKSnhxz/+MfCPUZ6JCgsKIyE0QewN9jGW2losVVXoCv1kcsPHqBITCZ43D1OxXuooXqOrpY+2Sz1k+9jsr2GiAHKzorxE9le30t0nZosAQ8VBUNjQDdD+KHczGPZAf6fUSbxCTVcNKrmKVJ009wfodDreffddTpw4wdy5c3nmmWd47rnnAEa9uXm8siOyaTA3MGDzjg2ZpWYqLkYeEkLYihVSR3ELXWEhPQcPYu/uljqKV6gub0GlVpCWGy11lAkRBZCbbZidiM3hpPRss9RRvMOZLUNT31V+uqJqzt3gsMG5HVIn8QqGLgMZ4Rk3vPdnIsrKyq7bBmPbtm288cYbwNCSGB/fBmPJkiWcPHkSi8VCeXk5DocDlUp19ebmVatW4XQ6R2yDMXfuXJxOJ+np6TfNkhWRhdPppLa71gXfme8zFxcTduedyF1QXHojbX4+2GyYd++59YsDgKHCSMacGJQ+uuOBKIDcLF6n4bb0KLafEm0wjFXQWuWf7a9hukRIWzJ0n1OA6+jvoGOgQ7L217A//vGPHDhwgNraWrZt28ZTTz3FJz7xCYJdsK1BqCqUxLBE0QYDLNXVWKoN6Db4X/trmCo+jpAFCzDpRRus/UoPHVd6yV7gm+0vEAWQR2zKS+SgoY3O3kGpo0irciuowyHbt/cGuqXce+FiGfR1SJ1EUoZuA2qFmhSte7eeuZXm5mY+/elPM3PmTL7+9a9z33338eqrr7rs+NkR2VzuuRzwbTBTsR65VkvosmVSR3Er7YZCeg8fxtYZ2G1uQ4WRoGAlqTm+2f4CUQB5RMGsRBxOJ/rKAG6DOZ1D7a8ZG0Hp3r2gJJdzNzgdUPWO1Ekk43Q6MXQaSA9PRyGXdnj8ySefpK6ujoGBAWpra/nZz35GiAtnKGWGZ+LEycVu1y8g6SucTiem4mK0a9YgD/LvJQF069eDw4F5lJXHA4XT6cRQbiRzTgwKle+WEb6b3IfEatUszopmRyC3wVrOQHu1f+z9dSthcZC+bKjgC1DtA+10Wbokb395QogqhOSw5IDeG8xy/jyDtbV+sffXrShjYghZtCig9wZrb+yhq6WP7IXxUkeZFFEAecjG2UkcqmmjrccidRRpVG4FTQRkrpI6iWfkboa696GnVeokkjB0DbW/pmgDY/2rrIgsGnsa6bP2SR1FEqZiPfLwcEJvsI+jv9EVFtJ35Ci29napo0jCUG5EHaJkyoxIqaNMiiiAPKRgVgIymYziMwHYBhtuf83cBEr/Hh6/auZdgAyq3pY6icc5nU5qumrIjMhEIfPN2SHjlRmeiQxZQLbBrra/1q1F5uftr2Ha9etAJsNcWip1FI9zOp1UVxjJnBeLQunbJYRvp/chUaFBLM2OYfvJK1JH8bymE9BZO7RjeqAIjR4a7ToTeLPBWvtb6bZ0B0T7a1iwMpgpYVMCsg02UHkWa0ODXy5+eCPKyEhCFy/GtDPw2mCtDWZMrf1MXeDb7S8QBZBHFeUlcrSuA6MpwGaLnNkCIdGQ7p+Lo91Q7r1QfxBMgXXvV01XDcHKYJLDkqWO4lFZEVk09TTRa+2VOopHmYp3ooiMJPT226WO4lG6wgL6ysuxtly/Ca8/M5Qb0YSpSJ4eIXWUSRMFkAfl5ySglMvYeTqAfiA6nVC5baglpAiwredmFoFcGVCzwZxOJ4YuA5nhmchlgfXPS0Z4BjKZLKDWBHI6nZiL9WjXr0emDKzPt3btWlAqA6oN5nQ6MVQYyZoXi1zh+59v3/8OfEh4iIrlU2MDa1HExgrobgis9tew4EjIujOgZoMZ+4yYB81ubX+tWrWKxx9//IbPy2Qytm3bNubjlZWVIZPJ6OrqmlQujVJDijYloAqggVOnsF65ElDtr2GK8HDCliwJqNlgLXUmzB0DPj/7a5gogDysKC+R8vpOrnT1Sx3FM85sgdA4SFsqdRJpzNoMlz6A7stSJ/EIQ5eBEFUIiWGJkmVoamqiUKIfyNkR2TT1NtEz2CPJ+T3NtLMYRUwMIbctlDqKJHQbCuk/fhxrU2D8UmsoNxKiCyJpaoTUUVxCFEAeti4nniClPDDaYA7H0PT3nLtB4sXwJDO9EBRBQ21APzfc/soKz5K0/ZWQkIBaLc1imxnhGShkCgxdBqxW/94A2elwYNLr0a1fj0wRmJ/vsDvvRKZSYdKXSB3F7ZyOj9pf8+OQy2VSx3EJUQB5mFajYuW0AGmDXT4K5iuB2f4apgmH7HUBsTdYc28zvdZesiKy3H4uh8PBk08+SVRUFAkJCXz729+++ty1LbBDhw4xd+5cNBoNCxcuZNu2bchkMk6cODHimBUVFSxcuJCQkBCWLFnC+fPnRzz/9ttvM3/+fDQaDZmZmXznO9/BZrONOO/rr77O7//t99yRfgcvvviiO751r9F/4gS2lha/3vvrVhRaLaErVmDS+38brPliN71dFp/e++taogCSQFFeIicudXGpw88XTTuzBbRJkHKH1EmkNWszNJZDZ73USdzK0GUY2hw01P3trz/84Q+EhoZy5MgRfvjDH/Ld736XXaNsTWAymdi0aROzZ8/m+PHjvPDCCzz11FOjHvOZZ57hJz/5CeXl5SiVSj73uc9dfe7999/nwQcf5LHHHuPs2bP85je/4Y033riuyPn2t7/NPffcw3/8739w36fvc+037WVMO4tRxscTPH++1FEkpSssZODkKQYvN0odxa2qK4yERqhJzAqXOorLBNZt+15i7cx4NCo5O0438cWV7v9tWRIOO5zdBrP+CeQBXmdPKwClZmgUaNnjUqe5Keugna7m8RfmDqeDCxcbSNFm0HZp/Pe/RCSEoAoaexslLy+P559/HoCpU6fyy1/+kj179rBu3boRr/vzn/+MTCbjtddeQ6PRkJOTQ2NjI48++uh1x3zxxRdZuXIlAN/85jfZuHEjAwMDaDQavvOd7/DNb36Thx56CIDMzExeeOEFnnzyyas5AD71qU/xb1/6N35f+XsGdf67+bHTbsdUoid8wwZkAf751q5ehUytxqwvJvqRR6SO4xYOh5OaCiNTF8Yj85P2F4gCSBKhaiV3zohjxyk/LoDqD0FPS2Ds/XUr6jCYuh4qt3h9AdTV3Mf/vnRsgu9OpBob1Yz//Z/4j9uITdWO+fV5eXkjz5yYiNF4/Xos58+fJy8vD41Gc/WxRYsW3fKYiYlDo1hGo5HU1FROnjzJwYMHR4z42O12BgYG6Ovru7q56sKFC1EpVKTp0jB0GpgXN2/M35Mv6SuvwN7ahrbA//f+uhV5aChhK1di2um/BVBTdRd9pkGyF/pP+wtEASSZjbOT+Mqfj1PX1kt6TKjUcVyvciuEp8CU26RO4h1mbYa/fRbaayDae4veiIQQPvEf479mFc0VNPc1syFjAzLZ+H9DjEgY3+7sKpVqxJ9lMhkOh2Pc573RMYe/h+Fj9vT08J3vfIfNm6+/n+3jxVVo6NBnOSsii9K6Urot3YSr/adlMMykL0aZlEjw3LlSR/EKug2FND7+dQbr6wlKS5M6jssZKoyERamJz9BJHcWlRAEkkTtnxBESpGDH6Sa+strPtgyw2+Ds2zD3fpjAD0O/NDUfVKFDheGKb0id5oZUQYpxjcTAUPuryVTL9CnTiUvyrn8gp0+fzp/+9CcsFsvVmWHHjo1/hGr+/PmcP3+e7OyxfVbTdGmo5CoMXQYWxC8Y9/m8mdNmw1xSSvg990yo2PVHYStXIgsJwVSsJ+aL/0/qOC7lsDuo+dDI9DsS/e56B3bzVkLBQQrWzIznXX/cG6zufehrG9oRXRgSFALTC/xyNlhjTyP9tn6v3PvrU5/6FA6Hgy984QtUVVVRUlLCj3/8Y4Bx/WP+3HPP8cc//pHvfOc7VFZWUlVVxV//+leeffbZUV+vkqtI16X75d5gfUePYu/oQFco2l/D5MHBaFet8stFERsvdNFvtjLVz9pfIAogSRXlJXKu2YzB6GeLplVugch0SPLP+x8mLPdeaDkDrRekTuJSNV016IJ0xAbHSh3lOjqdjnfffZcTJ04wd+5cnnnmGZ577jlgZOvqVvLz89m+fTulpaXcdttt3HHHHfzsZz8j7SbtjqzILNr72+kc6Jz09+FNTMXFqFJS0MyaJXUUr6ItLMBy/jyWixeljuJShvIWdDGacY8M+wLRApPQymmxhKmV7DjVxGNrp0odxzXsVqh6FxZ8VrS/rpW9DoK0Q6NAq0afiu1r7E47F7svkhOV47Hh8bKysuse+/i6P06nc8RzS5Ys4eTJk1f//Oabb6JSqUhNTQWGtta49j1z58697rH8/Hzy8/NvmOva16dqUwlSBGHoMnBbgn/cC+e0WjGX7iLiE5/wu3bIZIWtWIE8NBRTcTGxX/mK1HFcwm53UHOildxlyX55vcUIkIQ0KgXrcuLZfsqP2mAX90F/p2h/jUalgRkbhkbI/ESjuZEB2wDZkd7X/hr2xz/+kQMHDlBbW8u2bdt46qmn+MQnPkFwcLBbz6uUK0nXpfvV3mC9H3yAvbs7oBc/vBG5Wk3Ymjv9qg12+Vwnll6b383+GiYKIIkV5SVSbezhfLNZ6iiuUbkForMhYbbUSbxT7mZoPQctZ6VO4hKGLgMR6giiNdFSR7mh5uZmPv3pTzNz5ky+/vWvc9999/Hqq6965NzZEdl0DHTQ3t/ukfO5m2lnMUFpaahnzJA6ilfSFRYyaKhh4IJ/tLkN5S1ExIcQMyVM6ihuIQogiS2fGotWo2SHP4wC2SxQtX3oXhc/HC51iazVoA73i1Egu8NObXct2RHZXj08/uSTT1JXV8fAwAC1tbX87Gc/u7puj7ulaFNQK9R+cTO0Y3AQ8+7daDcUevX1llLo0qXItVq/GAWyWx1cPNFG9oI4v73eogCSWJBSTn5uAttPNV13D4HPqXkPLN2i/XUzSjXMLBq6D8jHr/cl8yUsdotH9v7yVQq5gozwDGq6anz+89178CAOsxldoWh/3Yg8KAjt2rWYi/U+f70vVXUw2G/zq72/riUKIC9QlJfIxbZezjaZpI4yOZVbIHYGxOdIncS75W6GdgM0n5Y6CXD9zbtjZegyEKWJIjrYe9tf3iA7IpsuSxftAxNvg3nDD1NTcTFB2Vlopk2TOopX020oZLCuDsu5c1JHmZTqihYiE0OJTvbP9heIAsgrLM2OITJE5ds7xFsH4NxOMfozFpkrIThS8jaY/KM9nOx2+7jfa3PYqDPVidGfMUjWJqNRajB0TrwNNjg4tK+YQjH2/dJcyWGx0LNnL7oCMfpzK6F33IEiPBzTTt9tg9msdmpPtvnl2j8fJ6bBewGVQk7BrAR2nGriyfzpvtlvNeyCQbPY+2ssFCqYuQnObIE1z0t2v5RcLicoKAiTyYRCoRjXf3f13fU4bU7SQ9OxWq1uTOkfssKyqOusY37M/HH9PTudTgYHBzGZTISEhFwtWj2tZ/9+HL29YvbXGMhUKrTr1w1Nh3/i6z7573nDmQ6sA3a/bn+BKIC8xsbZSfzl6CVON3aTNyVC6jjjV7kV4mdBrBgeH5PczXD8j3DlQ0ieL0kEmUxGREQEra2ttLW1jeu9Z5vPEmINwWq20mpudVNC/xFuC+ds+1mqg6uJ1ESO+/0hISGEh0u3p5i5WI96+nTUmZmSZfAlusJCuv72dwbOVBI82/cWjDRUtBCdHEZkgh/uU/kxogDyEndkRhEdGsT2U02+VwAN9sF5PSx/QuokviN9OYTEDLXBJCqAAJRKJQkJCdhstjG/p9/Wz3/t/y8emPkAsbHet/qzN4p0RPLsiWexhdj44pwvjuu9CoVCspEfAEd/P+ayMmK+8AXJMviakEWLUERFYSou9rkCyDpop/Z0OwsK/G9T12uJAshLKBVyCmcPtcGeLpzhW8Om1SVg7RXtr/FQKCHnbqjcButekHTZAJlMdt3u6jezt3EvLZYW1masHdf7ApkKFXdMuYN3697lqwu+6lOf7559+3D29Ym9v8ZBplSizV+PSV9M3L9/w6eud/3pdmwWu9/f/wPiJmivUpSXRGNXPx9e6pI6yvhUboXEORAtbogdl9x7ofsSXB7/7uRSKqkrISc6hxRditRRfEp+ej5NvU2cbD156xd7EdPOYjQ5OQTdZN8z4Xq6gkJsV5roP3FC6ijjYihvITZVS3isZ9bKkpIogLzIbelRxGrVbD/pQ7PBLD1woVTM/pqItCUQFu9TO8T3WnvZf3k/+ek33hNLGN38uPnEBMdQUlcidZQxc/T20rNvn7j5eQJCFi5AERuDWa+XOsqYDQ7YqDvT7vc3Pw8TBZAXUchlbJydyM7TTTgc0q/7MSYX9GDrF+2viZArIOeeoTaYwyF1mjHZd2kfFrtFFEAToJArWJ+2ntK6UhxO37je5vfKcFosaMX093GTKRTo8gsw6Utw+sjnu+50G3arQxRAgjSK8hJpNg1QXt8pdZSxObMFkhdCpBgen5BZm8F8BS59IHWSMdHX6cmLySM5LFnqKD6pIKMAY7+RD40fSh1lTEzFxWjy8giaIq73ROg2FGJraaH/+HGpo4yJodxIfIYOXYx7Nwr2FqIA8jLzUyNJ0Gl8Y2+wAdPQ+j9i9GfipiwCXfJQIenlzINmDjQeEKM/kzAndg7xIfHoa72/LWI3m+ndv19sfTEJwXPnooyP94lFEQf7bdRXBk77C0QB5HXkchkb8xLZeaYZu7e3wc7vBPsg5N4jdRLfJZcPtcHOvg2O8a/I7EnvXXoPq8PK+vT1UkfxWXKZnPXp69lVvwu7l1/vnr17cVqt6ApEwTtRMrkcXUEBptJSnBNYcd2Tak+24rA5yZovCiBBQkV5ibSaLRypnfjeQR5xZguk3AHhU6RO4ttmbYZeI9QflDrJTZXUlTAvbh4JoQlSR/FpBekFtA+0U9FSIXWUmzLtLCZ4/nxUiYlSR/Fpug2F2Nva6DtWLnWUm6quMJKYFY42SiN1FI8RBZAXmpsSQXJEsHfvDdbfCTV7RfvLFZIXQESqV7fBui3dHLpySLS/XGB2zGySw5LR13lvG8ze3U3PoUPoCsTaP5OlyctDlZSEqdh722ADvVYune0gOwDW/vk4UQB5IZlMRlFeIvozzdjsXjp74NwOcNiGFvMTJkcmGyokq94B+9hXZPakvQ17sTvsrE8T7a/JkslkrE9fz+763dgc3nm9zbt3g82GNl8UvJMlk8nQFhZgLi3FOY4V1z2p9mQrDoeTrHmiABK8QFFeEh29gxy+6KVtsDNbIG0p6MTwuEvk3gt97VC3X+oko9LX6VkQv4DYELH1hSvkp+fTaenkaNNRqaOMylSsJ2ThQlTxgfUD0V10hRuwd3bSe+SI1FFGZSg3kpQdQWiEWuooHiUKIC81K1lHWnSIdy6K2NsOF8tglmh/uUziXIjM8Mo2WOdAJ0eajlCQLtohrpITlUOKNoWSeu9bFNHW2Unv4cNi8UMX0uTmoEpN9co2WH/PIJfOdQbE1hfXEgWQl7raBqtsZtDmZW2wqncAJ8y8S+ok/kMmG7oZuupdsA1KnWaE3Q27ceJkbdpaqaP4DZlMRkF6Abvrd2O1W6WOM4K5dBc4nWjXrZM6it+QyWToCgsx79qNc9C7Pt8XP2wFp5PMAGt/gSiAvNrG2Ul091s5WNMmdZSRKrcO7WYeFngfGLfK3QwDXUOja16kpLaERQmLiA6OljqKX8lPz8c0aOJw02Gpo4xgKi4m5PZFKGNipI7iV3SFBTi6u+k97F3X21BhJHl6JCG6IKmjeJwogLzYzEQtmbGh3tUG6zFC3ftDoxWCa8XnQvRUr9obrK2/jWMtx8TsLzeYFjmNdF26V+0NZmtro+/oUbH4oRuop08nKCMDU7H3zP7rMw3SeL4zoBY//DhRAHmxoTZYEqVnm7HYvGQRrbNvAzLR/nKH4TbYuR1gs0idBoDd9buRI2dtqmh/uZpMJqMgo4C9DXsZtHtHW8RUWgoymWh/ucHVNtiePTi8pA1Wc9yITCYLuNlfw0QB5OWK8hIxD9jYf8FL2mCVWyFzFYRESZ3EP+VuBks3GPZInQQYmv11e9LtRGgipI7ilwrSC+ix9nCw0TsWwTTvLCZ08WKUkZFSR/FLusICHGYzvQcOSB0FGGp/TZkZiSZMJXUUSYgCyMtNi9cyLT7MO/YGMzVB/SHR/nKnuBkQl+MVbTBjn5HjLcfF7C83yorIIjsi2ysWRbS2GOmrqBDtLzdST52Kemq2V+wN1ttl4YqhK2DbXyAKIJ9QlJfErrMtDFglboOdfRvkSpixUdoc/i733qF91qz9ksYorStFIVewOmW1pDn8XX56PmWXyhiwDUiaw1xSAkol2rVrJM3h77SFhfTs3YtjQNrrbThuRC6XkTEncNf2EgWQDyjKS6R30E7ZeaO0QSq3QPYaCBbD426VuxkGe6B6l6QxSupKWJq0lHB1uKQ5/F1BegF9tj4ONErbFjEVFxO2dCmKcHG93UlXWIijr4+e/dIuemooN5KaE4UmNDDbXyAKIJ+QGRtGTqKOd6XcG6z7Mlw6Ivb+8oSYbEiYPVRwSqS5t5kTrSfE7C8PSA9PZ0bUDEnbYNamJvo//BBdoWh3ups6IwP1zJmSLopo7hig+WI32QvjJcvgDUQB5CM25iWyt8pI36BEe8lUbgOFGqZvkOb8gSZ3M1wogcFeSU5fUldCkDxItL88JD89n/2X99Nn7ZPk/KZiPbKgIMLWiPaXJ+gKCugp24ejT5rrXXPciEIpJyMvsNd6EgWQj9iUl0S/1c7ecxK1wSq3wNR1oNFJc/5Ak3svWPuGiiAJlNSVsCx5GWFBYZKcP9Dkp+fTb+tnf6M0bRGTXk/oiuUowsT19gTdhkKc/f307Nsnyfmry42k5kYRFKyU5PzeQhRAPiI1OoS8KeHSLIrYWQeNFaL95UlRGZA0T5I22GXzZU63naYgQ7RDPCVFm0JudC4ltZ4veAcvX2bg1Ckx+8uDglJS0MyaJclsMFNbP8Y6E1MDvP0FogDyKUV5ibx33kiPxcNtsMqtoAyGaeIHokflbh66Edpi9uhpS+pK0Cg0rJyy0qPnDXQF6QW83/g+vVbPtj1NxcXINBq0q1Z59LyBTldYSM/+/dh7PHu9DRVGlCo5abPF1jaiAPIhG2YnYrE52FPV4tkTV26FaetBLYbHPSr3HrANwHnP3hxbUlfCiikrCFGFePS8gW59+nosdgvvXXrPo+c1F+sJW7kSeWioR88b6HQF+TgtFnre2+vR8xoqjKTNjiZIE9jtLxAFkE+ZEhnCvNQI3vVkG6y9BppODo1GCJ4VkQpTbvNoG6zeVE9VR5WY/SWBpLAk8mLzPLo32GB9PQNnz4r2lwRUyckEz5nj0b3Buox9tDaYyV4g2l8gCiCfU5SXxP4LrXT3Wz1zwsotoAqFqes9cz5hpNzNYNgN/V0eOV1JXQnBymCWT1nukfMJIxWkF3Cw8SCmQZNHzmcqLkYWEkLYyhUeOZ8wkm5DIb3vv4/d5JnrbSg3olQrRPvrI5IXQL/61a9IT09Ho9Fw++23c/To0Zu+vquri6985SskJiaiVquZNm0aO3fu9FBa6W2cncig3cGusx5qg53ZCtMLIEi0QySRew/YrUMrQ3uAvk7PqpRVBCuDPXI+YaT1aeuxOWy81+CZNphpZzHaVauQB4vrLQVtQQFOqxXzHs+0wQwVLWTkxaAKUnjkfN5uwgXQnj17KCoqIisri6ysLIqKiti9e/e4jvHWW2/xxBNP8Pzzz3P8+HHmzJlDfn4+RuPoU70HBwdZt24ddXV1/P3vf+f8+fO89tprJCcnT/Tb8DkJ4RpuS4/0zN5grefBWCnaX1LSJUHqYo/sDXax6yLVndVi7y8JxYfGMy9unkcWRbTU1GC5cAHdBtH+kooqPp7gBQswFbv/F5yOpl7aG3sDeu+va02oAPr1r39NQUEBWq2Wxx57jMceewydTseGDRv41a9+Nebj/PSnP+XRRx/l4YcfJicnh1deeYWQkBB+97vfjfr63/3ud3R0dLBt2zaWLl1Keno6K1euZM6cORP5NnxWUV4S71e30dU36N4TVW4FtQ6y17r3PMLN5d4LNXuhr8OtpympKyFMFcbS5KVuPY9wc/np+Xxw5QO6Ld1uPY+pWI88LIzQ5aLdKSVdYSG9hw5j7+py63kMFUaCNApSc6Pceh5fMqEC6KWXXuJnP/sZf/nLX/ja177G1772Nf785z/zs5/9jJdeemlMxxgcHKSiooK1a//xw1Uul7N27VoOHz486nveeecdFi9ezFe+8hXi4+OZNWsWL730Enb7jTcJtVgsmEymEV++rnB2Ag6nk5LKZvedxOmEM1uGVn5Wadx3HuHWcu4GpwPObXfbKZxOJ/o6PatTVqNWqN12HuHW1qevx4GDPQ173HYOp9OJqbgY7Zo7kavF9ZaSLn89OByYx9lBGQ+n04mhvIWMObEoVaL9NWxCBVBXVxcFBdcPk69fv57u7rH91tLW1obdbic+fuTd6PHx8TQ3j/6D/eLFi/z973/Hbrezc+dOvvWtb/GTn/yE733vezc8z8svv0x4ePjVr5SUlDHl82ZxWg23Z0Sz3Z17gxnPQtt5sfihN9DGQ9rSoYLUTaq7qrnYfVEsfugFYoJjWBi/EH2t+9pglgvVDNbUoB3l33HBs5SxsYTcdptbF0XsuNJLZ3Mf2QtF++vjJlQA3XXXXWzdev09CW+//TZFRUWTDnUjDoeDuLg4Xn31VRYsWMAnP/lJnnnmGV555ZUbvufpp5+mu7v76telS5fcls+TNuYlcqimnfYei3tOULkVNOGQdad7ji+Mz6zNULsfetvccnh9rR5tkJbFiYvdcnxhfPLT8znafJSOAfe0PU36YuQ6HWFLRbvTG+gKC+g9cgRbh3uut6HCiDpEScpM0f76uAkVQDk5Obz44ots3LiR733ve3zve9+jqKiIF198kVmzZvFf//VfV79uJCYmBoVCQUvLyNlMLS0tJCQkjPqexMREpk2bhkLxjyG8mTNn0tzczODg6PfDqNVqdDrdiC9/UDhr6O9I74422HD7a8YmUAa5/vjC+M28a+h/q95x+aGdTiel9aWsSV2DSqFy+fGF8VubNnRrwO5617dFnE4n5p3FaNeuRRYkPt/eQLt+aJkRc+kulx/b6XRSXd5CxtxYFErJJ357lQn9bbz++utERkZy9uxZXn/9dV5//XUqKyuJiIjg9ddf52c/+xk/+9nP+PnPf37DYwQFBbFgwQL27PlHn9vhcLBnzx4WLx79t9ClS5diMBhwOBxXH7tw4QKJiYkEBdgHOTpMzZKsaPfsDdZ8CjpqYJZof3mN0BjIWOGWNti5jnPUm+rF7C8vEqWJYlHCIrcsimipqmKwvh5dobje3kIZFUXo7bdjKnZ9G6ztUg/dxn6mitlf15lQAVRbWzumr4sXL970OE888QSvvfYaf/jDH6iqquJLX/oSvb29PPzwwwA8+OCDPP3001df/6UvfYmOjg4ee+wxLly4wI4dO3jppZf4yle+MpFvw+cV5SVypLYdo3nAtQeu3ArBUZAh9oLyKrM2Q/1BMLt2DSh9nZ4IdQSLEhe59LjC5BRkFFDeUk5bv2vbnqbiYhQREYTecYdLjytMjm5DIX3HjmFrbXXpcQ0VLWhCVSTPiHTpcf2BpONhn/zkJ/nxj3/Mc889x9y5czlx4gR6vf7qjdENDQ00Nf1jhCMlJYWSkhKOHTtGXl4eX/va13jsscf45je/KdW3IKn83ATkMhn6My5sgw23v2ZuAtEO8S4zikAmd2kbzOl0UlJXwtq0tajk4np7kzWpa5Ajp7Su1GXHHJr9pUe7bh0ylbje3kS7di3I5ZhKXHu9DRVGMufFolCI9te1xrwb2hNPPMELL7xAaGgoTzzxxE1f+9Of/nTMAb761a/y1a9+ddTnysrKrnts8eLFfPDBB2M+vj+LCAli2dQYtp9s4sHF6a456JXj0FU/NNogeJeQKMhcPVSgLnrUJYesbK+ksadR7P3lhcLV4dyRdAcldSV8auanXHLMgTNnsF6+LBY/9EKKiAhClyzGpC8m6tMPuOSYxnozprYBMfvrBsZcAH344YdYrdar//9GZDLZ5FMJY1aUl8S///0kzd0DJIS7YL2eM1sgNBbSlk3+WILrzdoM274MpitDq0RPkr5WT5QmioXxC10QTnC1gvQCvnXwW7T0thAfOvkNLE07i1FERRFy220uSCe4mq5wA03/8R9YW1pQxU/+ehvKWwjWqkieGjH5cH5ozAXQe++9N+r/F6S1LicelVzOjtNNfH5ZxuQO5nRC5bahGUeKMf+nIXjSjI1DrcnKbbD4y5M6lMPpoKS+hHVp61DKxfX2Rnem3sl3Dn+H0vpSPpPzmUkdy+lwYNLr0eavR6YU19sbadfcSbNSiVmvJ+qhhyZ1LKdjqP2VNT8OuWh/jUr8rfi48GAVK6bFuGZvsMvHwHRZtL+8mSZ8aGsSF+wNdqr1FM29zWL2lxfTBmlZmrzUJXuD9Z88ia2pCV2haH95K4VOR+iyZS5ZFLGlzkRPp0Xs/XUTEyqAent7+da3vsWSJUvIzs4mMzNzxJfgWUV5SRxv6KKxq39yBzqzBcIShjbfFLxX7r1w+Sh0TW5Rz5K6EmKDY5kXN89FwQR3yE/P51TrKa70TO6XHFNx8dCqwwsWuCiZ4A66DYX0nzyJtbFxUsepLm8hJDyIxOwI1wTzQxMaB33kkUfYt28fn/nMZ0hMTBT3/UhsbU48aqWcHaeu8IUVWRM7iMMBZ7dB7j0gF3vFeLXphaDUDI0CLf3ahA7hcDoorStlffp6FOJ6e7Xh/dlK60r57KzPTugYTocDs74EbX4+MoW43t4sbPWdyNRqTPoSoj//uQkdw+lwUlNhJHt+HHK5+Pl8IxMqgIqLi9mxYwdLxTLqXiFMrWT19Di2n2qaeAF06QMwN4m9v3yBWgtT10HllgkXQMdbjmPsN4r2lw8IVYWyPHk5+jr9hAug/ooKbEajmP3lAxRhoYStWIGpuHjCBVBTTRe93YNkL5z8jdT+bEItsMjISKKixJ4i3mRjXiKnLnfT0N43sQOc2QK6ZJgiFsPzCbmb4cqH0FE7obfr6/QkhCaQF5vn4mCCO+Rn5FPZXskl08TanqZiPcqEBILnznVtMMEtdIUFDJw5w2BDw4Tebyg3EhapJiHDP7Z+cpcJFUAvvPACzz33HH19E/xhK7jcmplxBKsUbD89gfsEHHY4+/bQ6I9c3BfvE6blgypkQjdD2x12dtXvYn3aeuQycb19wYrkFQQrgympH//WGE67HVNpKbqCAmTi8+0TwlatQhYcjEk//uvtcDgxfNhK1oI4ZKL9dVNjboHNmzdvxL0+BoOB+Ph40tPTUV2zoujx48ddl1AYk5AgJXfOjGP7ySa+vCp7fG+uOwC9xqFRBcE3BIUOFUGVW2D5zRcmvVZ5SzkdAx2i/eVDQlQhrJiygpK6Eh6Z/ci43tt37Bj2tjax95cPkYeEELZqJabiYmK+ML5FT69c6KTfNMjUBaL9dStjLoDuueceN8YQXGFTXiJf/NNxLrb2kBkbNvY3Vm6FiFRInu++cILr5W6G//0MtBkgZuxFr75OT3JYMrNiZrkxnOBqBekFfL3s69R115Eenj7m95l2FqNKTkaTJ9qdvkRXWEjj1x7DUluLOmPsa7xVVxjRRmuIS9e6MZ1/GHMB9Pzzz7szh+ACq6bHERqkYMepJv51zdSxvcluG9pbat6nQczm8y1T10FQ2FABu/Lfx/QWq8PK7vrdbJ66Wcze9DHLkpcRogxBX6fni3O+OKb3OG02zKWlRPzzP4nr7WPCVqxAHhKCqbiY2C+PbdFTh93BxeOtzFwqZmePxYQawpcuXeLy5ctX/3z06FEef/xxXn31VZcFE8ZPo1KwNiee7aeabv3iYbX7oK9dtL98kSp4aEp85ZYxv+VY0zG6LF1i7y8fpFFqWJWyipK6sd8X0vvBEexdXWjF4oc+R67REHbnnZiLx74I5uXznQz0WpkqZn+NyYQKoE996lNXt8Nobm5m7dq1HD16lGeeeYbvfve7Lg0ojE9RXhLnW8xUt5jH9obKLRCVCYlz3BtMcI/czWA8C8ZzY3q5vk5PqjaVmVEz3RxMcIeC9AIMXQZqumrG9HpT8U5UqalocnLcnExwB92GQizV1VgMhjG93lBuJDw2mJiUcdwCEcAmVACdOXOGRYuGpkv/7//+L7Nnz+bQoUO8+eabvPHGG67MJ4zTimkxaNVK3h3LKJBtEKq2D83+EsOlvil7DajDxzQKZLVb2d2wm/z0fDE87qOWJi9Fq9KOaWsM5+Ag5l270RUWiuvto0KXLUMeFjamrTHsNgcXT7SSvTBOXO8xmlABZLVaUavVAOzevZu77roLgBkzZtDUNI72i+ByaqWCdbnx7Dh1BafTefMXXyyDgS7R/vJlSvXQBqmVW4c2s72Jw02HMQ+aKcgQs4F8VZAiiNWpq9HX6m/5+e49fBiHySQWP/Rh8qAgtGvWYCouvuX1vlTVgaXPRraY/TVmEyqAcnNzeeWVV3j//ffZtWsXBQVD/6BeuXKF6OholwYUxm9TXhI1rb2ca75FG6xyC8RMg/hczwQT3CP3Xmi7AC2VN31ZSV0JGeEZTI0Y4w3yglfKT8+nzlTHhc4LN32daWcxQZmZqKdN81AywR10GwoZrK3FcuHm19tQYSQyIYTo5FAPJfN9EyqAfvCDH/Cb3/yGVatWcf/99zNnztD9I++8887V1pggnaXZMYQHq9h+sx3irQNwbsfQ6I8YLvVtmatAE3HTNpjFbmFvw14K0gvE8LiPW5y4GF2Q7qY3QzssFsx79gwtfiiut08LXbwYeXj4TdtgNqud2hOtZC8Q7a/xGHcB5HQ6yczMpKGhgba2Nn73u99dfe4LX/gCr7zyiksDCuMXpJRTkJvA9lNNNx42rdkLFpPY+8sfKINg5qah7UxucL0PNh6kx9ojFj/0AyqFirVpa9HX3bgN1nvgAI6eHtH+8gOyoCC069betA3WUNnB4IBdtL/GaUIFUHZ2Ns3NzURGRo54Lj09nbi4OJeFEyZuY14i9e19VF4xjf6Cyi0QlwNxMzwbTHCPWZuhsxaaTo76tL5Oz9TIqWRGZHo4mOAO+en5XDJf4mzH2VGfNxXrUU+dijp7nKvCC15JV1CItaGBgbOjX29DhZGopFCikkT7azzGXQDJ5XKmTp1Ke3u7O/IILrIkK5qo0CDeHa0NZu2H88Xi5md/kr4CQqJHbYMN2AYou1RGfppY+8dfLEpYRKQ6ctQ2mGNggJ69e8Xojx8JveN2FJGRmIuvb4PZBu3UnWpj6kIx+DBeE7oH6Pvf/z7//u//zpkzZ1ydR3ARpUJOwawEdozWBqsuhcEe0f7yJwolzLxr1Nlg7ze+T7+tX8z+8iNKuZK1aWsprSu97vPds28/jr4+tAXievsLmVKJdv16TMXXtz3rz7RjtYj210RMqAB68MEHOXr0KHPmzCE4OJioqKgRX4J3KMpL5HJnPycudY18onIrJMwe1/5Rgg+YtRm6GqCxYsTD+lo9M6NmkqZLkyiY4A4F6QU09jRyuu30iMdNxcWoZ84c1/5RgvfTFRZibWxk4NSpEY9XlxuJSQkjIj5EomS+a8x7gX3cz3/+cxfHENzh9oxoYsLU7DjVxLzUj+7XGuyFCyWwYmx7Rwk+JG0phMYNFbhTFgLQZ+1j/+X9Y947SvAdC+IXEK2JRl+nJy92aKNTR18fPWVlxIxx7yjBd4TcthBFTAymYj3BH828tlrs1J9uY+HGdGnD+agJFUAPPfSQq3MIbqCQy9gwO4Edp5v4jw0zkctlcEEP1j7R/vJHcgXk3D1UAK17AeRy9l/ez4B9gPXp66VOJ7iYQq5gXdo6SutK+cbCbyCXyekpK8M5MICuULS//I1MoUC3fj0mvZ64J/8dmVxO3ek2bFaHaH9N0IRaYAA1NTU8++yz3H///RiNRgCKi4uprLz5YmyCZxXlJdHUPcDxhs6hB85sgaT5ECWGx/3SrM1gaoTLR4Gh2V+zomeRok2ROJjgDgUZBbT0tXCydWj2n6m4GM2sWQSliOvtj3QbCrE1N9N/4gQwtPdXXJqW8NhgaYP5qAkVQPv27WP27NkcOXKELVu20NPTA8DJkyd5/vnnXRpQmJyFaZHE69RDO8RbzFC9S4z++LOUO0CbBGe20DPYw/uX3xc3P/uxeXHziAuOQ1+rx97TQ8++/ejEzu9+K3j+fJRxcZh2FjPYb6P+TDvZYuf3CZtQAfTNb36T733ve+zatYugoKCrj99555188MEHLgsnTJ5cLmPD7ER2nm7CcW4n2C2iAPJncjnk3gNn3+a9hr0MOgZZnybaX/5KLpOzPn09pfWlmPbswTk4KNpffkwml6MtyMdcUkLtCSN2m4PsBWL6+0RNqAA6ffo09957/Q/RuLg42traJh1KcK2ivCSMZgtdx96CKYsgQgyP+7Xce6GnmdJzf2VO7BwSwxKlTiS4UX56Pm39bVx++y2C585FlZQkdSTBjXSFhdhaWzm/t5qETB3aKI3UkXzWhAqgiIiIUXd9//DDD0lOTp50KMG15qdGMD3cga5x39A9IoJ/m3IbpogUDrSfEVtfBIA5sXPIlMcjP3JSjP4EgOC5c3FOSefyJau4+XmSJlQA/cu//AtPPfUUzc3NyGQyHA4HBw8e5Bvf+AYPPvigqzMKkySTyfhq0nnkTju26ZukjiO4m0zG3vT52J0O1qXcKXUawc1kMhn3t2aBw0HI+rVSxxHcTCaTYV58H04nZM4R6+5NxoQKoJdeeokZM2aQkpJCT08POTk5rFixgiVLlvDss8+6OqPgAiut73PMMZ0j7WK4NBDolTbmWSzEt16QOorgAXmnzJybAh86G6SOInhAc/A0wrsvIq8+desXCzc0oQIoKCiI1157jZqaGrZv386f/vQnzp07x//8z/+gUChcnVGYrL4OtFcOcEi9gu2j7Q0m+JWugS6OdFRR4AgeWvZA8Gu2zk5k5aepmhs16t5ggn8Z6LFy5bKVJOtFTDuv3xtMGLsJrwMEkJqaSmFhIffddx9Tp051VSbB1areReZ0oJp9D8VnmrHaHVInEtxoT8MeHDhYl7kBqt4Bu1XqSIIbmXfvBoeDqIKN7G7YjdUhrrc/u3iiFafTSfaiJMylpTit4npP1IQLoNdff51Zs2ah0WjQaDTMmjWL3/72t67MJrhK5VZIW8qqBbPo6rNy0CBm6vkzfZ2e2+JvIybvU9DfCbX7pI4kuJG5uJiQ227jznmb6bZ0c6TpiNSRBDeqLm8haVokcXetw97dTa9YembCJlQAPffcczz22GNs2rSJv/3tb/ztb39j06ZNfP3rX+e5555zdUZhMnrboHY/zNpMbpKOjJhQdpy6fgaf4B/a+9s52nx0aOuLhNkQnQ1ntkodS3ATW0cHvR8cQVdYyPTI6aTp0tDX6qWOJbhJv3mQxvOdZC+IQz1jBkFpaZiKxfWeqAkVQP/93//Na6+9xssvv8xdd93FXXfdxcsvv8yrr77Kr3/9a1dnFCbj7NtD/zvzbmQyGUV5iZRUNjNoE20wf7SnYQ8yZKxLWwcy2dCaQOfeBdug1NEENzCXloJMhnb9OmQyGfnp+ext2ItVtD39Us2HrSCTkTU/FplMhnZDIebdu3EOis/3REyoALJarSxcuPC6xxcsWIDNZpt0KMGFKrdC5koIjQaGFkU0Ddh4v7pV4mCCO+jr9NyeeDuRmsihB3I3w0A31OyVNpjgFqadxYTefjvKqKHp0AXpBZitZg5dOSRxMsEdDOUtTJkRSXDY0A4MusJCHCYTPQcPSpzMN02oAPrMZz7Df//3f1/3+KuvvsoDDzww6VCCi5hboP7giK0vpsWHkR0XNrQ3mOBXWvtaKW8uH7n4YXwOxM4YKoQFv2I1Guk7dgzdhn/s/TU1cipZ4Vno60RbxN/0dltorO4asfWFZto0grKzMBWL2WAToRzrC5944omr/18mk/Hb3/6W0tJS7rjjDgCOHDlCQ0ODWAjRm5x9G2RymFF09aHhNthv369lwGpHoxLLFviL0vpSFDIFd6Zes/hh7mY49AuwDoBKrAPlL8ylu0ChQLt25OKH+en5/OHsH7DYLagVaonSCa5Wc7wVuUxG5tzYEY/rCgrp+P3vcVgsyNXieo/HmEeAPvzww6tfp0+fZsGCBcTGxlJTU0NNTQ0xMTHMnz+fyspKd+YVxqNyC2TdCSEjVwstykuix2Jj3wXRBvMnpXWlLE5aTLg6fOQTuffCoBkMu6UJJriFqbiY0KVLUEREjHg8PyOfXmsvBxoPSBNMcAtDRQspOVFoQlUjHtdtKMTR20vv++9LlMx3jXkE6L333nNnDsHVTFeg4TDc88p1T2XHhTEjQcv2U03k5yZIEE5wtebeZo4bj/PishevfzJ2GsTPGiqIZxZd/7zgc6zNzfRXVJD48svXPZcZnsm0yGmU1JawJnWNBOkEV+vpHKDJ0M2az8687jl1Zibq6dMx7Sy+bjRQuLlJLYQoeLHKbaAIghkbRn26KC+RPVUt9A/aPZtLcIvSulJUchWrU1aP/oLce+G8Hgb7PBtMcAuTXo9MpUK7dvQCpyC9gLLLZfTb+j2cTHAHQ4URuVJGxpzYUZ/XFRZiLivD0S+u93hMqAAaGBjgRz/6ERs2bGDhwoXMnz9/xJfgBSq3QPZa0ISP+nRRXhJ9g3beO2/0cDDBHUrqSliavBRtkHb0F+TeC9ZeqC71bDDBLczFekKXL0ehHf1656fn02/rZ//l/R5OJriDocJIak406uDRmza6wgKcfX307BPXezzG3AL7uM9//vOUlpbyz//8zyxatAiZTObqXMJkdDXA5WOw+cYrc6fHhDIrWcf2U1fYMDvRg+EEV2vsaeRU2ym+v/z7N35RdBYkzhkqjHPv8Vg2wfWsjY30nzxJ0o9+eMPXpOpSmRk1k5K6EvLT8z2YTnA1U3s/LbUm1n0u54avCUpLQ5OTg6m4GF2BuN5jNaECaPv27ezcuZOlS5e6Oo/gCpXbQKmB6QU3fVlRXhI/332BXouNUPWE/lMQvEBpXSlqhZpVKatu/sLczVD2fbD0gDrMI9kE1zPp9cjUasJW33nT1xVkFPDfJ/6bPmsfIaoQD6UTXM1QYUShkpOeF3PT1+k2FNL6y1/h6O1FHhrqoXS+bUItsOTkZLQ3GHoVvEDlFpi6DtQ3v0YbZycyYHWwu6rFQ8EEd9DX6VkxZQWhqlv8o5d7L9j64YJYI8aXmYr1hK1YgSLs5tc7Pz2fAfsAZZfKPJJLcA9DuZH0WdEEaW7+S6q2oBDnwADm98o8E8wPTKgA+slPfsJTTz1FfX29q/MIk9VxEa58OPTb/i2kRIUwJyVC7A3mwxpMDZxtPzu099etRKZB8kKxKKIPG2xoYODMmRGLH95Iclgys2Nmi0URfVh3ax+tDWayPrb44Y0ETUlGk5eHSS8WRRyrCRVACxcuZGBggMzMTLRaLVFRUSO+BAlVbgVVCEwbWx94U14iZRdaMQ+IvYN8UWl9KcHKYFYkrxjbG3LvhepdMGBybzDBLUzFemTBwYStXDmm1+en53Og8QA9gz1uTia4g6HCiDJITvrsm7e/hukKC+nd/z72HnG9x2JCN37cf//9NDY28tJLLxEfHy9ugvYmlVuHip+gsfWAN8xO5Hs7qth1toXN86e4OZzgavpaPSunrBz7PR6590DpM3B+J8z5F7dmE1zPVFxM2KqVyEPGdr3z0/P5cfmPee/Se2zK2uTmdIKrVZcbSc+LQaUe24r9uoJ8jD/4AT179hB+991uTuf7JlQAHTp0iMOHDzNnzhxX5xEmo80AzadhxZNjfktSRDAL0iLZfqpJFEA+pra7lvOd5/nSnC+N/U3hUyDljqFCWRRAPsVysRbLuXPEfHns1zshNIF5cfPQ1+lFAeRjOpt7ab/cw6KNGWN+jyoxkeD58zHtLBYF0BhMqAU2Y8YM+sWCS96ncgsEhQ3dAD0ORXmJvF/dSnefaIP5En2dnhBlCEuTxzkbc9ZmMOyB/k73BBPcwqQvRh4SQtiKMbY7P5Kfns+hK4fotnS7KZngDoYKIyq1gtTc8d1WoisooOfQIezd4nrfyoQKoO9///v827/9G2VlZbS3t2MymUZ8CRI5swWmbwBV8LjetmF2IjaHk5KzzW4KJrhDaV0pq1NXo1GOc4PTmXeBwwbndrgnmOAW5uJiwu68E7lmfNd7Xdo67A47exv2uimZ4A6GCiMZc2JQBo1vw2ptfj7YbJh373FTMv8xoQKooKCAw4cPs2bNGuLi4oiMjCQyMpKIiAgiIyNdnVEYC2MVtFYN3eQ6TvE6DYvSo9guZoP5DEOnAUOXgYL0m6/1NCpdIqQtHSqYBZ9gqa7GUm0Y0+yva8WFxLEgfgEldSVuSCa4Q/uVHjqu9JK9MH7c71XFxxGycCGmYjEb7FYmdA+Q2BjVC1VuBXU4ZE9s88OivES+/e5ZOnoHiQoNcnE4wdX0dXq0Ki1LkpZM7ACz7oWdT0JfB4SImZvezlSsR67VErps2YTeX5BewMtHX6ZzoJNIjfgl1dsZyo0EBStJnTmxz6ZuQyHN33sRW2cnSjEocUMTGgFauXLlTb8ED3M6h36bn7ERlOoJHaJgViJOp5OSStEG83ZOp5OSuhJWp64mSDHBYnXm3YATqt5xaTbB9ZxOJ6biYrRr1iAPmtj1XpO2BidO9jSItoi3czqdGCqMZM6JQaGa2H7l2nXrwOnEvGuXi9P5lwnvBv/+++/z6U9/miVLltDY2AjA//zP/3DgwAGXhRPGqOUMtFcP3dw6QbFaNYuzotl+6ooLgwnucKHzAnWmuom1v4aFxUL6ctEG8wGW8+cZrK1FVzjx6x0THMNtCbeJRRF9QHtjD10tfRNqfw1TxsQQcvsi0Qa7hQkVQP/3f/9Hfn4+wcHBHD9+HIvFAkB3dzcvvfSSSwMKY1C5FTQRkDG50beivCQO17TTara4JpfgFvo6PeHqcO5IumNyB5q1Gerehx6ja4IJbmHaWYw8PJzQxYsndZyC9AKONR+jrb/NRckEd6guN6IOUTJl5uRaV7rCQvqOHMXWJq73jUyoAPre977HK6+8wmuvvYZKpbr6+NKlSzl+/LjLwgljMNz+mrkJlJO7dyc/NwGZTIb+jLgZ2ls5nU70tXrWpq5FJVfd+g03M/MukMlFG8yLOZ1OTHo92nVrkU2w/TVsbepaZMjYXb/bRekEV3M6nRjKW8icF4tCMeEGDfBRG0wmw1Ra6qJ0/mdCf8Pnz59nxShrUYSHh9PV1TXZTMJ4NJ2AztpJtb+GRYUGsTQ7RswG82JnO85yuefy2Pb+upWQKMhcBWfE3mDeaqDyLNaGBnQF45/9da0ITQR3JN4hZoN5sdYGM6a2AaYumHj7a5gyMpLQxYsxF4u2541MqABKSEjAYDBc9/iBAwfIzMycdChhHM5sgZBoSB/f4mg3UpSXyNG6DlpMAy45nuBaJbUlRGmiWJSwyDUHzL0X6g+CSRS93shUvBNFZCShd9zukuPlp+dT0VKBsU+0Pb2RodxIsFZF8vQIlxxPV1hIX3k51hZxvUczoQLo0Ucf5bHHHuPIkSPIZDKuXLnCm2++yTe+8Q2+9KVxLMsvTI7TCZXbhloZigmtaHCd/JwElHIZO0+LH4jeZnj219rUtSjlrrnezNgIciWcfds1xxNcxul0Yi7Wo12/HpnSNdf7ztQ7UcgV7KoXs4O8zdXZX/PikE+y/TVMu3YNKJWYS8So32gm9Lf8zW9+k0996lOsWbOGnp4eVqxYwSOPPML/+3//j3/91391dUbhRhoroLvBJe2vYeEhKpZPjRVtMC90qu0UV3qvUJAxidlf1wqOHFo7qlK0wbzNwKlTWK9cQVc4+fbXsHB1OEuTlqKvFW0Rb9NSa8LcMUD2gjiXHVMRHk7Y0qViNtgNTKgAkslkPPPMM3R0dHDmzBk++OADWltbeeGFF1ydT7iZM1sgLH5oVV8XKspLpKK+kytdYr83b1JSV0JMcAzz4+a79sC5m+HSB9B92bXHFSbFtLMYRUwMIbctdOlx89PzOdF6guZeseaXNzFUGAnRBZE0NcKlx9UVFtD/4YdYm8Qvtdca17jq5z73uTG97ne/+924QvzqV7/iRz/6Ec3NzcyZM4df/OIXLFp063sc/vrXv3L//fdz9913s23btnGd0+c5HEO/tefcDfLx7RVzK+ty4glSytl5uolHlot7uryBw+mgpK6EdWnrULj4ejO9EBTqoXbqkq+69tjChDgdDkx6Pbr165EpXHu9V6esJkgeREldCQ/lPuTSYwsT43QMtb+y5schl8tceuywNWuQBQVh0pcQ/fBnXXpsXzeuEaA33niD9957j66uLjo7O2/4NR5vvfUWTzzxBM8//zzHjx9nzpw55OfnYzTe/Katuro6vvGNb7B8+fJxnc9vXD4K5isT2vvrVrQaFaumxfKuaIN5jRPGExj7jJNb/PBGNDqYug4qxaKI3qL/ww+xtbRMaO+vWwkLCmNZ8jIxG8yLNF3sprfLQvZC17W/hinCwghdsVy0wUYxrgLoS1/6Et3d3dTW1rJ69Wpef/11tm7det3XePz0pz/l0Ucf5eGHHyYnJ4dXXnmFkJCQm44i2e12HnjgAb7zne/cctaZxWLxz93qz2wBbRKkTHIxvBvYmJfIyUtdXOroc8vxhfHR1+mJC4ljbtxc95wg996he8o6691zfGFcTMV6lPHxBM93cbvzIwUZBZxuO81ls2h7egNDuZHQCDWJmeFuOb6usJCBU6cYvCyu98eNqwD61a9+RVNTE08++STvvvsuKSkpfOITn6CkpASn0znukw8ODlJRUcHatWv/EUguZ+3atRw+fPiG7/vud79LXFwcn//85295jpdffpnw8PCrXykpKePO6XUcdji7DXLvAblrZgtca+3MeDQqOTvEbDDJ2R12dtXvYn3aeuQy91xvphWAMljcDO0FnHY7phI9uoJ8ZG76fK+cshKNQkNpvVgkT2oOh5Oa40ay58chc3H7a5h21SpkGg1mvbj5/ePG/elSq9Xcf//97Nq1i7Nnz5Kbm8uXv/xl0tPT6enpGdex2trasNvtxMePXPQpPj6e5ubRb9A7cOAAr7/+Oq+99tqYzvH000/T3d199evSpUvjyuiV6g9BT8vQzatuEqpWcueMOLE3mBc4bjxOW3+ba2d/XUsdBtPWizaYF+grr8De2oa2wH3XO0QVwvIpy8VsMC/QVN1Fn2nQLe2vYfLQUMJWrsS0U7TBPm5Sv17I5XJkMhlOpxO73e6qTDdkNpv5zGc+w2uvvUZMTMyY3qNWq9HpdCO+fF7lVghPgSmunR1yraK8JM40mqhr63XreYSb09fqSQpNIi8mz70nyt0MTSehvca95xFuylS8E2VSIsFz57r1PAXpBVR1VNFganDreYSbq64wEhalJj7DvT+bdIWFDJw9y2C9aHMPG3cBZLFY+Mtf/sK6deuYNm0ap0+f5pe//CUNDQ2EhYWN61gxMTEoFApaWlpGPN7S0kJCQsJ1r6+pqaGuro5NmzahVCpRKpX88Y9/5J133kGpVFJTEwD/cNttQ4vW5d4DMvcMlw5bPT2OkCCFaINJyOawsbthN/np+cjcfL2Zuh5UoaINJiGnzYa5dBe6gkK3X+/lU5YTrAwWO8RLyGF3cPFDI9kL4t1+vcNWrkAWEiJuhv6YcRVAX/7yl0lMTOT73/8+RUVFXLp0ib/97W9s2LAB+QR61UFBQSxYsIA9e/ZcfczhcLBnzx4Wj7Lz8YwZMzh9+jQnTpy4+nXXXXexevVqTpw44R/399xK3fvQ1+bW9tew4CAFa2bG8+5J0QaTyrHmY3QMdJCfnu/+kwWFDE2JFwWQZPqOHsXe0eHSxQ9vJFgZzKopq8RsMAk1Xuii32xlqhvbX8PkwcFoV63CJPYGu2pc6wC98sorpKamkpmZyb59+9i3b9+or9uyZez3ETzxxBM89NBDLFy4kEWLFvHzn/+c3t5eHn74YQAefPBBkpOTefnll9FoNMyaNWvE+yMiIgCue9xvVW6ByHRImueR0xXlJfL//ucKBmMP2XHjG+ETJq+kroQpYVPIic7xzAlz74W3HoDWCxA7zTPnFK4yFRejSklBMyvXI+fLz8jn8fce52L3RTLDxZpfnmYob0EXoyE2VeuR8+k2FHL5q/+K5eJF1GLfzvGNAD344IOsXr2aiIiIETOrrv0aj09+8pP8+Mc/5rnnnmPu3LmcOHECvV5/9cbohoYGmsQKlkPsVqh6d+iHlLvbIR9ZOS2WMLVS3AwtAavDyu6G3RRkFLi//TUsey2odeJmaAk4rdaP2l+eu97LkpcRpgqjpFaMAnma3e6g5kQr2Qvd3/4aFrp8OfKwMHEz9EfGNQL0xhtvuCXEV7/6Vb761dFXoC0rK7vpe92VyStd3Af9nR5pfw3TqBSsy4lnx6kmHl8rRgQ86YMrH9Bt6XbP4oc3otLA9A1DbbBV3/TceQV6P/gAe3e3WxY/vBG1Qs3qlNXo6/R8cc4XPVdoC1yu6sTSa3Pp3l+3Iler0a65E1NxMTFf+XLAX283LSoiuEXlFojOhoTZHj1tUV4i1cYezjebPXreQFdSV0K6Lp1pkR4uPGdthtZz0HLWs+cNcKadxQSlp6OeMcOj581Pz+di90UMXQaPnjfQGSpaiIgPIWaKZ28t0BYUMFhTg6W62qPn9UaiAPIVNgtUbR8a/fFw1b58aiw6jWiDedKgfZC9DXs9M/vrWpmrQRMu2mAe5BgcxLx7N9pCD7Y7P7IkaQnaIK2YDeZBdquDiyfayF4Q5/HrHbZ0KXKdTswGQxRAvqPmPbB0u2Xvr1sJUsrJz01g+6mmCa34LYzfoSuHMFvNnm1/DVMGwYxNQ9utiOvtEb0HDuIwmz0y++taKoWKNalrKKmb2Ir+wvg1VHUw2G9z6+KHNyILCkK7di3mncUBf71FAeQrKrdA7AyI99BsoGtszEuktq2Xs01+speal9PX6cmOyCY7MluaALPuhY4aaD4tzfkDjElfTFB2Fppp0txnV5BeQL2pnnMd5yQ5f6AxlLcQmRhKdJI0M2t1hYUM1tdjqaqS5PzeQhRAvsA6AOd2evTm52stzY4hMkTFdrFDvNsN2AZ4r+E91qevly5ExkoIjhJtMA9wWCz07NkryejPsEWJi4hQR4g1gTzANmin9mSbR9b+uZHQO25HERER8GsCiQLIFxh2waBZkvbXMJVCTsGsBLafuhLww6budrDxIH22PmnaX8MUKpgp2mCe0LN/P47eXkkLIJV8qA2mr9OLz7ebNVR2YLXYPTr761oylQrtunWYigO7DSYKIF9QuRXiZ0m+MF1RXhKXOvo5dblb0hz+Tl+nZ3rkdDLCM6QNMmszdNXDlePS5vBz5uJi1NOnS74wXUFGAY09jVS2V0qaw99VV7QQPSWMyIRQSXPoNhRivXyZgTNnJM0hJVEAebvBPjivl3T0Z9jtGVFEhwaJvcHcqM/ax77L+9y78/tYpS2D0FixNYYbOfr7Mb9XJunoz7CF8QuJ0kSJHeLdyGqxU3eqTdLRn2Eht92GIjo6oBdFFAWQt6suAWvv0G/jElMq5BTOTmCHmA3mNu83vk+/rZ/8NA/s/XUrCiXk3A2V20QbzE169u3D2d+PrlD6glcpV7IubR0l9WI2mLvUn2nHNuiQ9P6fYTKlEu36dZj0gdv2FAWQtzuzBRLnQpR37NtSlJdEY1c/xxu6pI7il0rqSsiJziFF5yUb++beC92X4PIxqZP4JdPOYjQ5OQSlpUkdBRhaFLG5t5mTrSeljuKXDOUtxKZqCY8NkToKMDQbzNbURP+JE1JHkYQogLyZpQeqS72i/TXstvQo4rRqsSiiG/Rae9l/eb+0Nz9fK3UxhCUMFeKCS9l7eunZt8+jW1/cyvy4+cQGx4rZYG4wOGCj7ky7JGv/3EjIggUoY2MDdlFEUQB5swt6sA14VQGkkMvYMDuRnaebcDgCc9jUXcoulWGxW8hP94L21zC5AnLvgbPbwOGQOo1f6Skrw2mxoC3wngJIIVewLm0dpXWlOJziertS3ak27FYH2fO9pwCSKRRoCwow60twBuDnWxRA3uzMFkheCJHeMTw+rCgvkRaThfL6Tqmj+JWSuhLyYvJICkuSOspIuZvB3ASXPpA6iV8xFRejmZNH0JRkqaOMUJBRgLHfyIfGD6WO4lcMFUbiM3ToYoKljjKCrrAAm9FI//HAm+0pCiBvNdA9tP6PF9z8fK35qZEkhmtEG8yFzINmDjQe8K7Rn2FTbgNdsmiDuZDdbKZ3/350XjT6M2xO7BziQ+LFbDAXsvTbqK9s94rZX9cKnjsXZUJCQM4GEwWQtzpfDPbBoVk4XkYul7FxdiI7TzdjF20wl3jv0ntYHVZpV3++Ebl8qA179m1w2KVO4xfMe/bgtFrRFXhfwSuXyclPz2dX/S7s4nq7RO3JVhw2p1cWQDK5HF1BAabSUpz2wLreogDyVme2QModED5F6iSj2piXSFuPhSO17VJH8Qv6Wj3z4uaREJogdZTR5W6GXiPUH5Q6iV8wF+sJnj8fVWKi1FFGlZ+eT/tAO+Ut5VJH8QuGciOJWeGERWqkjjIq3YZC7G1t9B0LrNmeogDyRv2dULPXK9tfw+amRDAlMljsDeYC3ZZuDl857J3tr2HJ8yEiVbTBXMDe3U3PoUNesfjhjcyOmU1yWLKYDeYCA71WLp3t8KrZX9fSzJ6NKjk54PYGEwWQN6raDg6bV7a/hslkMjbmJaI/04zNHnizB1xpb8Ne7E4769O8sP01TCYbaoNVvQN2m9RpfJp5926w2dCu997rLZPJWJ++nt31u7E5xPWejIsnWnE4nWR50eyva8lkMnSFBZhLS3HaAud6iwLIG1VuhbSloPXSdshHNuUl0dE7yKEa0QabDH2dnoUJC4kNiZU6ys3lboa+dqjdJ3USn2baWUzIwoWo4r33ByJAQXoBnZZOjjYdlTqKTzNUGEmeGkFouFrqKDelLSzE3tlJ7wdHpI7iMaIA8ja97XCxDGZ5z9o/N5KbpCMtOoQdog02YR0DHRxpOuIdW1/cSuKcoRXJxd5gE2br7KT3gw+8avHDG5kZNZMUbQr6usBqi7hSv3mQy+c6vfLm52tpcnJQpaViKt4pdRSPEQWQt6l6B3DCTO9tfw2TyWQU5SWir2xm0CbaYBOxp2EPTpysTVsrdZRbk8mGRoGq3gXboNRpfJK5dBc4nV7d/homk8koSC9gT8MerHar1HF80sUTreB0kjnP+wsgmUyGrqAQ8+49OAcD4/MtCiBvU7kFMlZAmJe3Qz5SlJdEd7+Vg4Y2qaP4pJLaEhYlLCI6OFrqKGOTey8MdA2NUgrjZiouJuT2RSijfeN656fnYxo0cbjpsNRRfFJ1uZHk6ZGE6IKkjjImug2FOLq76T0cGNdbFEDepMcIdQe8auuLW5mRoCUrNpR3xaKI49bW38axlmPetffXrcTnQsy0oUJdGBdbWxt9R4969eyva02LnEZGeIaYDTYBfaZBrlzoZOrCeKmjjJl62jSCMjMDZlFEUQB5k7Nvg0wOM++SOsmYDc0GS2JXZQsWW2AtojVZu+p3IUfOmtQ1UkcZu+E22LkdYLNIncanmEpLQS5Hu26d1FHGTCaTkZ+ez96GvVjs4nqPR81xIzKZjMy5vjGaD8OzwQox79mDw+L/11sUQN6kcitkroKQKKmTjMumvETMFhv7L4g22HiU1JVwe9LtRGgipI4yPrn3gsUEhj1SJ/Ep5p3FhC5ejDIyUuoo41KQXkCPtYdDjYekjuJTDBVGpsyMRBOmkjrKuOgKC3D09NB70P8XPRUFkLcwNUH9oaHfrn3M1Hgt0+O1Ym+wcTD2GTnecty32l/D4mZAXI5og42DtcVIX0UFugLfu95ZEVlkR2SL2WDj0Ntl4Yqhi+wFvtP+GqbOzkY9dWpAtMFEAeQtzr4NciXM2CB1kgkpyktk99kWBqyiDTYWpXWlKOQK7ky9U+ooE5O7eWi/Omu/1El8grmkBJRKtGt9qN35MQXpBZRdKmPANiB1FJ9gqDAil8vInBsjdZQJ0W0opGfvXhwD/n29RQHkLSq3QPYaCPat4fFhG/MS6R20U3beKHUUn6Cv07M0aSm6IJ3UUSZm1mYY7IHqXVIn8Qmm4mLCli5FER4udZQJyU/Pp8/Wx/uN70sdxScYKlpIzYlCHeJb7a9h2oICHH199OzbL3UUtxIFkDfovgyXjvhk+2tYZmwYOYk63hWLIt5SU08TJ1tPevfeX7cSnQUJeaINNgbWpib6P/zQJxY/vJH08HRmRM0Qs8HGwNwxQPNFE9k+NPvrWuqMDNQzZ2LS+3cbTBRA3qByKyjUMN13/4EEKJqTyN4qI32DgbOXzESU1pcSJA9idcpqqaNMTu69cKEEBnulTuLVTMV6ZEFBhN3po+3Oj+Sn57P/8n76rH1SR/FqhgojCqWcjDzfbH8N0xUW0lO2D0ef/15vUQB5g8qtMHUdaHy0HfKRotlJ9Fvt7KkSbbCb0dfqWT5lOWFBYVJHmZzce8HaBxfEzbE3Y9LrCV2xHEWYb1/v/PR8+m397L/s322RyTKUt5A2K5qgYKXUUSZFV1iAs7+fnrIyqaO4jSiApNZZB40VPrX44Y2kRoeQNyVc7A12E5fMlzjTfsa321/DojIgab7YG+wmBi9fZuDUKZ9a/PBGUrQp5EbnitlgN2Fq68dYb/aJvb9uJSglBc3s2ZiK/fd6iwJIapVbQRkM03xveuxoivISee+8kR6LaIONprSuFI1Cw8opK6WO4hq59w7dCG0xS53EK5mKi5FpNGhXrZI6iksUpBfw/uX36bWKtudoDBVGlCo5abN9Y6uTW9EVFNCzfz/2Hv+83qIAktqZLTBtPah9e3h82Ma8JCw2B7vPtkgdxSuV1JWwYsoKQlQhUkdxjdx7wTYwNCVeuI6puJiwVauQh4ZKHcUl8tPzGXQM8t6l96SO4pWqy1tImx1DkMa321/DdIUFOC0Wet7bK3UUtxAFkJTaa6D5lE/P/rpWckQw81MjxKKIo6g31VPVUUVBhn+M9gEQkQJTFg0V8sIIg3V1WM5W+eTihzeSGJbInNg5lNSK2WDX6mrpo+1SD1MX+n77a5gqKYnguXP9dlFEUQBJqXILqEJh6nqpk7jUxrwk9l9oo7vfKnUUr6Kv1ROsDGZZ8jKpo7jWrM1Qswf6u6RO4lVMej2ykBDCVq6QOopL5afnc+DKAUyDJqmjeBVDhRGlWkHqLP9ofw3TbSik98AB7Cb/u96iAJLSma1DU9+D/KQd8pGNsxOxOhzsEm2wEUrqS1iVsopgZbDUUVwr526wW+H8TqmTeBXTzmK0q1cjD/av670+bT12h533GkQb7OMMFS1k5MWgClJIHcWltPn5OG02zHv8rw0mCiCptJ4HY6VfzP66VkK4htvSokQb7GMudl2kurPaN/f+uhVdEqQuFm2wj7HU1GC5cMGnFz+8kfjQeObFzROzwT6mo6mX9sZev5j9dS1VfDzBC+ZjKva/X3BEASSVyq2g1kH2WqmTuEXRnEQOVLfR2TsodRSvoK/TE6YKY2nyUqmjuMeszXDxPejrkDqJVzAV65GHhRG6zM/anR8pyCjggysf0DXQJXUUr2AobyFIoyA1N0rqKG6hKyyk99BhbJ2dUkdxKVEAScHpHPptefoGUGmkTuMWBbMScDidlJ5tljqK5JxOJ/o6PatTVqNWqKWO4x4z7wKnA85tlzqJ5JxOJ6biYrRr7kSu9s/rvS5tHQ4c7GnYI3UUyTmdTgwVRjLmxKJU+Vf7a5hu/XpwOOjZ41/XWxRAUjCehbbzQ781+6k4rYbbM6LZLhZFpLqrmtruWv+a/XUtbTykLRVtMMByoZrBmhq0frD44Y3EBMewMH6h2BsM6LjSS2dzH9l+NPvrWsrYWEJuu83vZoOJAkgKZ7aAJhwyfXwvqFsompPIoZp22nssUkeRlL5Wjy5Ix+LExVJHca9Zm6F2P/S2SZ1EUqbinch1OsKWLJE6ilvlp+dztPkoHQOB3fasLm9BHaIkZaZ/tr+G6QoL6T1yBFuH/1xvUQB5mtM5dP/PjE2gDJI6jVsV5CYAUHwmcNtgTqeTkroS1qSuQaVQSR3HvWbePfS/Z9+WNoeEnE4n5mI92rVrkQX59+d7bdrQ/Yu763dLnEQ6TqcTQ7mRzLmxKJT+/eNUmz+0XIu5tFTiJK7j31fMGzWfgo4amOV/s7+uFR2mZklWdEDvDVbVUUWDucE/9v66ldBoyFwZ0HuDWaqqGKyv94u9v24lShPFooRFAT0brO1SD92t/X45++tayshIQu+4w6/2BhMFkKed2QLBUZDhJ3tB3UJRXiJHatsxmgekjiKJkroSItQRLEpcJHUUz8i9F+oPgjkw14AyFRejiIgg9I7bpY7iEQUZBZQ3l9PWH5htT0NFC5pQFckzIqWO4hG6wgL6jh3D1toqdRSXEAWQJzmdQ6s/z9wE/t4O+Uh+bgJymYzi04HXBhtuf61NW4tKHhjXmxlFIJMHZBvM6XQOLX64fj0yVWBc7zWpa1DIFJTW+U9bZKycTifV5UYy58eiUATGj1Lt2rUgl2Mq8Y/rHRhXzVtcOQ5dDX49++taESFBLJ8aE5CLIp5pO0NjT6N/Ln54IyFRkHXnUKEfYAbOnMHa2IiuMHCud7g6nMVJiwNyNpixzoy5fYCpAdD+GqaIiCB06RJMxf4xG0wUQJ50ZguExkKafy6OdiMb85I4VtdJc3dgtcFK6kqI0kSxIH6B1FE8K3czNBwGU2AVvaadxSiiowm57Tapo3hUfno+x43HaekNrLanoaKFYK2KpKkRUkfxKF1hIf0VFVhbfP96iwLIUxwOqNw2tG+SQil1Go9anxtPkELOjtOBczO0w+mgpL6EdWnrUMoD63ozYwMogob+ew8QTocDk16PLn89MmVgXe87U+9EJVdRWu8fbZGxcDqGFj/Mmh+HPEDaX8O0a9YgU6kw633/ZujAunJSunwMTJf9cu+vW9FpVKyYFhtQbbBTrado7m0OrPbXME340BYvAdQG6z9xEltTU0DM/rqWNkjL0uSlATUbrLnWRE+nhal+vPjhjSi0WkKXL/eLRRFFAeQplVshLGFo08gAtGlOIh82dHG5s0/qKB6hr9MTGxzL/Pj5UkeRRu7moaK/q0HqJB5h0hejjI0leH5gXu+C9AJOtZ7iSk9g/JJjKG8hJDyIxKwIqaNIQldYSP/Jk1gbG6WOMimiAPIEhwPOboPce0Dun3vF3MqamfGolXJ2BkAbzOF0UFpXyvr09chlAfoRm14ASk1AtMGcDgdmfQnaggJkisD8fK9KWYVaoQ6I2WBOhxPDcSPZ8+OQyWVSx5FE2OrVyNRqTHrfvvk9QP919rCGw2BuGvqtOECFqZWsnh4XEHuDHW85Tmt/a2C2v4aptTB1XUC0wforKrAZjQHZ/hoWqgplefLygGiDNdV00dc9SPbCeKmjSEYRFkrYihU+PxtMFECeULkFdMkwJbBmh1yraE4ipy53U9/eK3UUt9LX6UkITSAvNk/qKNLK3QxXPoSOi1IncStTcTHKxESC586ROoqk8jPyqWyv5JLpktRR3Kq63EhYpJqEDJ3UUSSl21DIwJkzDDb4bptbFEDu5rAPLQqXey/IA/uv+84ZcQSrFH49CmRz2NhVv4v8tPzAbX8Nm5YPqhC/3hrDabdjKilFl5+PLMA/3yuSVxCsDKak3rfbIjfjsDuoOW4ke0Hgtr+Gha1ciSw42Ke3xgjsT6wn1B2A3taAbn8NCwlScufMOL/eG6yipYKOgY7A2PvrVoJCYVqBXxdAfceOYW9vR7chcNtfw0JUIayYssKvF0W8Ut1Fv9lK9oLAbX8Nk4eEoF29CpMPT4cXBZC7VW6BiFRIDszZIdfalJfI2SYTF1t7pI7iFvo6PclhycyKmSV1FO+Qey80n4Y2g9RJ3MK0sxjVlCloZs+WOopXKEgv4FzHOeq666SO4hbVFUZ0MRri0rVSR/EK2oICLFVVWGprpY4yIaIAcie7Fc6+M/RDQBbYw6XDVk2PIzTIP9tgVoeV3fW7yU/PRyau95Cp6yAozC9vhnZarZhLS9EVFojr/ZFlycsIUYb45c3QdruDi8dbh9pf4noDELZiBfKQEJ+9GVoUQO5Uux/6O0T762M0KgXrcuL9clHEo01H6bJ0Bfbsr2upgmH6hqFtYPxM75Gj2Lu60BaI6z1Mo9SwOnW1X7bBGs91MtAr2l8fJ9doCFuzBrMogITrVG6BqExIDOzZIdfamJfEhZYeLrSYpY7iUiV1JaRqU5kRNUPqKN5l1mZorQJjldRJXMpUvBNVWiqanBypo3iV/LR8DF0GDJ3+1fY0VBgJjw0mJiVM6iheRVdYiKXagKW6Wuoo4yYKIHexDULVu0OjP2K4dIQV02LQapR+1Qaz2q3sbhDtr1Fl3QnqcL+6Gdo5OIh51250hYXiel9jafJStCqtX80Gs9scXDzRSvZC0f66Vuiypci1Wp+cDSYKIHe5+B4MdAfk3l+3olYqWJ+TwPZTV3A6nVLHcYnDTYcxD5opyBDtkOso1TBj41AbzE+ud8+hQzhMJnSFG6SO4nWCFEGsTl2NvlbvN5/vS1UdWPpsTA3gxQ9vRB4UhHbNGkzFxT53vb2iAPrVr35Feno6Go2G22+/naNHj97wta+99hrLly8nMjKSyMhI1q5de9PXS6ZyK8RMg/hcqZN4paI5iVxs7aWqyT/aYPpaPZnhmUyNmCp1FO80azO0V0PLGamTuIS5WE9QZibqaeJ6j6YgvYA6Ux0XOi9IHcUlDOVGIhNCiEoKlTqKV9JtKGSwthbL+fNSRxkXyQugt956iyeeeILnn3+e48ePM2fOHPLz8zEajaO+vqysjPvvv5/33nuPw4cPk5KSwvr162n0pk3ZrANwbodof93E0qwYwoNV7Djt+zdDW+wW3rv0nmh/3UzmKtBE+EUbzGGxYN6zR7S/buKOxDvQBen84mZom9VO7Ukx++tmQhcvRh4e7nNtMMkLoJ/+9Kc8+uijPPzww+Tk5PDKK68QEhLC7373u1Ff/+abb/LlL3+ZuXPnMmPGDH7729/icDjYs2ePh5PfRM0esJhE++smgpRyCnIT2H6qyeeGTa91sPEgPdYeMfvrZhQqmLnJL9pgvQcO4OjpEYsf3oRKoWJt2lr0db7fBmuo7GBwwB7Qe3/dikylQrturc+1wSQtgAYHB6moqGDt2rVXH5PL5axdu5bDhw+P6Rh9fX1YrVaioqJGfd5isWAymUZ8uV3lVojLgTgxG+hmNs1Jor69jz1Vo4/2+QKH08Gfqv7EtMhpZEZkSh3Hu83aDJ210HRC6iSTYtpZjHraNNRZWVJH8WoF6QVcMl9i3+V9UkeZMKfDyam9l4hODiMqUbS/bkZXWIi1oYGByrNSRxkzSQugtrY27HY78fEjK+v4+Hiam5vHdIynnnqKpKSkEUXUx7388suEh4df/UpJSZl07puy9sP5YrH2zxgszY5m9fRYnt56ms7eQanjTMhb59/iWPMxvrHwG1JH8X7pKyAkxqfXBHIMDGB+7z10hWK071buSLyD5cnL+c7h79A10CV1nAk5s7+RxgtdLP3nbKmjeL3Q229HERWFqXin1FHGTPIW2GR8//vf569//Stbt25Fo9GM+pqnn36a7u7uq1+XLrl5p+LqUhjsGfptV7gpmUzG9/8pj0Gbg+ffqZQ6zrg1mBr4WcXP+OT0T7I4abHUcbyfQgk5d0HlNp9tg/Xs24+zrw9doWh/3YpMJuPbS77NoH2Ql46+JHWccesy9nFoi4FZK5NJmTl6h0H4B5lSiXb9OszFvtP2lLQAiomJQaFQ0NLSMuLxlpYWEhISbvreH//4x3z/+9+ntLSUvLy8G75OrVaj0+lGfLnVmS2QkAfRYnh8LOJ1Gr57dy7vnLzCztO+sy6Q3WHn2YPPEhMcwxMLnpA6ju/IvRe6G6CxQuokE2IqLkadM5Og9HSpo/iEuJA4/uP2/6C4tpjSulKp44yZw+Fk7x+qCAlXs/he8W/5WOkKCrFeucLAqVNSRxkTSQugoKAgFixYMOIG5uEbmhcvvvFv1D/84Q954YUX0Ov1LFy40BNRx2awFy6UiJufx+muOUkU5Cbw7LYztPVYpI4zJv9z9n84YTzB95Z+jxBViNRxfEfaUgiL98k2mKOvj57/396dx1VV7/sff23YzLABlUkRcGYS5wG11DQFPeVQ5u00qKfTvZV1NBs8JWoqZlb2y87p1m20Tp06WWpZgrOY85Qig4oK4gAiImzmYe/1+4MTJ8wMZO+9FvB5Ph48HrrX2uv7xq8LPnt91/p+d+yQqz+NNK7TOEYHjSZ+XzxXy6+qHadBjm05T87ZIkZNC8PRWa92nGbDdUB/7H3aYdzQPJbGUH0IbM6cObz//vt88sknpKen8/jjj1NaWsqMGTMAePjhh3nhhRfq9l++fDnz58/no48+IiQkhNzcXHJzcykp0cDq4qcSoaZcCqBG0ul0xE+qXT39xTXHNX/59EzhGf720994KPwh+vr1VTtO82JnD+ETah8UMJvVTtMoJTt2oFRUYJC1vxpFp9MRNzgOgMV7F2v+/C64VMr+787Sa1RH2nf1UjtOs6Kzt8cwZizGxESUZnB+q14ATZ06lddff50FCxbQu3dvjh49SmJiYt2N0dnZ2eTk/Gdo5J133qGqqop7772XgICAuq/XX39drW/hP1LWQPu+0KaT2kmanXbuTrw8KZJNaZdZd1RDczpdp8Zcw7xd8+jg0YGn+jyldpzmKWIyFF+CCxqcwPQmjAkJOPfsiaO1H6Rogdq6tGVB9AK2nd/G92e/VzvObzKbzGz9JA1DO2cG3y1Pdd4Kw7hYai5fpvzoUbWj/C5NXNt78sknefLJJ2+4bceOHfX+npWVZf1At6LCCBmbYdR8tZM0WzGRAUzo3Z6F36YS3bkd/p43vrFdTR8e/5D0gnQ+i/0MZ7328jULHQeBR/vaDwxBg9VO0yCmkhJKknbiM3u22lGardHBoxnXaRzLDixjoP9A/Ny0N6/OkY3nuJJdzD3P90fvaK92nGbJpU8f9H5+GDck4NpX21fIVb8C1GKcSgRTJYRPVDtJs7bo7gicHeyZ+02y5i6Vnyg4wbvH3uWRyEfo6dNT7TjNl50dREyEtHVgNqmdpkFKtm9HqarCEDNW7SjN2ouDXsTZ3pmFexdq7vy+cr6Yg99n0TcmGL9OVn5YpgXT2dlhiBmLcWMiiknb57cUQJaSsgYCB4KXXB5vCi9XR5bfE0XSqSv866CVpyxohCpTFfN2zaOzV2ce7/W42nGav4jJUHIZzu1RO0mDGDck4NK7Nw7t26sdpVnzdPLkpSEvsfvibtZkaOdGeFO1ma2r0vEOcGPAeLmFoakMsbGYruRTdkjbT3tKAWQJ5YVweovM/WMhI0N9mdq/I0u+T+N8QZnacQB499i7nC06y8vDXsbB3kHtOM1fYH/w7Ngs1gYzGY2U7NolS19YyO2BtzO522RePfgqF0u0cb/fwR8yuZZbyugZYdjr5ddiUzn36oW+fQDGRG0/DSY9bQknfgBzTe3TLcIi4v4QhperI89/nYzZrO6l8uQryXyY8iGPRT1GjzY9VM3SYuh0/x4G+xZMNWqnuaniLVuhpgaPsfL0l6U81/85PJ08WbB7AWZF3aeFcjOLOLLxHAPGh9Au0EPVLC2FTqfDEBNL8cZNKDXaPb+lALKE1LUQFA0GuTxuKR7ODrx6bxR7z17l071ZquWoqKlg3q55hLcJ55Gej6iWo0WKmAxl+ZD1o9pJbsqYmIBrv344+PmqHaXFcHd0Z/HQxRzIPcAXJ75QLUdNlYmtq9LxCfKg79hg1XK0RIbYWEwFBZQd0O7TnlIANVVZAZzdLsNfVjC0azsejg7mlcQTZOaXqpLhbz/9jUsll1g6bCl6O008NNlytO8D3iGQqp17Qa5Xc+0apXv24iFrf1nc4IDB/FeP/+LNw29yznhOlQz7vjtL8dUKRk0Px85efh1aknNkBA4dO2JM0O4wmPR4U6WvB8Usw19W8tfYUPwMzjzz1VFMNh4KO3z5MP9I+wd/6fsXWendGnS62qtA6evBVK12mhsq3rIFzGYMY+XpL2t4ut/T+Lj6MG/XPEw2fiLwUkYhx7aeZ9CEzrLSuxXodDoMsbEUb9qMUq3N81sKoKZKXQMhw8BdLo9bg6ujnhVTevHT+UI++PGszdotqy4jblccvX1782DYgzZrt9WJmATl1+BsktpJbqg4IQHXgQPRt2undpQWydXBlaXDlpJ8JZlP0z61WbtVFTVs/SSNgM6e9BolT+5aiyE2BlNREaX79qkd5YakAGqK0nzI3ClLX1hZ/5A2PHpbZ1ZsOsWpy8U2afONw29wteIq8UPjsbeTCdGsxr8ntO2qyWGwmoICSvftl7W/rKyPbx+mRUzjbz/9jdPXTtukzb1rzlBmrOKOaWHY2els0mZr5BQaimNIiGbXBpMCqCnSvgV0ECbDX9Y2587uBLV15ZmvjlFtsu5TI3su7eFfJ//F0/2eJsgQZNW2Wr26YbDvoUZbC+EWb9oEOh0eY+5UO0qL92SfJ+no0ZF5u+dRbbbucMn5tAJSdl5kyOSuePnKQsbWpNPpMIyLpXjLFsxVVWrH+RUpgJoidS10Hg5ubdVO0uI5O9izYkov0nKM/O/2M1Zrp7iqmAW7FzAoYBBTe0y1WjviFyInQ2URnNmudpJ6jBsScBs8GL23t9pRWjwneyeWDlvKyYKTfHD8A6u1U1lew7Z/pBMY6k3k7R2s1o74D0NsLObiYkp371Y7yq9IAXSrinMha1ftp1dhE706evHEiC78bVsGKReLrNLGqwdfpaS6hCVDlmCnk9PDJnzDwCdUU8Ng1Xl5lB08KJMf2lBku0ge6fkI7x17j/Sr6VZpY9fqDCrLa7jj4TB0MvRlE07duuHYtYsmnwaTn/C3Ku07sLOH0PFqJ2lVnrqjG938PHjmq2NU1lj2qZGk80msO72OuQPmEuAeYNFji98RMRlObIDqCrWTAFC8aTPo9XiMHq12lFblsajH6OLVhRd3vUiVybJDJlnJ+ZzYk8OwKd3waCMLGduSITaWkq3bMFdqa5hbCqBblboGutwBrm3UTtKqOOrteOO+XpzNL2HllgyLHbewopCX9r7EbR1uY2LXiRY7rmigiElQVQynN6udBABjQgJuQ6Kx9/RUO0qr4mDvwNJhS8kyZvHOsXcsdtyKkmq2f3aC4Mi2hA2RDze2Zogdh7m0lJKdO9WOUo8UQLei6CJk75XhL5WEBRiYPbo77yad4Uj2NYsc8+X9L1NlquKlIS+h08mlcZvz6Q5+kbWLCqusOjeX8sOH5ekvlfRo04Mnej3BRykfcezKMYscc+eXJzHVmBn5YKic3ypw6twJp9BQihMS1Y5SjxRAtyJtHdg7Qug4tZO0Wv9ze2d6Bnrx7FfHKK9q2lDYxqyNJGQl8OKgF/F1lfmcVBMxCU4lQpW6C+AaExPROTjgMWqUqjlasxmRM4hoG0HcrjjKa8qbdKzTh/PIOJTH7f/VHTcvJwslFI1liImheMcOzOVN609LkgLoVqSuha6jwVkuj6tFb2/Hiim9uFhYzmsbT97ycfLL84nfF8+dwXcyrpMUtKqKnAzVZZCxUdUYxQmJuN1+O/YesjCmWvR2euKHxZNTmsNbR9665eOUGatI+udJuvTxodsAPwsmFI1lGBeLUlZGSZJ2Jj2VAqixCrPhwkEZ/tKArr7uPDe2Bx/vyWTf2auNfr+iKCzZW/u0V9zgOLk0rrY2nSGgt6rDYNUXL1J+7BiGGFn7S22dPTvzVJ+n+Dz9cw7mHmz0+xVFYcfnJ9DZwfA/9pDzW2WOQUE4R0RoalJEKYAaK3Ut6J2hh/yA1IIZQzsxILgNz319jNLKmka99/uz37Pt/DbmD55PG2e5mV0TIiZBxiaotM2M39czJiaic3LCfeRIVdoX9T0Y9iB9fPswf/d8yqobNzR6an8umcfyGf7HHrh4OFopoWgMw7hYSpKSMJeqs7j19aQAaqyUNdDtTnCSy+NaYG+n47UpUeQXV/HyhobPHZJbmsuy/csY33k8o4PlUWfNiJgENRVwSp1hMOOGBNyHD8feXRbH1AJ7O3vih8ZTUFHAikMrGvy+kmsV7PxXBt0H+tGlj9zXpxUeY2NQKisp3r5D7SiAFECNU3AWco7K8JfGBLd148XxYXy+P5udp6787v6KovDSnpdw0bvwwsAXbJBQNJh3MHTor8owWFV2NhWpqTL5ocZ0NHTkmX7P8NWpr9hzcc/v7q8oCtv/cQIHRztum9rdBglFQzkGdsC5V5RmJkWUAqgxUteCgyt0H6t2EnGdBwcFMaxrO+Z+k0xR+c3XEvom4xt2X9rNS0NewtNJbmTXnMjJtfMBVVhntu/fYkxIROfigvvtt9u0XfH77utxH4MDBrNgzwKMVcab7pu26xLZaQWMfCgMZzcHGyUUDWWIjaV0505MxeoMc/+SFECNkbIWuseAo1we1xqdTsfye6Moqahh8fq039zvYslFXjv4Gvd0u4fbAm+zYULRYOETwFRVOzO0DRkTEvAYOQI7V1kgU2t0Oh2LhyymtLqU5QeW/+Z+xvxydn99mvChAQRHyhqNWmSIiUGprqZk2za1o0gB1GD5GXD5eO09CkKTOni5MP+ucL45coHNaZd/td2smJm/ez6eTp482/9ZFRKKBvEMhI6Da6+42kjl2UwqT5zAQyY/1KwA9wCeH/A83535ju3Zv144VzErbPs0HSc3PUPv7aZCQtEQDv7+uPTtq4mnwaQAaqjUteDoXnsDtNCsKf0CGRXqywtrjnOttP5aQl+c+IKDuQdZMnQJ7o7uKiUUDRI5Gc5sg3LLzPT9e4yJCdi5usrwl8ZN7DqR4YHDWbR3EYUVhfW2Je+4wMVThYx6OAxHF706AUWDGGJjKdmzB1ORbYe5rycFUEOlrIEe48DBRe0k4iZ0Oh3LJvek2mRm/rcpda9nFWXx5uE3uT/0fgYFDFIxoWiQ8AlgroH0723SXHFCAu6jRmHnJDMFa5lOp2Nh9EKqzdUs3b+07vXCy2XsW3uGniMCCQyVKS20zmPsGKipoXjLFlVzSAHUEHnpcCW99lOp0DxfgzNLJkbyfXIO3ydfwmQ2Ebc7Dl9XX2b3na12PNEQHv4QPLR20WErq8zIoDLjtKz91Uz4uPoQNziOxKxEErMSMZsVtn6ShpuXE9GTuqgdTzSAg68vrgMGYFR5bTApgBoiZQ04edau/i6ahbuiAhjX05/561J4+6cPSb6STPyweFwd5AbXZiNyEpxNgtLGz/LdGMaEBOw8PHAbNtSq7QjLiQmJ4c7gO1m6bym7N6STm2lk1LQwHJzs1Y4mGsgQG0Pp3r3UXLPNMPeNSAH0exSl9v6f0PGgl8vjzYVOp2PJhEh0Trl8kPIO0yKm0ce3j9qxRGOETQAUSP/Oak0oioIxIRGP0aOxc5TZgpsLnU5H3OA4vEr9OLrhIr1HdySgq5fasUQjeIwZA4pC8abNqmWQAuj3XE6Bqxky/NUMGVzt8O28jprKNnRQ5Om9ZsfdBzrdbtVhsMqTJ6nKzMQQK0vbNDeeDl5MOP84hU555Ec2fBZ4oQ36tm1xGzxI1UkRpQD6PSlrwNkLOo9QO4lopA+SPyC3/CzRHjNZ+kMGOUXlakcSjRUxCbJ2QUmeVQ5v3JCAvacnbtHRVjm+sJ7DCeeoyrOjZng2yw+/Qm5prtqRRCN5xMZSduAANfn5qrQvBdDNKErtp8+wu8BeZhRtTtKupvFe8nv8ueefeWPCXbg62vP818koiqJ2NNEYYXeDzg7SvrX4oWuHvxLwGHMnOgc5v5uTK9nFHN6QRb+YYObEPoGL3oWFexbK+d3MeIweDXZ2GDdtUqV9KYBuJucoXMuS4a9mpspUxbxd8+jq3ZX/ifofPF0dWH5PFD9m5PPPA9lqxxON4dqm9uqrFSZFrEhNo/r8eXn6q5kxVZvZsiqNNh3c6D8uBE8nTxYNXcSeS3tYfWq12vFEI+i9vXGLjqZYpUkRpQC6mZQ14NoOQmRytObkf4/+L1nGLOKHxuPw7yt3I3r4cv/Ajiz9IZ3sq2UqJxSNEjEZzu0BY45FD2tM2IB9mza4Dhxo0eMK6zrwfSaFl8sYNS0ce33tr7BhHYZxT7d7eP3Q65wvPq9yQtEYhthYyg4fpvqydYa5b0YKoN+iKJC6DsLvBnuZVbS5OHblGB+nfswTvZ6gR5se9bbNGx+Ot6sjz319DLNZLpU3G6HjwE4PaessdkhFUShOSKwd/tLL+d1c5J4t4qdN5xjwh060C6w/m/tzA57D28mbBbsXYFbMKiUUjeUxehTo9RRv3GjztqUA+i0XDkFRtqz91YyU15QTtyuOiLYRzIic8avt7k56XpsSxf7MAlbtybJ9QHFrXLyh6yiLDoNVHDtG9aVLGGLHWeyYwrqqq0xs/SQdn2ADfccE/Wq7m4MbS4Yu4dDlQ/wz/Z8qJBS3wt5gwH3oUFWeBpMC6LekrgV3v9rZaEWz8NaRt8gpzSF+WDx6uxt/qh/SpR3Th4SwPPEEZ66U2DihuGURk+H8fii6YJHDGRMSsfdph2v/fhY5nrC+fevOUFxQwejpYdjZ3/hX18CAgfwx9I+8eeRNMosybZxQ3CrDuFjKf/qJ6hzLDnP/HimAbsRsri2AwieAncws2hwczD3IZ+mf8Zc+f6GzZ+eb7js3JpT2Xi48u/oYJhkKax56xIK9k0WuAilmM8bERAxjxqKzl/O7Obh46hrJ2y4weEJnvP3dbrrv7H6z8XfzJ253HCazyUYJRVO433EHOkdHmy+NIQXQjZzfD8WXaj91Cs0rrS5l/u759PXty4PhD/7u/i6O9rw+JYpj5wt5b+dZGyQUTeZsgG531j6Y0ETlP/1EzeXLGMbJ01/NQVVFDds+TSegqye97uj4u/u76F2IHxpPSn4Kq1JXWT+gaDJ7d3fch9+OMVEKIPWlrgGP9tBRVg1vDlYcWkFBRQHxQ+Ox0zXsv3S/4DY8entn/t/mU5zMLbZyQmEREZPg0pHaqSmawLghAb2fHy59ZGmU5mDPN6cpK65m1LQwdHa6Br2nt29vpkVM4+2jb5NxLcPKCYUleMTEUJGcTNUFywxzN4QUQNczm2onXYuYCHbyz6N1uy/uZvWp1TzT7xk6Gn7/0+EvPT26O8FtXZnz1VGqTfLUiOZ1jwG9S5OGwRSTCeOmjRhiYtDJ+a152alXSf3xEkMnd8HTp3ELGc/sPZMgjyDm7ZpHtbnaSgmFpXiMGIHO2dmmN0PLT4DrndsDJZdl+KsZMFYZWbBnAdEB0dzX475Gv9/ZwZ437uvNidxi/r7ttBUSCotycofuY5s0DFZ26DCmK/my9lczUFlWzbZ/nKBjmDcRt3do9Pud7J1YettSTl07xfvJ71shobAkOzc33EeMkAJIValrwLMjBPZXO4n4HcsPLKesuozFQxej0zXs0vj1egZ6MnNkV97efprjF4osnFBYXMQkyE2Gq2du6e3GhA04tG+Pc69eFg4mLG3XVxlUV9Qw8qGwWz6/I9pG8GjUo7yf/D6pV1MtnFBYmiE2lsq0dKqysmzSnhRAv2SqgbTvaoe/bvGEE7axPXs73535jrkD5+Lv5t+kYz05sis9/D14ZvVRKmvkqRFN6zYGHNxuaYV4paaG4k2b8YiNueVfqMI2Mo9d4cS+XIbd1x2PNs5NOtZ/9/xvunl3I25XHFWmKgslFNbgfvtt6FxdbXYztBRAv5T1I5Tly/CXxl2ruMaivYsYHjicCV0mNPl4jno7VtzXi8z8Uv7fZrlhUtMcXWsfiU9p/H1AZQcOYCookMkPNa68pIrtn58kpGdbQqOb9uEGwMHegfhh8WQZs3j76NsWSCisxc7FBY+RIzHaaG0wKYB+KXUNeIdAe3k6RMuW7l9KjVLDwuiFFvskH+pv4Ok7u/PezjMcPnfNIscUVhI5GfJS4crJRr3NmJCAQ8eOOEeEWymYsISdX5zCbDIz4sFQi53f3b27M7P3TFalruJo3lGLHFNYh2FcLJWnTlF55taGuRtDCqCfmaohfX3t1R+5PK5ZiZmJbMzayLxB8/Bx9bHosf/7ts5EBXrx7OpjlFfJUJhmdRkFToZG3QytVFdTvGkzhthYGf7SsIxDlzl9OI/h/9UDN08nix57esR0IttGErc7jvKacoseW1iO27Bh2Lm722RSRCmAfnZ2B5Rfk7W/NCy/PJ/4/fGMCR5DTIjln+LR29cOhV0qLGd54gmLH19YiIMz9BhX+zi80rCZvEv37cNUVCSTH2pYaVElSV+cpEtfX7r297X48fV2euKHxZNbmsvKIystfnxhGXZOTniMugNjQgJKA8/vW27LqkdvTlLXQtuu4N9T7STiBhRFYdHeRdjr7IkbHGe1T/FdfNx5PiaUVXuy2HMm3yptCAuInAz5JyEvrUG7Gzck4NipE049elg5mLgViqKw4/OT2NnpGP7H7lY7vzt5dmJW31l8nv45B3IOWKUN0XQesbFUnTlD5Snr3pMpBRBATSWkfy/DXxr23Znv2HF+BwuiF+Dt7G3VtmYMCWFQpzY8/3UyJZU1Vm1L3KLOI8HZs0HDYOaqKoq3bMEgT39p1sl9uWQl5zPigVBc3B2t2tYDYQ/Q368/C/YsoLS61KptiVvjPmQIdp6eGBOtezO0FEAAZ7ZBZVHtp0qhObmluSw/sJy7Ot/FqKBRVm/Pzk7Ha/f2oqC0iqU/pFu9PXEL9I4Qelftgwu/c5m8dNduzMXFGGJl+EuLigsq+PGrDHoM8qdzb8ve13cjdjo7Fg9dTEFFAa8fet3q7YnG0zk64jF6FMUbrDsMJgUQ1H6K9AkF3zC1k4jrKIrCwj0LcXFwYe7AuTZrN6itK/PGh/HFgWx2nMyzWbuiESInQcHZ2okRb8KYmIBTt644detmo2CioRRFYftnJ3BwsmfYfbbrn44eHXm2/7N8feprdl3cZbN2RcMZYmKpOneOynTrfQiVAqi6HE5ukLl/NGr1qdXsubSHRUMW4enkadO2/zgwiNu6teOv3xynqEzWEtKcTsPBpc1Nh8HMlZWUbN2Gh1z90aTUHy9xPq2AkQ+F4uzmYNO2p3SfwpD2Q1i4ZyFFlTILvNa4DR6EvZeXVZfGkALo9BaoKpHhLw06X3ye1w+9zr3d72VYh2E2b1+n07H8nihKq2pYtF6m0dccewcIv/umw2AlO3diLi3FECMFkNYUXSln9zenCb+tPcERbW3evk6nY9GQRZRXl7P8wHKbty9uTufggMeYMRgTEq02DCYFUMoa8OsJ7eTyuJaYFTPzd8+njXMbnu3/rGo52nu5sPCuCNb8dJGNqbmq5RC/IWISFGbDxSM33FyckIBTaChOnTvZOJi4GcWssO3TdFzcHRh6T1fVcvi7+TN34FzWn13P1uytquUQN2YYF0v1hQtUpKRY5fituwCqKoVTibVrfwlN+Tz9cw5fPsySoUtwc3BTNcs9fTswOsyPeWuPU1AqawlpSvAwcPO54dpg5vJyirfvkJufNSh5+wUuZRQy6uEwHJ31qma5u8vdjOg4gsV7F3OtQmaB1xLX/v2xb9vWaktjtO4CKGMTVJfJ8JfGZBZlsvLISh4Ie4AB/gPUjoNOp+PlyZHUmBXi1h23+uRcohHs9RA+AVLXgdlcb1NJUhJKeTmGWMtPmilu3bXcUvauO0PUyEA69LDulBYNodPpWBi9EJNiYsm+JXJ+a4hOr8cwdgzGxESU685vS2jdBVDKGgjoDW06q51E/FuNuYa4XXH4u/kzq+8stePU8fVwJn5iJBuO57I+OUftOOKXIiaD8QJcOFjvZeOGBJwjInAMClIpmLie2WRm6yfpuHs7MXhSF7Xj1Gnn0o64wXFsPreZxCzbrEQuGsYQG0tNTg7lx45Z/NittwCqLK69AiRXfzRlVeoqUq6mED80Hhe9i9px6vlDVHvGRwWw4NsU8owVascRPwsaDO7+9YbBTCWllCQlydIXGvPT5mzysoyMnh6Og6O92nHqiQmJYWzIWJbuX8qVsitqxxH/5tKvH3ofH6s8DdZ6C6CMLVBTAeET1U4i/u3UtVO8ffRtpkdMp7dvb7Xj3NCSCZHo7ex4YY0MhWmGnX3tfXy/GAYr2bEDpbISQ4wMf2nF1YslHFifSZ8xQfh3tu2UFg01b9A89Do9i/YukvNbI3R2dnjExFCcuNHiw2CttwBK/x469AfvYLWTCKDaVE3crjhCDCHM7D1T7Ti/qY2bI8sm92TriTy+PnxB7TjiZxGToSQXsvcCYExIwKVXLxw6dFA5mAAw1ZjZsioNLz9XBv5Bu7cceDt7szB6IUkXkvj2zLdqxxH/ZoiNpSYvj/LDhy163NZbAJ3dJsNfGvLe8ffIuJZB/LB4HO2tuxZQU90Z7sc9fQNZvD6NS4XlascRAIEDwBAIqWswFRdTunMnHnLzs2YcSsii4GIpo6aFYe+g7V87I4NGcneXu1l+YDm5pTL1hRa49O6FPiAAY4Jl78/SxP/Et99+m5CQEJydnRk0aBAHDtx8ld7Vq1cTGhqKs7MzPXv2ZMOGDY1v1Fwtw18akXo1lfeT3+fRqEeJaBuhdpwGWXBXOG5Oep7/OlkulWuBnV3tMFjatxRv3oxSXS3DXxqRd87I4YRz9IsNxjfYoHacBpk7cC6uDq7M3z1fzm8N0NnZYYiJwbhxo0WPq3oB9K9//Ys5c+awcOFCjhw5Qq9evRg7dix5eTdef2nPnj3cf//9PPLII/z0009MnDiRiRMnktLYiZI6DABPuTyutkpTJfN+nEd37+48GvWo2nEazNPFgVfvjWLX6Xw+25+tdhwBtcNgpVcoXvslLv364eDvr3aiVq+m2sSWVem07eBGv3EhasdpMIOjgSVDlrAvZx9fnfxK7TgCMMTGYLp61aLHVL0AeuONN3j00UeZMWMG4eHhvPvuu7i6uvLRRx/dcP+VK1cSExPDc889R1hYGEuWLKFv3778/e9/b1zD4XdZIL1oqrePvk12cTZLhy3Fwc62awE11e3dffjjoCCWbUjn3NVSteOIDn0xuXSk5EiKTH6oEQfWZ1J0pYzR08Oxt1f9102jDOkwhCndp7Di8ArOG8+rHafVc+7ZE4fAQIseU6eoeH2vqqoKV1dXvv76ayZOnFj3+rRp0ygsLOTbb399E1pQUBBz5sxh9uzZda8tXLiQdevWcewG8wRUVlZSWVlZ9/eioiKCgoKIv/8fODu6WvT7EbdKp3YA0WLU/jjTNa/ftS2WGQf6un1FlNsPake5JaU6eKR9O3L19mjrof3WafKPZp5+9yAeHh7odE3/vaHqHOT5+fmYTCb8/Pzqve7n58eJEydu+J7c3Nwb7p+be+Ob1ZYtW8aiRYt+9XrcFw/dYmohhBCthyyPoRXJwEtfeJKXl4ePj0+Tj6fuIiw28MILLzBnzpy6vxcWFhIcHEx2djaentqci6K1MBqNdOzYkfPnz2MwNI+bI1sy6Q/tkL7QDukL7fi5LxwdLfOksKoFULt27bC3t+fy5cv1Xr98+TL+v3EDo7+/f6P2d3JywsnJ6Veve3p6yn9mjTAYDNIXGiL9oR3SF9ohfaEdlhj+ApVvgnZ0dKRfv35s3bq17jWz2czWrVuJjo6+4Xuio6Pr7Q+wefPm39xfCCGEEOJ6qg+BzZkzh2nTptG/f38GDhzIm2++SWlpKTNmzADg4YcfpkOHDixbtgyAWbNmMXz4cFasWMH48eP58ssvOXToEO+9956a34YQQgghmhHVC6CpU6dy5coVFixYQG5uLr179yYxMbHuRufs7Gzs7P5zoWrIkCH885//JC4ujhdffJFu3bqxbt06IiMjG9Sek5MTCxcuvOGwmLAt6Qttkf7QDukL7ZC+0A5L94Wqj8ELIYQQQqhBZssQQgghRKsjBZAQQgghWh0pgIQQQgjR6kgBJIQQQohWp8UWQMuWLWPAgAF4eHjg6+vLxIkTOXnyZL19KioqmDlzJm3btsXd3Z177rnnV5MsiqZ75513iIqKqptILDo6moSEhLrt0g/qeeWVV9DpdPXW1pP+sI2XXnoJnU5X7ys0NLRuu/SDbV28eJEHH3yQtm3b4uLiQs+ePTl06FDddkVRWLBgAQEBAbi4uDB69GgyMjJUTNxyhYSE/Orc0Ol0zJw5E7DcudFiC6CkpCRmzpzJvn372Lx5M9XV1YwZM4bS0v+s2v3000+zfv16Vq9eTVJSEpcuXWLy5Mkqpm6ZAgMDeeWVVzh8+DCHDh3ijjvuYMKECaSmpgLSD2o5ePAg//d//0dUVFS916U/bCciIoKcnJy6r127dtVtk36wnWvXrjF06FAcHBxISEggLS2NFStW4O3tXbfPq6++yltvvcW7777L/v37cXNzY+zYsVRUVKiYvGU6ePBgvfNi8+bNAEyZMgWw4LmhtBJ5eXkKoCQlJSmKoiiFhYWKg4ODsnr16rp90tPTFUDZu3evWjFbDW9vb+WDDz6QflBJcXGx0q1bN2Xz5s3K8OHDlVmzZimKIueFLS1cuFDp1avXDbdJP9jW3LlzlWHDhv3mdrPZrPj7+yuvvfZa3WuFhYWKk5OT8sUXX9giYqs2a9YspUuXLorZbLboudFirwBdr6ioCIA2bdoAcPjwYaqrqxk9enTdPqGhoQQFBbF3715VMrYGJpOJL7/8ktLSUqKjo6UfVDJz5kzGjx9f798d5LywtYyMDNq3b0/nzp154IEHyM7OBqQfbO27776jf//+TJkyBV9fX/r06cP7779ftz0zM5Pc3Nx6/eHp6cmgQYOkP6ysqqqKzz77jD/96U/odDqLnhutogAym83Mnj2boUOH1s0YnZubi6OjI15eXvX29fPzIzc3V4WULdvx48dxd3fHycmJxx57jLVr1xIeHi79oIIvv/ySI0eO1C0v80vSH7YzaNAgVq1aRWJiIu+88w6ZmZncdtttFBcXSz/Y2NmzZ3nnnXfo1q0bGzdu5PHHH+cvf/kLn3zyCUDdv/nPKxT8TPrD+tatW0dhYSHTp08HLPszSvWlMGxh5syZpKSk1BtfF7bVo0cPjh49SlFREV9//TXTpk0jKSlJ7Vitzvnz55k1axabN2/G2dlZ7TitWmxsbN2fo6KiGDRoEMHBwXz11Ve4uLiomKz1MZvN9O/fn5dffhmAPn36kJKSwrvvvsu0adNUTte6ffjhh8TGxtK+fXuLH7vFXwF68skn+f7779m+fTuBgYF1r/v7+1NVVUVhYWG9/S9fvoy/v7+NU7Z8jo6OdO3alX79+rFs2TJ69erFypUrpR9s7PDhw+Tl5dG3b1/0ej16vZ6kpCTeeust9Ho9fn5+0h8q8fLyonv37pw+fVrOCxsLCAggPDy83mthYWF1Q5I//5tf/6SR9Id1nTt3ji1btvDnP/+57jVLnhsttgBSFIUnn3yStWvXsm3bNjp16lRve79+/XBwcGDr1q11r508eZLs7Gyio6NtHbfVMZvNVFZWSj/Y2KhRozh+/DhHjx6t++rfvz8PPPBA3Z+lP9RRUlLCmTNnCAgIkPPCxoYOHfqraVJOnTpFcHAwAJ06dcLf379efxiNRvbv3y/9YUUff/wxvr6+jB8/vu41i54bFr5ZWzMef/xxxdPTU9mxY4eSk5NT91VWVla3z2OPPaYEBQUp27ZtUw4dOqRER0cr0dHRKqZumf76178qSUlJSmZmppKcnKz89a9/VXQ6nbJp0yZFUaQf1PbLp8AURfrDVp555hllx44dSmZmprJ7925l9OjRSrt27ZS8vDxFUaQfbOnAgQOKXq9Xli5dqmRkZCiff/654urqqnz22Wd1+7zyyiuKl5eX8u233yrJycnKhAkTlE6dOinl5eUqJm+5TCaTEhQUpMydO/dX2yx1brTYAgi44dfHH39ct095ebnyxBNPKN7e3oqrq6syadIkJScnR73QLdSf/vQnJTg4WHF0dFR8fHyUUaNG1RU/iiL9oLbrCyDpD9uYOnWqEhAQoDg6OiodOnRQpk6dqpw+fbpuu/SDba1fv16JjIxUnJyclNDQUOW9996rt91sNivz589X/Pz8FCcnJ2XUqFHKyZMnVUrb8m3cuFEBbvhvbKlzQ6coitLk61RCCCGEEM1Ii70HSAghhBDit0gBJIQQQohWRwogIYQQQrQ6UgAJIYQQotWRAkgIIYQQrY4UQEIIIYRodaQAEkIIIUSrIwWQEEIIIVodKYCEEEII0epIASSE0IwRI0Ywe/ZstWMIIVoBKYCEEEII0epIASSE0ITp06eTlJTEypUr0el06HQ6srKySElJITY2Fnd3d/z8/HjooYfIz8+ve9+IESN46qmnmD17Nt7e3vj5+fH+++9TWlrKjBkz8PDwoGvXriQkJNS9Z8eOHeh0On744QeioqJwdnZm8ODBpKSkqPGtCyFUIAWQEEITVq5cSXR0NI8++ig5OTnk5OTg4eHBHXfcQZ8+fTh06BCJiYlcvnyZ++67r957P/nkE9q1a8eBAwd46qmnePzxx5kyZQpDhgzhyJEjjBkzhoceeoiysrJ673vuuedYsWIFBw8exMfHh7vuuovq6mpbfttCCJXIavBCCM0YMWIEvXv35s033wQgPj6eH3/8kY0bN9btc+HCBTp27MjJkyfp3r07I0aMwGQy8eOPPwJgMpnw9PRk8uTJfPrppwDk5uYSEBDA3r17GTx4MDt27GDkyJF8+eWXTJ06FYCCggICAwNZtWrVrwosIUTLo1c7gBBC/JZjx46xfft23N3df7XtzJkzdO/eHYCoqKi61+3t7Wnbti09e/ase83Pzw+AvLy8eseIjo6u+3ObNm3o0aMH6enpFv0ehBDaJAWQEEKzSkpKuOuuu1i+fPmvtgUEBNT92cHBod42nU5X7zWdTgeA2Wy2UlIhRHMjBZAQQjMcHR0xmUx1f+/bty/ffPMNISEh6PWW/3G1b98+goKCALh27RqnTp0iLCzM4u0IIbRHboIWQmhGSEgI+/fvJysri/z8fGbOnElBQQH3338/Bw8e5MyZM2zcuJEZM2bUK5Ru1eLFi9m6dSspKSlMnz6ddu3aMXHixKZ/I0IIzZMCSAihGc8++yz29vaEh4fj4+NDVVUVu3fvxmQyMWbMGHr27Mns2bPx8vLCzq7pP75eeeUVZs2aRb9+/cjNzWX9+vU4Ojpa4DsRQmidPAUmhGh1fn4K7Nq1a3h5eakdRwihArkCJIQQQohWRwogIYQQQrQ6MgQmhBBCiFZHrgAJIYQQotWRAkgIIYQQrY4UQEIIIYRodaQAEkIIIUSrIwWQEEIIIVodKYCEEEII0epIASSEEEKIVkcKICGEEEK0Ov8fPLZW/Ye0XHoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACG0ElEQVR4nOzdd1wU1/rH8c/SQamiYEGxd7ETxRpr7CZRY4rG9MTYTWyIDbsmJtHYUkwztkSssXfsDRt2FBtYARWpu78/5ne519goC2fL876vfd24zM58d2TWZ8+Zc47OYDAYEEIIIYSwEDaqAwghhBBCGJMUN0IIIYSwKFLcCCGEEMKiSHEjhBBCCIsixY0QQgghLIoUN0IIIYSwKFLcCCGEEMKiSHEjhBBCCIsixY0QQgghLIrVFTcGg4GEhARkYmYhhBDCMiktbnbs2EH79u0pUqQIOp2OsLCwF75m27Zt1KxZE0dHR8qUKcOCBQuydMz79+/j7u7O/fv3sxdaCCGEECZNaXHz8OFDAgICmDVrVqa2j4qKom3btjRt2pSjR4/Sv39/PvjgA9avX5/LSYUQQghhLnSmsnCmTqdj+fLldOrU6ZnbDBkyhDVr1nDixImM59544w3i4uJYt25dpo6TkJCAu7s78fHxuLm55TS2EEIIIfKAwWBAp9Nlaluzuudmz549NG/e/LHnWrVqxZ49e575muTkZBISEh57ANxPSs3VrEIIIYQwnhUXVmR6W7MqbmJiYvDx8XnsOR8fHxISEnj06NFTXzNx4kTc3d0zHn5+fgBMW38m1/MKIYQQIudiHsYwef/kTG9vVsVNdgwbNoz4+PiMx5UrVwD46/A1tp65qTidEEIIIZ7HYDAQEh6Ci71Lpl9jVsWNr68vsbGxjz0XGxuLm5sbzs7OT32No6Mjbm5ujz0A6pcpwNC/jhGfKN1TQgghhKlaenYpe27sYWz9sZl+jVkVN/Xq1WPz5s2PPbdx40bq1auX5X2N7VCZxJR0Rq86aax4QgghhDCiK/evMO3gNLqU60JQ0aBMv05pcfPgwQOOHj3K0aNHAW2o99GjR4mOjga0LqUePXpkbP/JJ59w8eJFvvzyS06fPs3333/PkiVLGDBgQJaP7evuzOj2lVl+5BrrTsQY5f0IIYQQwjj0Bj3Bu4LxcvJiUO1BWXqtXS5lypSDBw/StGnTjD8PHDgQgJ49e7JgwQJu3LiRUegAlCxZkjVr1jBgwAC++eYbihUrxg8//ECrVq2ydfxXaxZl3ckYRiw/Th1/Twrkd8zZGxJC5K2TYXDk9+dv4+wJrSdCPu88iSSEMI7fT/3O4ZuH+anVT+Szz5el15rMPDd55d/z3Ny6n0zLr7fzUqkCfP9WzUyPoRdCKHbrLMxtCIUqgVuRZ293aReUbARdfwW5voUwCxfjL9J1VVe6lOvCkLpDsvx6pS03pqCgqyOhnarSe+FhVkZcp2P1oqojCSFeJD0Nwj4B92Lw7hpweM4oipPLYem7cOIvqPp6nkUUQmRPmj6N4F3BFM5XmL41+2ZrH2Z1Q3FuaVutMO2qFSZkxUluJiSpjiOEeJHd38D1I9BpzvMLG4DKnaHyq7BmENyX++uEMHULTi7g5J2ThDYIxdnu6SOhX0SKm/83rmMV7G1tGPr3cVkxXAhTFnMCtk6E+n3Br07mXtN2Otg6wMq+INe3ECbrzN0zzDo6i16VexFQMCDb+5Hi5v955nNg0qtV2XL6JksPXVUdRwjxNGkpWndUgTLQdHjmX+fiBR2+hXPr4egfuZdPCJFtqempBIcH4+/mz2fVP8vRvqS4+R/NK/nwWs1ijF11imtxT1/OQQih0I6pcDMSOs8BuyyObiz/CgS8Cf8MhbgruZNPCJFtc4/N5fy984xvMB4HW4cc7UuKm38JaV8JVyc7hiw7hl4vzddCmIxrh2HndGj0BRSpnr19tJ4ITm6w8nPQ640aTwiRfSdvn+SH4z/wUbWPqFSgUo73J8XNv7g72zP5tWrsOn+bP/ZdVh1HCAGQmgTLPwHfKtAwa5N5PcbZAzp8Bxe3wcEfjZVOCJEDyenJDN81nHKe5fig2gdG2acUN0/RqFxB3goszoS1p7l856HqOEKIrePhXpQ2OsrWPmf7KtMMar8HG0Pg7kXj5BNCZNusI7O4cv8KExpMwN4mh9f3/5Pi5hmGt6mIt6sDg5dGkC7dU0KoE70Xdn+n3UDsk/PmagBajIN8BSHsM9CnG2efQogsO3rzKAtOLuDzGp9TxrOM0fYrxc0z5HO0Y9rrARy8fI+fw6NUxxHCOqU8hLBPoVhtbei3sTjmh07fa4XT3tnG268QItMSUxMZsWsE1QpWo2elnkbdtxQ3zxFYqgDvBZVkyvoznL95X3UcIazPptGQcEPrjrKxNe6+/RvAS5/C5rFw64xx9y2EeKFvDn/DzcSbhAaFYmvk61uKmxf4olV5ink6M2hJBGnpMrpCiDxzcTvsnwfNR4O38ZqrH9MsBDyKazcrp6flzjGEEE/Yd2MfC08vpH+t/vi7+xt9/1LcvICTvS3TuwRw/Fo8c3fIzYdC5ImkBFjRG/wbQt2Pcu849s7anDk3jkL417l3HCFEhgcpDwgJD6GObx26V+ieK8eQ4iYTahT35JPGpZmx6SynrieojiOE5dswAh7dg44zwSaXP6aK1Yag/rBtMsQcz91jCSGYdnAacclxjK0/Fhtd7lzfUtxkUr/mZSldMD+DlkaQkibdU0LkmrMb4PCv0DIUPP3z5phNhoJ3Oa17Ki0lb44phBXaeXUnf537i8F1BlPMtViuHUeKm0xytLNletcAzsXe57st51THEcIyJd6FlX2gdDOo9W7eHdfOETrPhlunYceUvDuuEFYkPjme0btHE1QkiNfLvp6rx5LiJgsqF3Gnb7OyfL/tAhFX4lTHEcLy/DME0h5p3VE6Xd4eu3AANPoSdn4F1w7l7bGFsAKT9k/iUdojRtcfjS6Xr28pbrLo0yalqVTYjUFLI0hKlcm/hDCaUyvh+BJ4ZQq4FVGToeFA8K0Kyz+FVFk8Vwhj2Ry9mdUXVzM0cCi++Xxz/XhS3GSRva0NX3UNIPpuIl9tPKs6jhCW4eFtWD0AKrSDat3U5bC110ZP3YuCLaHqcghhQe4m3WXsnrE09WtK+1Lt8+SYUtxkQ1kfVwa1KMf8nRc5cOmu6jhCmDeDAVb3B4Me2n2d991R/1aoIrwcDHtmweU9arMIYeYMBgOhe0PRG/SE1AvJ9e6o/5DiJps+aFiKmsU9Gbw0gsQUmfxLiGw7vgwiV2mFTf5CqtNo6n0OfnW1pR9SZPFcIbLrn6h/2Hh5I8EvBePt7J1nx5XiJptsbXRM6xJAbEISk/45rTqOEOYp4QasHQxVXoPKnVSn+S8bW+g0G+7HwMZRqtMIYZZuJt5k/L7xtPZvTSv/Vnl6bClucqCkdz6GvVKRX/dcJvz8bdVxhDAvBgOs6qsNw24zTXWaJxUoDS3GwIH5cHGb6jRCmBWDwcCYPWOwt7FnROCIPD++FDc59M5LJahXqgBfLjvG/aRU1XGEMB9HfodzG6D9t+DipTrN09X5UFsCIqw3JMWrTiOE2Qg7H8aOqzsYXX80Hk4eeX58KW5yyMZGx5TXqxH/KJXQ1ZGq4whhHuKiYd0wqP42lG+tOs2z2dhAx1mQFAfrh6tOI4RZuP7gOpMPTKZj6Y408WuiJIMUN0bg5+VCcNuKLD54hS2nY1XHEcK06fXaophO7tB6guo0L+ZZAlpN0Fqazq5XnUYIk6Y36AnZHYKrgytD6g5RlkOKGyPpVsePJuULMvSv48Qlyto0QjzTwR8haoc2C7GTu+o0mVOzB5RpoS0NkSjTPwjxLEvOLGHfjX2MqT8GVwdXZTmkuDESnU7H5NeqkZSazqiVJ1XHEcI03bkAG0Og9vtQuqnqNJmn00GHbyEtCf75UnUaIUxSdEI0Xx36im7lu1G/SH2lWaS4MSIfNyfGdqzCiqPX+ef4DdVxhDAt+nStOyp/IWgxVnWarHMrAq9MheNL4dQK1WmEMCnp+nSCw4Mp4FSAgbUGqo4jxY2xdaxehFaVfRgRdoLbD5JVxxHCdOz9HqL3avPHOOZXnSZ7qnXVlohYPQAe3FKdRgiT8Xvk7xy9eZRxQeNwsXdRHUeKG2PT6XSM71wVgBHLj2MwGBQnEsIE3DoDm8dBvd5QQm1zdY7odNBuhvbfq/trc/UIYeUuxF3g28Pf8nalt6ntW1t1HECKm1zhnd+R8Z2qsP5kLCuOXlcdRwi10tNg+SfaqKOXg1Wnybn8BaHtV3B6tdZFJYQVS9OnEbwrmKKuRelbo6/qOBmkuMklr1QtTMfqRQhZcYKY+CTVcYRQJ/xruHEUOs0Be2fVaYyjcieo8rq2dESCfIER1uunEz9x6u4pQoNCcbJzUh0ngxQ3uWhMh8o42dsy9O9j0j0lrFPMcdg2GRoMgGK1VKcxrjZTwc4JVvaV7ilhlc7cPcPsiNm8X+V9qhWspjrOY6S4yUUeLg5Meq0q287cYvGBK6rjCJG30lK07qiC5aGxusm8co2LF3T4Ds5vhMO/qk4jRJ5KTU9l+K7hlHQvyScBn6iO8wQpbnLZyxV86Fq7GONWn+LK3UTVcYTIO9snw63T2ugoO0fVaXJHuVZQ421taYZ7l1WnESLPzI6YzcW4i0xoMAEHWwfVcZ4gxU0eGNmuEh4uDny57Bh6vTRfCytw9RDs+lprsSlsWs3VRtdqIjh5aHP46PWq0wiR607cPsFPJ37i44CPqeBVQXWcp5LiJg+4Otkz5fVq7Ll4h9/2yrc7YeFSH0HYJ1pR00D9ZF65zslNW0ri0k448IPqNELkqqS0JEbsGkEFrwq8X/V91XGeSYqbPBJUxpse9Uow8Z9Iom4/VB1HiNyzJVTrouk0B2ztVKfJG6WbQp0PtKUl7lxQnUaIXDPzyEyu3r/K+AbjsbexVx3nmaS4yUNDX6mAj5sTg5dGkC7dU8ISXd4Ne2Zp89kUMs3m6lzTfAy4+kLYp9pSE0JYmMOxh/n11K/0qdGH0h6lVcd5Lilu8pCLgx3TugRwOPoeP+y8qDqOEMaV/ED7h90vUJuJ2No45tdunr6yH/bMVJ1GCKNKTE0kODyY6oWq806ld1THeSEpbvJYHX8vPmhQkukbznI29r7qOEIYz6ZR8OAmdPoebGxVp1GjRD2tsNsyHm6eVp1GCKP5+tDX3H50m9CgUGzN4PqW4kaBQS3LU7yAC4OWRJCaLqMrhAW4sFW7mbb5GChg2s3Vue7lYG2pibBPID1VdRohcmzvjb0sOrOI/jX7U9ytuOo4mSLFjQJO9rZM7xLAqRsJzN4mNx8KM5cUDys+h5KNtJtqrZ29s3Yz9Y1j2nB4IczYg5QHhISHUNe3Lm9UeEN1nEyT4kaRAD8PPmtSmm83n+PEtXjVcYTIvvXDtQKn4yywkY8UQFtqosEAbSLDG8dUpxEi26YenEpCSgJjg8ZiozOf69t8klqgPi+XpayPK4OXRpCcJqMrhBk6ux6O/A6tJ4CHeTRX55nGQ6BgBW0JirRk1WmEyLIdV3fw97m/+aL2FxTNX1R1nCyR4kYhBzsbvuoawIVbD/hm0znVcYTImsS7sLIPlG0JNUx/9ESes3OAznPg9lmtBUcIMxKfHM/o3aNpULQBr5Z9VXWcLJPiRrGKhd3o16wsc7Zf4Ej0PdVxhMi8tV9AWhK0/xZ0OtVpTJNvVa0FZ9fXcPWg6jRCZNqEfRNISk9iTP0x6Mzw+pbixgR80rg0VYu6M2hpBEmp0j0lzMDJMDixDNpMA7fCqtOYtgYDoHB1rXsq9ZHqNEK80MbLG1kbtZbhgcMp5FJIdZxskeLGBNjZ2jC9awBX7z1i6vozquMI8XwPbsGagVChHVTtojqN6bO107qn4qJh8zjVaYR4rjuP7jBuzziaF29O25JtVcfJNiluTESZQq582ao8P4VHse/iHdVxhHg6gwFW99f+u90M6Y7KrILlodlI2Ps9XApXnUaIpzIYDITuDQUg+KVgs+yO+g8pbkxIr6CS1C7hyeBlETxMTlMdR4gnHVsCp1dDu68hf0HVaczLS59pS1OEfaotVSGEiVkTtYZN0ZsIqRdCAecCquPkiBQ3JsTWRse0LgHcvp/CxH8iVccR4nEJ1+GfL6DK61Cpo+o05sfGVlua4uEtbfVwIUzIzcSbTNg3gTYl29C8RHPVcXJMihsTU6JAPoa3qcDve6PZee6W6jhCaAwGbdi3nTO0mao6jfkqUBpajIWDP8KFLarTCAFo3VGjdo/CydaJ4YHDVccxCiluTNBbgSVoUMabL5cdI/6RrE0jTMDhX+H8JujwLbh4qU5j3mq/DyUba0tWPIpTnUYIlp9fzq5ruxhdfzTuju6q4xiFFDcmyMZGx+TXq/EgKY1xq0+pjiOs3b3L2hILNd6Gcq1UpzF/NjbaUhVJCdp5FUKh6w+uM+XAFF4t+yqNijVSHcdopLgxUUU9nBnZvhLLDl1l06lY1XGEtdLrYUVvcPaEVhNVp7EcHn7QeiIc/QPO/KM6jbBSeoOekPAQ3Bzc+KL2F6rjGJUUNyasS61iNKtQiKF/H+fewxTVcYQ1OvADXNoJHWeCk5vqNJalxttQthWs7KstZSFEHlt0ehH7YvYxNmgs+R3yq45jVFLcmDCdTsfEV6uSmq4nZOVJ1XGEtblzQRvVU+dDKNVEdRrLo9Np9zClp8DawarTCCtzOeEyMw7P4I3yb/BS4ZdUxzE6KW5MXCE3J8Z2rMyqiOusOXZDdRxhLfTp2nwsrr7QYozqNJbL1RfaTocTf8HJ5arTCCuRrk8neFcw3s7eDKg1QHWcXCHFjRnoEFCENlV9CQ47zq37yarjCGuwZyZc2a8tG+CQT3Uay1blNajYAVYPhAc3VacRVuC3U78RcSuC0KBQXOxdVMfJFVLcmAGdTse4jlWw0ekYvvw4BoNBdSRhyW5GwpZQqNcbiltec7XJ0em0GZ91NrCqvzankBC55ELcBb478h09KvWgpk9N1XFyjfLiZtasWfj7++Pk5ERgYCD79+9/7vYzZsygfPnyODs74+fnx4ABA0hKSsqjtOoUyO/IhFersvFULMuPXFMdR1iq9FRt9WrPkvDySNVprEc+b2g/A86sgWOLVacRFipVn8qIXSMo5lqMPjX7qI6Tq5QWN4sXL2bgwIGMGjWKw4cPExAQQKtWrbh58+lNswsXLmTo0KGMGjWKyMhIfvzxRxYvXszw4dYxV0Sryr50rlGUUStPciP+keo4whLt+hpijkPn2WDvpDqNdanYHqp1g7VfQrx8gRHG9+PxHzl99zTjG4zH0dZRdZxcpbS4+eqrr/jwww/p1asXlSpVYs6cObi4uPDTTz89dfvdu3cTFBTEm2++ib+/Py1btqR79+4vbO2xJKPbV8bFwZYhf0n3lDCyGxGwfTI0HAhFa6lOY51emQwOLtpSF3J9CyM6ffc0cyPm8n7V96niXUV1nFynrLhJSUnh0KFDNG/+3wW6bGxsaN68OXv27Hnqa+rXr8+hQ4cyipmLFy+ydu1a2rRp88zjJCcnk5CQ8NjDnLm72DP5tWrsOHuLRQeuqI4jLEVastYdVbAiNPpSdRrr5ewJHb6DC5vh0ALVaYSFSElPYfiu4ZT2KM0n1T5RHSdPKCtubt++TXp6Oj4+Po897+PjQ0xMzFNf8+abbzJ27FgaNGiAvb09pUuXpkmTJs/tlpo4cSLu7u4ZDz8/P6O+DxWalC/EG3X8CF19iit3E1XHEZZg2yS4fU4bHWXnoDqNdSvbAmr2gA3BcO+S6jTCAsyJmENUfBTjG4zH3tZedZw8ofyG4qzYtm0bEyZM4Pvvv+fw4cP8/fffrFmzhnHjxj3zNcOGDSM+Pj7jceWKZbR2jGhbEQ8XB75YFoFeL83XIgeuHIDwGdBkCPhafnO1WWg5Hpy9IKy3tgSGENl07NYxfjzxI58GfEp5r/Kq4+QZZcWNt7c3tra2xMY+vm5SbGwsvr6+T33NyJEjeeedd/jggw+oWrUqnTt3ZsKECUycOBH9Mz4AHB0dcXNze+xhCVyd7JnapRp7L97llz2XVMcR5iolEcI+gcLVIcgyJ/MyS05u0GkWXN4F++epTiPMVFJaEiN2jaCSVyXeq/Ke6jh5Sllx4+DgQK1atdi8eXPGc3q9ns2bN1OvXr2nviYxMREbm8cj29raAljlzbX1S3vzbn1/Jq87zcVbD1THEeZoyziIu6J1R9naqU4j/lfJRlD3Y9g0Gm6fV51GmKFvj3zL9QfXGd9gPHY21nV9K+2WGjhwIPPnz+eXX34hMjKSTz/9lIcPH9KrVy8AevTowbBhwzK2b9++PbNnz2bRokVERUWxceNGRo4cSfv27TOKHGvzZevy+Lo5MXhpBOnSPSWy4tIu2DsbmoVAQetprjYrzUeBW2GtdU2frjqNMCMHYw7y+6nf6VuzL6U8SqmOk+eUlnLdunXj1q1bhISEEBMTQ/Xq1Vm3bl3GTcbR0dGPtdQEBwej0+kIDg7m2rVrFCxYkPbt2zN+/HhVb0E5Fwc7pncNoMucPczfeZFPGpdWHUmYg+QHEPYZFK8HL32mOo14Fod80GkO/Nwadn8LDaTrULxYYmoiweHB1ChUg7crvq06jhI6g5X15yQkJODu7k58fLzF3H8DMHFtJD+HX2JVnwaU93VVHUeYutUDIGIxfLoLvKzvW53Z2TAS9s2Bj7aDTyXVaYSJC90bysoLK/mr/V/4uZn/COHsMKvRUuLZBrQoR4kCLgxaepTUdBldIZ7j/CY4+JO22rcUNuah6Qjt72r5x9oSGUI8w+7ru1l8ZjEDaw202sIGpLixGE72tkzvGkDkjfvM2io3H4pneBQHK/pAqSZQ+33VaURm2TtpN33HnoSd01WnESbqfsp9QsJDeKnwS3Qt31V1HKWkuLEg1Yp50LtJaWZuOc+Ja/Gq4whTtG4YpDyADjPBRi5/s1KkBjQaDDumwvWjqtMIEzR5/2Qepj5kbP2x2Ois+/q27ndvgT5/uSzlfFwZuOQoyWkyukL8j9NrIWIhtJ4IHtbbXG3WGg6GQhW1pTLSklWnESZk25VtrLiwgi/rfEnh/IVVx1FOihsL42Bnw1fdAoi6/ZAZm86pjiNMReJdWNUPyrWG6m+pTiOyy84BOs+FO+dh6wTVaYSJiEuKY/Tu0TQu1phOZTqpjmMSpLixQBV83ejfvBxzt1/gcPQ91XGEKVgzCNJToP03oNOpTiNywqcyNB2mDQ2/sl91GmECxu8bT6o+lVH1RqGT6xuQ4sZifdyoFNWKeTBoSQSPUqR7yqqd+BtO/g1tp4Pr05c2EWamfj8oUlPrnkqRxXOt2fpL61l3aR0jAkdQ0KWg6jgmQ4obC2Vna8O0LgFcj3vElPWnVccRqtyP1VptKnWEKq+pTiOMxdZOGz2VcA02j1WdRihy+9FtQveG0qJEC14p+YrqOCZFihsLVqZQfr5oVZ6fwy+x58Id1XFEXjMYYHV/0NlA26+kO8rSeJeFZqNg32yI2qk6jchjBoOBsXu0UVHBLwVLd9S/SHFj4d4LKkndkl58sSyCB8lpquOIvBSxCM6s1e6zyeetOo3IDYGfQIkgWPEZJN9XnUbkoVUXV7H1ylZC6oXg5eSlOo7JkeLGwtnY6Jj2egB3H6Ywfk2k6jgir8Rfg3+GQLVuULGd6jQit9jYQMdZ8PAObAhWnUbkkZiHMUzaN4l2pdrRrHgz1XFMkhQ3VqB4AReGt6nIn/uj2X72luo4IrcZDLDyc3BwgVcmq04jcptXSWg5Dg4t0JbWEBbNYDAwevdonO2cGVp3qOo4JkuKGyvxVmBxGpb1ZsiyY8Q/krVpLNqhn+HCFm0WYmdP1WlEXqj9HpRqqi2t8ShOdRqRi5adW0b49XDGBI3B3dFddRyTJcWNldDpdEx+rRoPk9MYs+qk6jgit9yNgvXBULMnlG2uOo3IKzoddJypLa2xTr7NW6qr968y7cA0Xiv7Gg2KNlAdx6RJcWNFing4M6pDZf4+fI0NJ2NUxxHGptfDis/BpQC0Gq86jchr7sW0bsiIP+H0GtVphJHpDXpGho/Ew9GDL+p8oTqOyZPixsq8VrMozSsWYvjy49x9mKI6jjCm/XPh8i7oNAscXVWnESoEdIdyr2hLbTyU6R8syZ+n/+Rg7EHGBY0jn30+1XFMnhQ3Vkan0zHh1aqk6Q0Ehx3HYDCojiSM4fY52DQa6n4MJRupTiNU0em0of/6NFgzUHUaYSRR8VF8fehr3qzwJnUL11UdxyxIcWOFCrk6Ma5jFdYej2HVsRuq44ic0qdD2KfgVhSaj1adRqjm6qMttXEqDE78pTqNyKF0fTrB4cH45vOlf63+quOYDSlurFT7gCK0rVaYkBUnuJmQpDqOyInd38K1Q9Bptjb8W4gqr0HlztrSG/djVacRObDg5AJO3D5BaFAoznbOquOYDSlurNi4jlWws9Ex7G/pnjJbsadg6wSo3weKB6pOI0xJm+lgYwer+mpzHwmzc+7eOWYdnUXPSj2pXqi66jhmRYobK+aVz4GJr1Zj8+mbLDt0VXUckVXpqbD8Y/AqBU2Gq04jTE2+Atr9N2fXwdGFqtOILErVpzJi1wiKuxand43equOYHSlurFyLSj68WrMoY1ed4lrcI9VxRFbsmAaxJ7XVoe2dVKcRpqhCW20E1bqhEC9fYMzJ/GPzOXvvLOMbjsfR1lF1HLMjxY1gVPvK5HO0Y8iyY9I9ZS6uH4Gd06DRYChSQ3UaYcpaTwKH/NocSHJ9m4WTd04y/9h8Pqz2IZULVFYdxyxJcSNwd7Zn8uvV2HX+Nr/vi1YdR7xIWjIs/xQKVYKGg1WnEabO2QM6fgcXt8LBn1SnES+Qkp5C8K5gynqW5aOqH6mOY7akuBEANC5XkDcDizNxbSTRdxJVxxHPs3UC3DmvdUfZOahOI8xBmeZQ613YMFJbokOYrFlHZ3Ep4RKhDUKxt7VXHcdsSXEjMgxvUxGvfA4MXhqBXi/N1ybpyn5t6HfT4eAjzdUiC1qGajcZr+itLdUhTM7Rm0dZcHIBvav3ppxnOdVxzJoUNyJDfkc7pnUJYP+lu/wULt/uTE5KIiz/BIrUhPp9VacR5sbRFTp+D5fDYd8c1WnEvzxKe0RweDBVClTh3crvqo5j9qS4EY95qVQBegX5M3X9GS7ceqA6jvhfm8dAwjWtO8rWTnUaYY5KNoTAT7TfpdvnVKcR/+Obw98Q8zCG0Aah2NnI9Z1TUtyIJ3zZqgJFPZwZtCSCtHRpvjYJUTu0b9vNRoF3WdVphDlrNkpbqmP5J5CepjqNAPbf2M8fkX/Qr2Y/SrqXVB3HIkhxI57g7GDLtK4BHLsax9wdF1XHEcn3tfskSjTQvnULkRMOLlrr3/XDsPsb1Wms3sPUh4TsDqG2T23eqviW6jgWQ4ob8VQ1i3vycePSzNh0lsgbCarjWLcNwfDwDnScCTZyyQoj8Kur3be1daI2EaRQZtrBadxNusvYoLHY6OT6NhY5k+KZ+jcvSynv/AxaEkFKmnRPKXFuExxaAK1CwUuaq4URNR0OBcpoS3ikpahOY5XCr4Wz7OwyBtcejJ+rn+o4FkWKG/FMjna2TO8awNnY+8zcel51HOvz6B6s7AOlX4ZavVSnEZbGzlHrnroZqc12LfJUQkoCIbtDqF+kPl3KdVEdx+JIcSOeq0pRdz5/uQyztp7n2NU41XGsyz9DIeUhdPgOdDrVaYQlKlIdGn2hrVN27bDqNFZl8v7JPEp9xJj6Y9DJ9W10UtyIF+rdtAwVC7syaEkESanpquNYh8jVcGwRvDIJ3IupTiMsWcNB4FsFwj6F1CTVaazClugtrLywkiF1h+Cbz1d1HIskxY14IXtbG77qWp3LdxL5euNZ1XEs38PbsLo/lG+jregsRG6ytYdOc+DuRdg6XnUai3cv6R5j9oyhiV8TOpTuoDqOxZLiRmRKOR9XBrYsx7ydFzl0+a7qOJbLYIA1A0GfBu1mSHeUyBs+lbQbjHd/B9H7VKexaKF7Q0k3pDOq3ijpjspFUtyITPuwYSlq+HkwaEkEiSky+VeuOPEXnFoBbaeDq4/qNMKa1O8LxWpD2CfavV7C6NZFrWPD5Q0EBwbj7eytOo5Fk+JGZJqtjY5pXQKISUhiyrozquNYnvsxsGYQVO4MVV5TnUZYGxtbrXsq4QZsGqM6jcW5/eg2oftCaeXfitYlW6uOY/GkuBFZUqpgfoa0rsCC3ZfYff626jiWw2CAVf3A1gHaTFedRlgr7zLQfBTsn6st+SGMwmAwMHr3aGx1towIHKE6jlWQ4kZkWc96/rxUyosvlh3jflKq6jiW4egfcHYdtP8G8hVQnUZYs7ofa0t9hPWGJJmd3BhWXFjB9qvbGV1vNJ5OnqrjWAUpbkSW2djomPp6AHGJKYxfE6k6jvmLuwLrhkHAm1Chjeo0wtrZ2ECnWfDoLmyQVoacinkYw+T9k+lQugNNizdVHcdqSHEjssXPy4URbSux6MAVtp65qTqO+TIYYOXn4JAfWk9UnUYIjac/tAyFw7/CuY2q05gtg8FASHgILvYuDKk7RHUcqyLFjci27nX9aFSuIEOWHSM+UbqnsuXgj3Bxm7YoprOH6jRC/Fetd6F0M20JkEf3VKcxS0vPLmXPjT2MrT8WNwc31XGsihQ3Itt0Oh2TX6vKo9R0Rq+SlYWz7O5F2DBSWzeqTDPVaYR4nE6nLf2Rkgj/SKtDVl25f4VpB6fxernXCSoapDqO1ZHiRuRIYXdnxnSozPIj11h34obqOOZDn67dsJmvILQcpzqNEE/nXhTaTIFjiyFyleo0ZkNv0DMyfCReTl4Mrj1YdRyrJMWNyLHONYrSopIPI5af4M6DZNVxzMPe2RC9Gzp9D46uqtMI8WzVukH5trCqv7Y0iHihPyL/4FDsIcYFjSOffT7VcaySFDcix3Q6HRM6V0VvMDBi+QkMBoPqSKbt1lnYPBZe+gz8G6hOI8Tz6XTQfgYY9NqaZ3J9P1dUfBTfHP6Gtyu+TR3fOqrjWC0pboRRFHR1JLRTVdadjGFlxHXVcUxXepo2vb2HHzQLUZ1GiMzJXwjafaV1TR1fpjqNyUrTpxG8K5jC+QrTt2Zf1XGsmhQ3wmjaVitM+4AihKw4SWxCkuo4pil8Blw/ok1zb++sOo0QmfefZUHWDtaWaBBPWHByASfunCC0QSjOdnJ9qyTFjTCqsR0q42Bnw9C/jkn31L/FnIBtkyCoH/hJc7UwQ22mgZ0jrOor3VP/cvbeWWYdnUWvyr0IKBigOo7Vk+JGGJVnPgcmdq7K1jO3WHrwquo4piMtBZZ/At5lockw1WmEyB4XL22JkHMb4MjvqtOYjNT0VEbsGoG/mz+fVf9MdRyBFDciFzSv5MPrtYoxdvUprt5LVB3HNOyYCrciofMc7ZuvEOaq/CtQ/S1tyZC4aNVpTMK84/M4f+88ExpMwMHWQXUcgRQ3IpeEtK+Eq5MdXy47hl5v5c3X1w7BzunQ6EsoLM3VwgK0nghO7rDic9DrVadR6uTtk8w/Np+PAj6iYoGKquOI/yfFjcgVbk72TH6tGrsv3OH3fZdVx1EnNQmWfwq+VaHhQNVphDAOJ3fo+B1EbdeWELFSyenJjNg1gvJe5fmg6geq44j/IcWNyDWNyhXkrcDiTFx7mku3H6qOo8bWULgXpXVH2dqrTiOE8ZR+GWq/DxtD4M4F1WmUmHVkFtH3oxkfNB57G7m+TYkUNyJXDW9TkYKujgxeGkG6tXVPRe+F3TOh6QgoJM3VwgK1GKvNgbOit7akiBU5evMoC04u4PMan1PGs4zqOOJfpLgRuSqfox1TX6/Goeh7/LQrSnWcvJPyEMI+hWJ1oH4f1WmEyB2O+aHj91ohv/d71WnyTGJqIiN2jaBawWr0rNRTdRzxFFLciFwXWKoA7wWVZOqGM5yLva86Tt7YNFqb6KzTbLCxVZ1GiNzjHwT1esPmcXDrjOo0eeKbw99wM/Em4xuMx1aub5MkxY3IE1+0Kk8xT2cGLY0gLd3CR1dc3A7750Hz0eAtzdXCCrwcDJ4ltLmc0tNUp8lV+27sY+HphfSv1Z8SbiVUxxHPIMWNyBNO9rZM7xLAiWvxzN5mwTcfJiVo9x/4N4S6H6lOI0TesHfWlhS5cRTCv1adJtc8SHlASHgIdX3r0r1Cd9VxxHNIcSPyTI3innzapDTfbjnHqesJquPkjg0j4NE96DgLbOTyElakWC1oMAC2TYYbx1SnyRXTDk4jLjmOsUFjsdHJ9W3KlP/tzJo1C39/f5ycnAgMDGT//v3P3T4uLo7evXtTuHBhHB0dKVeuHGvXrs2jtCKn+jYrS+mC+Rm45CgpaRbWPXVuIxz+FVqGak30QlibxkOgYHntZvq0FNVpjGrn1Z38de4vvqjzBUXzF1UdR7xAtoubzZs3065dO0qXLk3p0qVp164dmzZtytI+Fi9ezMCBAxk1ahSHDx8mICCAVq1acfPmzadun5KSQosWLbh06RLLli3jzJkzzJ8/n6JF5RfNXDja2TK9awDnbz7g283nVMcxnsS72mytZZpDrXdVpxFCDTtH7Sb6W6dhxxTVaYwmPjme0btHE1Q0iNfKvqY6jsiEbBU333//Pa1bt8bV1ZV+/frRr18/3NzcaNOmDbNmzcr0fr766is+/PBDevXqRaVKlZgzZw4uLi789NNPT93+p59+4u7du4SFhREUFIS/vz+NGzcmIECmtDcnlYu407dZWWZvv8DRK3Gq4xjHP0Mg7RF0+A50OtVphFCncDVoPBR2fgVXD6lOYxST9k/iUfojxtQbg06ub7OgMxiyvm59sWLFGDp0KJ9//vljz8+aNYsJEyZw7dq1F+4jJSUFFxcXli1bRqdOnTKe79mzJ3FxcaxYseKJ17Rp0wYvLy9cXFxYsWIFBQsW5M0332TIkCHY2j59OF5ycjLJyckZf05ISMDPz4/4+Hjc3Nwy+Y6FsaWm63lt9m4eJqexpm9DnOzNeDjlqZWw5B3oPBcC3lCdRgj10tPgx+bafE8f79BuODZTmy9vpv+2/kxoMIH2pdurjiMyyS47L4qLi6N169ZPPN+yZUuGDBmSqX3cvn2b9PR0fHx8Hnvex8eH06dPP/U1Fy9eZMuWLbz11lusXbuW8+fP89lnn5GamsqoUaOe+pqJEycyZsyYTGUSecfe1obpXQJo+90upm84w4i2lVRHyp6Ht2H1AKjQDqp1U50mWwwGA2lplj1815zZ2tpiY243p9vaaaOn5jaCLaHQarzqRNlyN+kuY/eO5WW/l2lXqp3qOCILslXcdOjQgeXLl/PFF1889vyKFSto1y73fgH0ej2FChVi3rx52NraUqtWLa5du8bUqVOfWdwMGzaMgQP/u2Dhf1puhHplfVwZ3LIcE/85TcvKvtTx91IdKWsMBljdHwx6aPe1WXZHpaWlcevWLbLRgCvykIuLC+7u7ubVJVKogjb/zcYQqNAWStRXnShLDAYD4/aMw2AwMLLeSPM69yJ7xU2lSpUYP34827Zto169egDs3buX8PBwBg0axLfffpuxbd++fZ+6D29vb2xtbYmNjX3s+djYWHx9fZ/6msKFC2Nvb/9YF1TFihWJiYkhJSUFBweHJ17j6OiIo6Njlt+jyBvvNyjFhpOxDFoSwbr+DXFxyNavpBrHl0HkKujyi7a+jpkxGAzExcVhY2ODp6enfHibIIPBQEpKCgkJ2tQJHh4eagNlVb3ecHqNNnrqk3BtuQYzsTZqLZuiNzG98XS8nb1VxxFZlK17bkqWLJm5net0XLx48Zk/DwwMpG7dunz33XeA1jJTvHhxPv/8c4YOHfrE9sOHD2fhwoVcvHgxo5n2m2++YfLkyVy/fj1TmRISEnB3d5d7bkzIpdsPeeWbnXSpXYyxHauojpM5CTfg+0BtdNTrT78B3tSlp6cTGxuLp6cnzs7me0+ENXjw4AEJCQn4+vqaXxfVnQswpwFUfxPaTledJlNuJt6k84rOBBUJYkpjyxn1ZU2y9TU5Kso4CyAOHDiQnj17Urt2berWrcuMGTN4+PAhvXr1AqBHjx4ULVqUiRMnAvDpp58yc+ZM+vXrR58+fTh37hwTJkx4ZuuQMA/+3vkY1qYCIStO0qqyL0FlTPxbksEAq/qCnRO0maY6Tbbp9do8Q8+6GV+Yjv+0Sqenp5tfcVOgNDQfA/98od2bVrqp6kTPZTAYGL17NA62Dox4aYTqOCKblPYBdOvWjVu3bhESEkJMTAzVq1dn3bp1GTcZR0dHP3Yh+/n5sX79egYMGEC1atUoWrQo/fr1y/RNzMJ0vR1YgnUnYvhy2TH+6d8QNyd71ZGe7chvcG4DdF8MLmZ2n9BTSHeU6TP7v6M6H8DpVdpcUJ/tBid31YmeKex8GDuv7WTmyzNxdzTdnOL5Mt0tNXDgQMaNG0e+fPkeu0H3ab766iujhMsN0i1luq7eS6T1jJ20qerLlNdNdO6iuGj4vj5U6gidMj+nkylKTU3l1q1bFCxYEHt7Ey4mhWX8Xf3n2qncUVuexARdf3CdV1e+SosSLRgXNE51HJEDmW65OXLkCKmpqRn//Sxm/w1DKFPM04WR7Soy5K/jtK7iy8sVfF78oryk12uLYjq5Q+sJqtMIYV48imvXzco+UKE9lH9yOhGV9AY9IeEhuDq48mWdL1XHETmU6eJm69atT/1vIYypa20/1p2IYchfx9k4wBMPlydHwClz8EeI2gHvhJl0s7qla9KkCdWrV2fGjBmqo4isqvGONsJwVV/w22tS3bqLzyxmX8w+5rWYh6uDq+o4IofM7M40Yel0Oh2TXqtGSpqeUStPqo7zX3cuaPN11H7f5G+IFMJk6XTQ/ltIS4a1X7x4+zwSnRDN14e+plv5btQrUk91HGEE2SpuHj58yMiRI6lfvz5lypShVKlSjz2EyAkfNyfGdKjMiqPXWXv8huo4oE+HsM+0uWxajFWdRgjz5lYY2kyFE8vgZJjqNKTr0xkZPpICTgUYWOv595MK85Gt0VIffPAB27dv55133qFw4cJyn40wuo7Vi7DuRAzBYSeoW9IL7/wKJ2LcMwuu7INea81qEjJrcO/ePfr168eqVatITk6mcePGfPvtt5QtWxaDwUChQoWYPXs2r7/+OgDVq1cnNjaWGze0onnXrl00a9aMe/fu4eLiovKtWJeqXSByJawZCCWCIH9BZVF+j/ydIzeP8FOrn3Cxl98BS5Gt4uaff/5hzZo1BAUFGTuPEIDWPRXauQotv97B8L+PM/edWmqK6JuntbVx6vU2u+njs+NRSjoXbj3I8+OWLpgfZ4esz7fz7rvvcu7cOVauXImbmxtDhgyhTZs2nDp1Cnt7exo1asS2bdt4/fXXuXfvHpGRkTg7O3P69GkqVKjA9u3bqVOnjhQ2eU2ng7ZfaxNhru4P3X5XsnzJxbiLfHv4W96u9Da1fWvn+fFF7slWcePp6YmXl+ncCCYsk3d+RyZ0rsInvx8m7Og1OtcolrcB0tMg7BPwLKGtkWMFLtx6QLvvduX5cVf3aUCVolm7Sfs/RU14eDj162uF5x9//IGfnx9hYWF06dKFJk2aMHfuXAB27NhBjRo18PX1Zdu2bVSoUIFt27bRuHFjo78fkQn5C2prsi3pAceWQEDeLjybpk9jxK4RFMlfhL41ZCJYS5Ot4mbcuHGEhITwyy+/yDcekataVylMx+pFGLXiJPVKeePr7pR3B9/1NdyIgPc3gb11LE9QumB+VvdpoOS4WRUZGYmdnR2BgYEZzxUoUIDy5csTGRkJQOPGjenXrx+3bt1i+/btNGnSJKO4ef/999m9ezdffinDfpWp1FHrovrnCyjZENyK5NmhfzrxE6funuK3V37DyS4PP1dEnsh0cVOjRo3HugXOnz+Pj48P/v7+T0wqdfjwYeMlFFZvTIfK7LlwhyF/HWNBrzp50z114xhsnwwNBkCxWrl/PBPh7GCb5RYUU1a1alW8vLzYvn0727dvZ/z48fj6+jJ58mQOHDhAampqRquPUOSVKRC1U5v/5q1ledI9debuGWZHzOa9Ku9RrWC1XD+eyHuZLm46deqUizGEeDYPFwcmv1aNXgsOsPjAFd6oWzx3D5iWoq1iXLA8NJalPUxVxYoVSUtLY9++fRkFyp07dzhz5gyVKlUCtHu3GjZsyIoVKzh58iQNGjTAxcWF5ORk5s6dS+3atcmXL5/KtyFcvKDDt7CwKxz+FWr1zNXDpaanMnzXcEq6l+TTgE9z9VhCnUwXN6NGjcrNHEI8V9MKhehW249xq08RVMYbP69c7A7dPhlunYYPt4KdwlFa4rnKli1Lx44d+fDDD5k7dy6urq4MHTqUokWL0rFjx4ztmjRpwqBBg6hduzb582vdX40aNeKPP/7giy9MZ64Vq1auFdR4G9YPh1JNtPvccsnsiNlcjLvIn+3+xMHWhCYJFUaVrXlurly5wtWrVzP+vH//fvr378+8efOMFkyIfwtuVxEPFwe+XHYMvT5TS6Jl3dVDsOsraDwUCktztan7+eefqVWrFu3ataNevXoYDAbWrl37WFd548aNSU9Pp0mTJhnPNWnS5InnhGKtJoKzp7bEyf+vWG9sx28d56cTP/FxwMdU8KqQK8cQpiHTC2f+r4YNG/LRRx/xzjvvEBMTQ7ly5ahSpQrnzp2jT58+hISE5EZWo5CFM81b+PnbvPXDPsZ0qEzP+v7G3XnqI5jbCBzyaTcR22brfnuzYRGLMVoJq/m7urgNfu2o3YcT+LFRd52UlkTX1V1xsXPhtza/YW9jwedRZK/l5sSJE9StWxeAJUuWULVqVXbv3s0ff/zBggULjJlPiMcElfGmR70STPwnkqjbD4278y2hcO8ydJpj8YWNECapVBOo8wFsHKUteWJEM4/M5Nr9a4xvMF4KGyuQreImNTUVR0ftXoRNmzbRoUMHACpUqJAx86cQuWXoKxXwcXNi8NII0o3VPXV5tzYT8cvBUEiaq4VQpsVYcPWF5Z9oS58YwaHYQ/x66lf61OhDaY/SRtmnMG3ZKm4qV67MnDlz2LlzJxs3bqR1a23p+uvXr1OgQAGjBhTi31wc7JjeJYDD0ff4YefFnO8w+YE2OsqvrjYTsRBCHYd80Gk2XD0Ae2bmeHeJqYkE7wqmeqHqvFPpHSMEFOYgW8XN5MmTmTt3Lk2aNKF79+4EBAQAsHLlyozuKiFyU21/Lz5sWIrpG85yNvZ+zna2aRQ8uKl9oNpkfQkAIYSRlainfdHYEgo3I3O0q68OfcWdpDuEBoViK9e31cjyjQUGg4FSpUoRHR1NWloanp6eGT/76KOPZMZikWcGtijHltM3GbQkgr8/q4+9bTZq9Qtb4cAP0GYaFJDmaiFMxsvBcG6D1j31wSawzfp9Mnuu72HxmcUMqzuM4m65PD+WMClZ/tfAYDBQpkwZYmJiHitsAPz9/SlUqJDRwgnxPE72tkzvEsCpGwnM3paNmw+T4mHF51CyEdR+3/gBhRDZZ++s3dwfcxx2fpXll99PuU/I7hACfQN5o8IbuRBQmLIsFzc2NjaULVuWO3fu5EYeIbIkwM+Dz5qU5tvN5zhxLT5rL14/XCtwOs4Cm2z10AohclOxWtBwIOyYoq3zlgVTD0zlfsp9xgaNxUYn17e1ydbf+KRJk/jiiy84ceKEsfMIkWV9Xi5LWR9XBi2JIDktk6MrzqyDI79D6wngIc3VQpisRl9CwYpa91RacqZesv3KdpafX86Xdb6kSP68W4xTmI5sFTc9evRg//79BAQE4OzsjJeX12MPIfKSg50NX3UN4OLtB3yz6dyLX5B4F1b1hbItoYaMnhDCpNk5QOfZcPscbJv0ws3jkuIYvWc0DYs2pHOZznkQUJiibM1UNmPGDCPHECJnKhZ2o3/zckzfcIYWlXyoUdzz2Ruv/UL7Btj+2zxZgVgIkUO+VaHJENg6Acq3Ab86z9x0wv4JpKSnMLr+aHRyfVutbBU3PXvm7qqtQmTHx41KseFULIOWRrC2b0Oc7J8y7PNkGJxYBq/+AG6F8zyjECKbggbA6bUQ9gl8vBMcnhyZu+HSBv6J+odJDSdRyEUGt1izbN9ldeHCBYKDg+nevTs3b94E4J9//uHkyZNGCydEVtjZ2jC9SwDX7j1i6vozT27w4BasGQgV20PV1/M+oDBb6enp6HNpMUeRSbZ20HkOxF2BLeOe+PGdR3cI3RtK8+LNaVOyjYKAwpRkq7jZvn07VatWZd++ffz99988ePAAgIiICEaNGmXUgEJkRZlC+fmiVXl+Co9i38X/GdFnMMDq/oAO2n4t3VFmbt26dTRo0AAPDw8KFChAu3btuHBBmw6gfv36DBky5LHtb926hb29PTt27AAgOTmZwYMHU7RoUfLly0dgYCDbtm3L2H7BggV4eHiwcuVKKlWqhKOjI9HR0Rw4cIAWLVrg7e2Nu7s7jRs35vDhw48d6/Tp0zRo0AAnJycqVarEpk2b0Ol0hIWFZWxz5coVunbtioeHB15eXnTs2JFLly7lyrmyKAXLQ7MQ2DsbLu3KeNpgMDB2z1h0Oh3BLwVLd5TIXnEzdOhQQkND2bhxIw4ODhnPv/zyy+zdu9do4YTIjl5BJalTwovByyJ4mJymPXlsCZxeDe2+hvwF1QY0ZSmJcP1o3j9SErMU8+HDhwwcOJCDBw+yefNmbGxs6Ny5M3q9nrfeeotFixZhMPx33bHFixdTpEgRGjZsCMDnn3/Onj17WLRoEceOHaNLly60bt2ac+f+e0N6YmIikydP5ocffuDkyZMUKlSI+/fv07NnT3bt2sXevXspW7Ysbdq04f59bZbs9PR0OnXqhIuLC/v27WPevHmMGDHiseypqam0atUKV1dXdu7cSXh4OPnz56d169akpKRk6TxYpZc+heIvQdhn2tIpwOqLq9lyZQsjXxpJAWdZAkiAzvC/nwCZlD9/fo4fP07JkiVxdXUlIiKCUqVKcenSJSpUqEBSUlJuZDWKhIQE3N3diY+Px83NTXUckUsu33lI6xk7ebVmUcY3KwDfv6SNjnrtB9XRTEZqaiq3bt2iYMGC2Nv//+yv14/CvMZ5H+aj7VCkerZffvv2bQoWLMjx48fx8fGhSJEibNmyJaOYqV+/Po0aNWLSpElER0dnzLJepMh/hwk3b96cunXrMmHCBBYsWECvXr04evRoxvIyT6PX6/Hw8GDhwoW0a9eOdevW0b59e65cuYKvry+gLS7cokULli9fTqdOnfj9998JDQ0lMjIyo4UhJSUFDw8PwsLCaNmy5RPHeerflTW7exFmB0HAG8Q2HUrnlZ1pVKwRkxq+eDSVsA7ZuqHYw8ODGzduULJkyceeP3LkCEWLFjVKMCFyokSBfAxvW5GRYccZdHM4XnbO0Gaq6limz7ucVmioOG4WnDt3jpCQEPbt28ft27cz7oeJjo6mSpUqtGzZkj/++IOGDRsSFRXFnj17mDt3LgDHjx8nPT2dcuUeP2ZycvJjC/86ODhQrVq1x7aJjY0lODiYbdu2cfPmTdLT00lMTCQ6OhqAM2fO4Ofnl1HYAE+stxcREcH58+dxdXV97PmkpKSMrjXxAl6loMVYDGsHMyr9Kk62TgyrO0x1KmFCslXcvPHGGwwZMoSlS5ei0+nQ6/WEh4czePBgevToYeyMQmTL24HFSd73M143dvDw9T/J5/yc4eFC4+CSoxaUvNK+fXtKlCjB/PnzKVKkCHq9nipVqmR067z11lv07duX7777joULF1K1alWqVq0KwIMHD7C1teXQoUPY2j4+oi5//vwZ/+3s7PzEvRs9e/bkzp07fPPNN5QoUQJHR0fq1auXpe6kBw8eUKtWLf74448nflawoHSZZlrt9/k7ciHhcaeZ1XAK7o7uqhMJE5Kt4mbChAn07t0bPz8/0tPTqVSpEunp6bz55psEBwcbO6MQ2aKLi+a9B/P4y/AyeyKLMq2K6kTCGO7cucOZM2eYP39+RrfTrl27HtumY8eOfPTRR6xbt46FCxc+9qWrRo0apKenc/PmzYzXZ1Z4eDjff/89bdpoo3GuXLnC7du3M35evnx5rly5QmxsLD4+PgAcOHDgsX3UrFmTxYsXU6hQIekaz4FriTeYYvuQVxOSaRSxEkq9ojqSMCHZuqHYwcGB+fPnc+HCBVavXs3vv//O6dOn+e233574JiSEEno9rOiNjYsXutYTWHboKhtPxapOJYzA09OTAgUKMG/ePM6fP8+WLVsYOHDgY9vky5ePTp06MXLkSCIjI+nevXvGz8qVK8dbb71Fjx49+Pvvv4mKimL//v1MnDiRNWvWPPfYZcuW5bfffiMyMpJ9+/bx1ltv4ezsnPHzFi1aULp0aXr27MmxY8cIDw/P+ML3n1agt956C29vbzp27MjOnTuJiopi27Zt9O3bl6tXrxrrNFk0vUFPSHgI7k4efFF3CEQs1ObAEeL/5Wg1seLFi/PKK6/QpUsXypYta6xMQuTcgflwaSd0nEXnlyrQrEIhhv19nHsPZTSKubOxsWHRokUcOnSIKlWqMGDAAKZOffJ+qrfeeouIiAgaNmxI8eKPrx/2888/06NHDwYNGkT58uXp1KkTBw4ceGK7f/vxxx+5d+8eNWvW5J133qFv374UKvTfyeJsbW0JCwvjwYMH1KlThw8++CBjtJSTkxMALi4u7Nixg+LFi/Pqq69SsWJF3n//fZKSkqQlJ5P+PP0n+2P2My5oHPlrvQflWsOqftrSKkKQzdFSoF3kX3/9dcbQybJly9K/f38++OADowY0NhktZQVun4c5DaDG29B2GgA3E5JoOWMHDcp4M/PNmooDmgYZgZM3wsPDadCgAefPn6d06dLZ2of8Xf3XpfhLdFnVhc5lOzM8cLj25P0YmBUIpV+GLj+rDShMQrbuuQkJCeGrr76iT58+1KtXD4A9e/YwYMAAoqOjGTt2rFFDCpFp+nQI+xRcfaHFmIynC7k5MbZjFfr+eYTWVa7TrpqsFCxyx/Lly8mfPz9ly5bl/Pnz9OvXj6CgoGwXNuK/0vXpBIcHU8ilEP1r9v/vD1x9oe10+Ot9bQbyKq8qyyhMQ7aKm9mzZzN//vzH+rE7dOhAtWrV6NOnjxQ3Qp3d38HVA/DeOnDI99iP2lcrzLoTNxgZdoLAkgUo6OqoKKSwZPfv32fIkCFER0fj7e1N8+bNmT59uupYFuGXU79w7NYxfnnlF1zs/7W2VJXXIHIlrBkE/g0gv6wtZc2ydc9NamoqtWvXfuL5WrVqkZaWluNQQmTLzUjYOh7qf67NYPovOp2OcR2rYGujY9jfx8lmj6wQz9WjRw/Onj1LUlISV69eZcGCBY/NnyOy5/y988w8MpOelXtSo1CNJzfQ6aDtV6CzgVX9tSVXhNXKVnHzzjvvMHv27CeenzdvHm+99VaOQwmRZempsPxj8CwJTZ89HUGB/I6M71yVTZGx/H34Wh4GFEJkV6o+leG7huPn6sfnNT5/9ob5vKH9N3BmDRxbnHcBhcnJdLfU/w611Ol0/PDDD2zYsIGXXtK+Ie/bt4/o6GiZxE+osXM6xJyADzaCvdNzN21V2ZdXaxRl9KqT1C9TgMLuzs/dXgih1g/Hf+DsvbP80eYPHG1f0J1csR1U6wZrvwT/huAus+Zbo0wXN0eOHHnsz7Vq1QLImC7c29sbb29vTp48acR4QmTC9aOwYyo0HAhFa2XqJaPaVyb8wm2G/HWcX3rVkVWEhTBRp+6cYl7EPD6o+gGVvStn7kWvTIaoHbCyD7z9l9ZlJaxKtoeCmysZCm5h0pJhbmOwsYMPt4Cdw4tf8/+2nbnJuz8fYELnqrwZ+Pz5TSyRDC82H9b6d5WSnkK31d2ws7FjYZuF2Ntm4b2f2wR/vAbtZkDtXrmWUZimHE3iJ4Ry2ybCnfPQeU6WChuAJuUL0b2uH+PXnOLK3cRcCiiEyK7vj37PpYRLhAaFZq2wASjbHGr2hA3BcO9SruQTpitbxU1SUhJTp06lTZs21K5dm5o1az72ECJPXDkA4d9Ak6Hgm72Fo0a0rYSHiwODl0ag11tVI6YQJi3iVgQ/n/yZ3tV7U96rfPZ20mo8OHtBWG9tSRZhNbJV3Lz//vtMmTKFEiVK0K5dOzp27PjYQ4hcl5IIYZ9AkRoQ1D/bu8nvaMfULtXYF3WXX/ZcMlo8kXuaNGlC//79n/lznU5HWFhYpve3bds2dDodcXFxOc4mjONR2iOCdwVTuUBl3q38bvZ35OgKnWbB5V2wf67R8gnTl61J/FavXs3atWsJCgoydh4hMmfLOIi/Cm/8CbbZ+jXOUL+0N+/W92fyutM0LleQUgXzGymkUOHGjRt4enqqjiFy4NvD33Lj4Q2+efkb7Gxydn1TshHU/Rg2jYYyzcFb1kG0BtlquSlatCiurq7GziJE5lzaBXtnw8sjoWA5o+xySOsKFHZ3ZtDSCNKle8qs+fr64ugos0+bqwMxB/g98nf61uhLKfdSxtlp89HgVlRbmkWfbpx9CpOWreJm+vTpDBkyhMuXLxs7jxDPl/wAwj6D4vXgpU+NtltnB1umdalGxJU45u24aLT9ityh1+v58ssv8fLywtfXl9GjR2f87N/dUrt376Z69eo4OTlRu3ZtwsLC0Ol0HD169LF9Hjp0iNq1a+Pi4kL9+vU5c+ZM3rwZkSExNZGR4SOp5VOLtyu9bbwdO7hAp9lw7RDs/tZ4+xUmK1vtfbVr1yYpKYlSpUrh4uLyxNDEu3dl2XmRSzaOhIe3oUcY2Ngadde1SnjxYaNSfL3xLC9XKER5X+trnXyU9oio+Kg8P25J95I422V+MsVffvmFgQMHsm/fPvbs2cO7775LUFAQLVq0eGy7hIQE2rdvT5s2bVi4cCGXL19+5v06I0aMYPr06RQsWJBPPvmE9957j/Dw8Jy8LZFF0w9O527SXea3nI+NzsiDeYsHQv0+sHUClG0FPpWMu39hUrJV3HTv3p1r164xYcIEfHx8ZAI0kTfOb4aDP2mr/3oZqbn6XwY0L8eWyJsMXHKUsN5B2Nta12wJUfFRdFvdLc+Pu7jdYioVyPw/NtWqVWPUqFEAlC1blpkzZ7J58+YnipuFCxei0+mYP38+Tk5OVKpUiWvXrvHhhx8+sc/x48fTuHFjAIYOHUrbtm1JSkrCyen5M14L49h9bTdLzi4hODAYP1e/3DlIk+Fwdr22VMuHWyCrw8uF2chWcbN792727NlDQECAsfMI8XSP4rTZRks1hdrv59phnOxt+aprdTp9H86srefp39w49/SYi5LuJVncLu/X5CnpXjJL21erVu2xPxcuXJibN28+sd2ZM2eoVq3aYwVK3bp1X7jPwoULA3Dz5k2KF7e+CR7zWkJKAiG7Q6hXuB5dy3fNvQPZO2lzYs1vBjumQdNhuXcsoVS2ipsKFSrw6NEjY2cR4tnWD4fk+9BxZq5PpV61mDu9m5Zh5pbzNK/oQ5Wi7rl6PFPibOecpRYUVf7dFa7T6dDncB6T/93nf1qjc7pPkTmT90/mYepDxgaNzf2egCI1oNFgbcmW8q21PwuLk60290mTJjFo0CC2bdvGnTt3SEhIeOwhhFGdXgtH/4DWE8G9WJ4c8vOmZSjv68rAJUdJTpPRFeaqfPnyHD9+nOTk5IznDhw4oDCR+Let0VtZeWElQ+oOwTefb94ctOFg7Z6b5Z9AalLeHFPkqWwVN61bt2bPnj00a9aMQoUK4enpiaenJx4eHjK/hDCuxLuwqh+Uaw3V38qzwzrY2TC9awCXbify9cZzeXZcYVxvvvkmer2ejz76iMjISNavX8+0adMA5F5BE3Av6R5j9oyhcbHGdCydhxPA2jlA57lw5wJsm5B3xxV5JlvdUlu3bjV2DiGebs0g0KdC+2/yfGXfCr5u9G9Rlmnrz9Cikg+1Skjhbm7c3NxYtWoVn376KdWrV6dq1aqEhITw5ptvyo3CJmD8vvGkGdIYVW9U3hebPpW1e262hEKFduD39HuxhHmSVcGF6TrxNyzrBa/9CFVfVxIhLV1Pl7l7iEtMZW3fhjg7GHf4uUrWutL0H3/8Qa9evYiPj8fZOfPDz1WyxL+rdVHr+GLHF0xpNIVXSr6iJkR6GvzUCh7dg092afPhCIuQ7XGuO3fu5O2336Z+/fpcu3YNgN9++41du3YZLZywYg9uaq02lTpBldeUxbCztWFalwCuxz1i8rrTynKI7Pv111/ZtWsXUVFRhIWFMWTIELp27Wo2hY0luv3oNqH7QmlZoiWt/VurC2Jrp42eSrgGm8eoyyGMLlvFzV9//UWrVq1wdnbm8OHDGTfrxcfHM2GC9F+KHDIYtPtsbGyh7Vd53h31b6UL5mdI6wos2H2J3RduK80isi4mJoa3336bihUrMmDAALp06cK8efNUx7JaBoOBMXvGYKuzJfilYPX3PnmXhWajYN8ciNqhNoswmmwVN6GhocyZM4f58+c/1kQaFBTE4cOHjRZOWKmIRXBmLbSbAfkKqE4DwLv1/Qks6cUXS4/xIDlNdRyRBV9++SWXLl0iKSmJqKgovv76a1xcpPtBlZUXVrLtyjZC6oXg6WQi97EFfgIlGsCK3tqUE8LsZau4OXPmDI0aNXrieXd3d+Li4nKaSViz+GvwzxCo9gZUbKc6TQYbGx3TugQQl5jC+DWRquMIYZZiHsYwef9k2pdqT7PizVTH+S8bG20OrYd3YEOw6jTCCLJV3Pj6+nL+/Pknnt+1axelSuXOtPjCChgMsPJzcMgHr0xSneYJfl4uDG9bkT/3R7PtzJOz4ZorKxtTYJYs4e/IYDAwavconO2dGVJ3iOo4T/IqCa1C4dACOLdJdRqRQ9kaCv7hhx/Sr18/fvrpJ3Q6HdevX2fPnj0MHjyYkSNHGjujsBaHFsCFLfDWX+BsIs3V//Jm3eKsOxHD0L+Os75/I9xdzHfkiq2tLTqdjvv37+Pq6qr+3gfxBIPBQHp6OgkJCeh0OuzssvWRbRKWnl3K7uu7md18Nu6OJjrrd61eELlKW+rls90m+zkkXixbQ8ENBgMTJkxg4sSJJCYmAuDo6MjgwYMZN26c0UMakwwFN1F3o2B2EFTros1pY8JuxD+i5dc7aFHRh6+6VVcdJ0eSk5O5e/euRbQMWDIHBwc8PDzMtri5cv8Kr618jbal2jKq3ijVcZ4v/ip8Xx/KvwKvzlWdRmRTjua5SUlJ4fz58zx48IBKlSqRP39+Y2bLFVLcmCC9Hn5pD/HR8OlucHRVneiF/jp0lUFLI5j7Ti1aVc6jKeNziV6vJz1dlpgwVTY2NtjY2Jhty5reoOf99e9z4+EN/urwF/ns86mO9GJH/4SwT+CNhVChreo0Ihuy9DXgvffey9R2P/30U5ZCzJo1i6lTpxITE0NAQADffffdM1fu/V+LFi2ie/fudOzYkbCwsCwdU5iQ/XPh8i7oudosChuAV2sW5Z8TMYxYfpw6/l545XNQHSnb/vOPpxC5YWHkQg7GHuTHlj+aR2EDEPAGRK7UpqTwe8lkRm2KzMvSJ9qCBQvYunUrcXFx3Lt375mPrFi8eDEDBw5k1KhRHD58mICAAFq1asXNm8+/YfPSpUsMHjyYhg0bZul4wsTcPgebRmtDMUuaz9+lTqdjwqtVSNMbCA47Lt06QjxFVHwUMw7P4K2Kb1G3sBktb6DTaVNR6NNhzUDVaUQ2ZKlbqnfv3vz555+UKFGCXr168fbbb+Pl5ZWjAIGBgdSpU4eZM2cCWhO5n58fffr0YejQoU99TXp6Oo0aNeK9995j586dxMXFPbPlJjk5+bEVgRMSEvDz85NuKVOQngY/t9YWxzTTqc9XH7vO5wuP8G33GnQIKKI6jhAmI02fRs91PYlPjmdp+6U425nhjND/WQLm9Z+UzpQusi5LLTezZs3ixo0bfPnll6xatQo/Pz+6du3K+vXrs/XNNSUlhUOHDtG8efP/BrKxoXnz5uzZs+eZrxs7diyFChXi/ffff+ExJk6ciLu7e8bDz88vyzlFLtn9LVw7pE1/boaFDUC7akVoW60wIStOcDMhSXUcIUzGgpMLOHH7BKFBoeZZ2ABUeRUqd9aWgrkfqzqNyIIsd7Q7OjrSvXt3Nm7cyKlTp6hcuTKfffYZ/v7+PHjwIEv7un37Nunp6fj4+Dz2vI+PDzExMU99za5du/jxxx+ZP39+po4xbNgw4uPjMx5XrlzJUkaRS2JPwraJUL+v2a/GO65jFexsbBj2t3RPCQFw9t5Zvj/6PT0r96R6oeqq4+RMm+lgYw+r+mpzcQmzkKO7CP9zB/9/5mLIbffv3+edd95h/vz5eHt7Z+o1jo6OuLm5PfYQiqWnwvJPwKs0NB2uOk2OeeVzYOKrVdl8+ibLDl1VHUcIpVL1qQTvCqaEWwl6V++tOk7O5SugTU9xdh0cXag6jcikLBc3ycnJ/Pnnn7Ro0YJy5cpx/PhxZs6cSXR0dJaHgnt7e2Nra0ts7OPNfbGxsfj6Pjm89sKFC1y6dIn27dtjZ2eHnZ0dv/76KytXrsTOzo4LFy5k9e0IFXZMg5unoPNssHNUncYoWlTy4bWaxRi76hTX4h6pjiOEMvOPzefsvbOENgjF0dYyrm8qtIGAN2HdUG0eHGHyslTcfPbZZxQuXJhJkybRrl07rly5wtKlS2nTpk22hpI6ODhQq1YtNm/enPGcXq9n8+bN1KtX74ntK1SowPHjxzl69GjGo0OHDjRt2pSjR4/K/TTm4PoR2DEVGg6GIjVUpzGqkPaVyOdox5Blx6R7Slilk3dOMu/YPD6s9iGVC1RWHce4Wk8Eh/za4ppyfZu8LI2WsrGxoXjx4tSoUeO5E0r9/fffmQ6wePFievbsydy5c6lbty4zZsxgyZIlnD59Gh8fH3r06EHRokWZOHHiU1//7rvvPne01L/JJH4KpSbBvCZgaw8fbtH+38LsOHuLHj/tZ1ynKrzzUgnVcYTIM8npybyx+g3sbez5o80f2Fvg9c35TfD7a9B2OtT5QHUa8RxZmsSvR48eRp8ls1u3bty6dYuQkBBiYmKoXr0669aty7jJODo6WiYYsxTbJsDdC/DRdossbAAalSvIm4HFmbg2ksZlC1K8gHmOAhMiq2YdncWlhEssbrfYMgsbgDLNtfWnNoRA6ZfBSxaKNlU5Wn7BHEnLjSLR++CnVtB8FDQYoDpNrnqQnMYr3+ygsJsziz56CRsb85w2X4jMOnrzKD3X9aRPjT58UNXCWzSS78Ps+uBWDN5dA/Ll2yTJ34rIfSkPtXVaitXWhn5buPyOdkx9PYD9l+7yU3iU6jhC5KpHaY8IDg+mSoEqvFv5XdVxcp+jK3SaDdG7Yd9s1WnEM0hxI3LfpjGQcAM6zQEbW9Vp8sRLpQrwXlBJpq4/w/mbWZv/SQhz8s3hb4h5GENog1DsbMxz1fIs828AgZ/C5rFw66zqNOIppLgRuStqh7YwZvNR4F1GdZo89WXr8hT1cGbQ0gjS0vWq4whhdPtv7OePyD/oV7MfJd1Lqo6Tt5qFgHsxrVU6PU11GvEvUtyI3JOUAGG9oUQDqPux6jR5zsnelmldAzh+NY65Oy6qjiOEUT1MfcjI8JHU8qnFWxXfUh0n7zm4aK3R14/A7m9UpxH/IsWNyD0bguHRXeg0y2pvuqtZ3JOPG5dmxqazRN5IUB1HCKOZemAq95LvMS5oHDY667y+8asDQf1g60SIOaE6jfgfVvobKXLduU1w+BdoOQ48/VWnUap/87KU8s7PoCURpKRJ95Qwf7uu7eKvc38xuPZg/FytfPLUJsPAu6zWPZWWojqN+H9S3Ajje3QPVn6uzQNRq5fqNMo52tkyvWsAZ2PvM3PredVxhMiR+OR4RoWPon6R+nQp10V1HPXsHLXRUzcjtdnXhUmQ4kYY3z9DISUROswEI0/6aK6qFHXn85fLMGvreY5djVMdR4hsm7x/Mo/SHjGm/hijT+pqtopUh0ZfwM7pcO2w6jQCKW6EsUWuhmOL4JXJ4F5UdRqT0rtpGSoWdmXgkgiSUtNVxxEiyzZHb2bVxVUMqTsE33xPLm5s1RoOAt8qsPwTbakZoZQUN8J4Ht6G1f2hfBsIeEN1GpNjb2vDV12rE30nka83ytwYwrzcTbrL2D1jaeLXhA6lO6iOY3ps7aHzXLgXBVvHq05j9aS4EcZhMMCagaBPh3YzpDvqGcr5uDKwZTnm7bzIoct3VccRIlMMBgOhe0NJN6Qzqt4o6Y56lkIVoekI2P0dRO9VncaqSXEjjOPEX3BqhbZarquP6jQm7cOGpajh58GgJREkpsjkX8L0rbu0jo2XNxL8UjDezt6q45i2+n2gWB0I+1RbekYoIcWNyLn7MbB2MFTuDFVeVZ3G5Nna6JjWJYCYhCQm/3NadRwhnutW4i1C94bSyr8Vrf1bq45j+mxstdFTCTdg02jVaayWFDciZwwGWNUPbOyhzXTVacxGqYL5GdK6Ar/suczu87dVxxHiqQwGA2P2jMHexp4RgSNUxzEf3mWg+WjYPw8ubledxipJcSNy5uhCOLsO2n8D+QqoTmNWetbz56VSXnyx7Bj3k1JVxxHiCWHnw9h+dTuj6o3C08lTdRzzUvcj8G8IK3prS9GIPCXFjci++KuwbigEdIcKbVSnMTs2Njqmvh5AXGIK49dEqo4jxGNuPLjBlANT6FC6A02LN1Udx/zY2EDHWdqkphuk1SuvSXEjssdg0L6ROOSH1pNUpzFbfl4uBLerxKIDV9h6+qbqOEIAWndUyO4QXOxdGFJ3iOo45suzBLQaD4d/hbMbVKexKlLciOw5+CNc3AYdZ4Kzh+o0Zu2NOn40LleQIX8dIy5R1qYR6i05s4S9N/Yyrv443BzcVMcxbzV7QpnmsLIPJMr0D3lFihuRdXcvwoYQbd2oMs1UpzF7Op2Oya9VIyk1ndErT6qOI6zclYQrTD80nS7lulC/aH3VccyfTgcdvoO0R/CPtILlFSluRNbo9RDWG/J5ayt+C6PwdXdidIfKhB29zroTN1THEVYqXZ9OcHgwXk5eDKo9SHUcy+FWBF6ZAseXQOQq1WmsghQ3Imv2zYbo3dDpe3B0VZ3GonSuUZSWlXwYsfwEdx4kq44jrNDvkb9z+OZhxgWNI599PtVxLEu1blChHazqry1VI3KVFDci826dhU1j4KXPwL+B6jQWR6fTMb5zVfQGAyOWn8BgMKiOJKzIxbiLfHv4W96u+DZ1fOuojmN5dDpo9zUY9LB6gDYoQ+QaKW5E5qSnQdgn4OEHzUJUp7FYBV0dGd+5KutOxrAy4rrqOMJKpOnTGLFrBEXyF6FfzX6q41iu/IW0AidypbZkjcg1UtyIzAmfAdePQKc5YO+sOo1Fa1O1MO0DihCy4iSxCUmq4wgr8POJnzl19xShDUJxsnNSHceyVe4EVV6DNYO0JRpErpDiRrxYzHHYNgmC+oGfNFfnhbEdKuNgZ8PQv45J95TIVWfunuH7iO/pVbkXAQUDVMexDm2mgZ2jtnSNXN+5Qoob8XxpKbD8U/AuC02GqU5jNTzzOTDp1apsPXOLpQevqo4jLFRqeiojdo3A382fz6p/pjqO9XDxgvbfwrn1cOR31WkskhQ34vl2TIFbkdB5jvZNQ+SZZhV96FKrGGNXn+LqvUTVcYQFmnNsDhfiLjChwQQcbB1Ux7Eu5VtD9bdh3TCIi1adxuJIcSOe7doh2PkVNPoSCktztQoj21fCzcmOL5cdQ6+X5mthPCdun+DH4z/yUcBHVCxQUXUc69R6Aji5w4rPtTnEhNFIcSOeLjVJ647yrQoNB6pOY7XcnOyZ8noAuy/c4fd9l1XHERYiOT2ZEbtGUN6rPB9U/UB1HOvl5K4tYRO1XVvSRhiNFDfi6baGwr0orTvK1l51GqvWoKw3b79UnIlrT3Pp9kPVcYQFmHlkJlfuX2F80HjsbeT6Vqp0U6j9PmwMgTsXVKexGFLciCdd3gO7Z0LTEVBImqtNwbBXKlLQ1ZHBSyNIl+4pkQOHYw/zy8lf+LzG55TxLKM6jgBoMVabA2dFb9Cnq05jEaS4EY9LeQhhn0KxOlC/j+o04v/lc7RjWpcADkXf46ddUarjCDOVmJpIcHgw1QpWo2elnqrjiP9wzA+dZkP0Xtj7veo0FkGKG/G4jaPgfozWHWVjqzqN+B91S3rxflBJpm44w7nY+6rjCDP09aGvuZV4i/ENxmMr17dpKVEf6vWGzePg1hnVacyeFDfivy5ugwPzocUYKFBadRrxFINblcfP05nBSyNIS5fRFSLz9t7Yy6Izi+hfqz8l3EqojiOe5uVg8CwByz/RlrwR2SbFjdAkJWjDEf0bQp0PVacRz+Bkb8v0rtU5fi2eOdvl5kOROQ9SHhASHkJd37p0r9BddRzxLPbO2hI3N45C+Neq05g1KW6EZv1weHQPOs4CG/m1MGXV/Tz4tElpvtl8jlPXE1THEWZg6sGpxCfHMzZoLDY6ub5NWrFa0GAgbJusLX0jskV+ywWc3QBHfoNW47UmUWHy+jYrS+mC+Rm45CgpadI9JZ5tx9Ud/H3ub76o8wVF8xdVHUdkRuMhULC81j2VlqI6jVmS4sbaJd6FlX2gTHOoKaMnzIWjnS3TuwZw/uYDvt18TnUcYaLik+MZvXs0QUWDeK3sa6rjiMyyc9AGddw6A9snq05jlqS4sXb/DIG0R9DhO9DpVKcRWVC5iDv9mpVl9vYLHL0SpzqOMEET908kKT2JMfXGoJPr27z4VtVacHZ9DVcPqU5jdqS4sWanVsLxJfDKFHArojqNyIZPm5SmchE3Bi05SlKqTP4l/mvT5U2subiGYXWH4ZPPR3UckR0NBmjr+oV9AqmPVKcxK1LcWKsHt2D1AKjQDqp1U51GZJOdrQ3TuwRw5d4jpm+QuTGE5s6jO4zbO46X/V6mXal2quOI7LK107qn7l2GLaGq05gVKW6skcEAawYABmj3tXRHmbmyPq4MblmOH3ZFsT/qruo4QjGDwUDo3lAMBgMj642U7ihzV7A8NBsJe2bB5d2q05gNKW6s0fGlELkK2n6lrWcizN77DUpRq7gng5dG8DBZJv+yZmuj1rIpehPBLwXj7eytOo4whpc+A79AbWmc5Aeq05gFKW6sTcINWDsYqrwOlTupTiOMxNZGx7QuAdy6n8ykf06rjiMUuZl4k/H7xvNKyVdo6d9SdRxhLDa20Ol7eHATNo1SncYsSHFjTQwGbdi3nRO0mao6jTAyf+98DGtTgd/2XmbXuduq44g8ZjAYGL17NI62jowIHKE6jjC2AqW11cMP/AAXtqpOY/KkuLEmR36D8xuh/bfg4qU6jcgFbweWoH7pAny5LIKEpFTVcUQeCjsfxs5rOxldbzTuju6q44jcUPt9KNlIWyonKV51GpMmxY21iIuGdcOh+ttQvrXqNCKX2NjomNolgISkNEJXn1IdR+SR6w+uM/nAZDqV6URjv8aq44jcYmOjLZGTFK99notnkuLGGuj1sKI3OLlD6wmq04hcVtTDmZHtKrLk4FU2R8aqjiNymd6gJyQ8BFcHV76s86XqOCK3eRTXPseP/g5n1qlOY7KkuLEGB36AqB3QcaZW4AiL17W2H03LF2To38e591DWprFki88sZl/MPsbWH4urg6vqOCIv1HgHyraEVX21JXTEE6S4sXR3Lmh319f5AEo3VZ1G5BGdTsek16qRkqZn1MqTquOIXBKdEM3Xh76mW/lu1CtST3UckVd0Ou3eybRkWPuF6jQmSYobS6ZP1+ZFyF8Imo9RnUbkMR83J8Z2rMzKiOusPX5DdRxhZOn6dILDgyngVICBtQaqjiPymlthaDMNTiyDk2Gq05gcKW4s2Z5ZcGU/dJoNjvlVpxEKdAgoQuvKvgSHneDW/WTVcYQR/XbqN47ePEpog1Bc7F1UxxEqVH0dKnbQltJ5cFN1GpMixY2lunlaW4ukXm8oUV91GqGITqcjtHMVdMCI5ccxGAyqIwkjuBB3ge+OfMc7ld6hlk8t1XGEKjqdNtO8zkYrcOT6ziDFjSVKT9VWkfUsAS8Hq04jFPPO78j4zlXYcCqWsKPXVMcROZSmT2PErhEUdS1Knxp9VMcRquUvqK0ReHo1HFuiOo3JkOLGEu36Gm5EQKc5YO+sOo0wAa2rFKZT9SKErDhJTHyS6jgiB348/iORdyMZHzQeJzsn1XGEKajUAap21W4uTriuOo1JkOLG0tw4BtsnQ4OBUEyaq8V/jelQBWd7W4b8dUy6p8zU6bunmRMxh/ervE/VglVVxxGmpM0U7cvsyj7SPYUUN5YlLRmWfwIFK0DjIarTCBPj7mLP5Neqsf3sLRYduKI6jsiilPQURuwaQSmPUnwS8InqOMLUOHtCh+/g/CY4/IvqNMpJcWNJtk+G22eh8xywc1CdRpigphUK0a22H6GrT3HlbqLqOCIL5kTM4WLcRcY3GI+DrVzf4inKtdQm+Fs/Au5dVp1GKSluLMXVg9q9Nk2GgK80V4tnC25XEQ8XB75YFoFeL83X5uDYrWP8eOJHPg74mApeFVTHEaas1QStFWdFb23pHSslxY0lSH2kdUcVrg5BA1SnESbO1cmeKa9XY+/Fu/yy55LqOOIFktKSGLFrBBW9KvJB1Q9UxxGmzslNW1zz0k44MF91GmWkuLEEW0K1Vb87zwFbO9VphBkIKuNNj3olmLzuNBdvPVAdRzzHd0e+4/qD64xvMB47G7m+RSaUagx1P4KNo+D2edVplJDixtxd3q3NRNxsJBQsrzqNMCNDX6mAj5sTg5dGkC7dUybpUOwhfjv1G31r9qW0R2nVcYQ5aT5aW6Ih7FNtKR4rYxLFzaxZs/D398fJyYnAwED279//zG3nz59Pw4YN8fT0xNPTk+bNmz93e4uW/ED7xS3+Erz0meo0wsy4ONgxvUsAR67EMX/nRdVxxL8kpiYSvCuY6oWq83bFt1XHEebGIZ+29M7VA7D7O9Vp8pzy4mbx4sUMHDiQUaNGcfjwYQICAmjVqhU3bz59nYxt27bRvXt3tm7dyp49e/Dz86Nly5Zcu2aFM69uDNHWE+n0PdjYqk4jzFBtfy8+bFiKrzac5UzMfdVxxP/46tBX3Em6Q2hQKLZyfYvsKP4S1P8cto6Hm5Gq0+QpnUHxbF6BgYHUqVOHmTNnAqDX6/Hz86NPnz4MHTr0ha9PT0/H09OTmTNn0qNHjxdun5CQgLu7O/Hx8bi5ueU4vzIXtsBvnbVVYet+qDqNMGNJqem0+24XTvY2LP8sCHtb5d95rN7u67v5eOPHDA8cTvcK3VXHEeYsNQnmNQY7R/hgM9jaq06UJ5R+iqWkpHDo0CGaN2+e8ZyNjQ3Nmzdnz549mdpHYmIiqampeHl5PfXnycnJJCQkPPYwe0nxsOJzKNkYar+vOo0wc072tkzvEkDkjfvM2mqdNx+akvsp9wkJDyGwcCDdyndTHUeYO3snrXsq5gTs/Ep1mjyjtLi5ffs26enp+Pj4PPa8j48PMTExmdrHkCFDKFKkyGMF0v+aOHEi7u7uGQ8/P78c51Zu3XBIStCG+9nIt2yRcwF+HnzWpDQzt5znxLV41XGs2pQDU3iQ+oBx9cdho5PrWxhB0ZrQcBDsmALXj6pOkyfM+sqZNGkSixYtYvny5Tg5PX0BuWHDhhEfH5/xuHLFzKedP7MOjv4OrSeChwUUasJk9Hm5LGV9XBm45CjJadY3usIUbL+ynbDzYQypM4TC+QurjiMsSaMvoFBFbRBKWrLqNLlOaXHj7e2Nra0tsbGxjz0fGxuLr6/vc187bdo0Jk2axIYNG6hWrdozt3N0dMTNze2xh9lKvAur+kLZVlBDRk8I43Kws+GrrgFE3X7IjE3nVMexOnFJcYzeM5qGRRvSqUwn1XGEpbFzgE5z4PY52DZRdZpcp7S4cXBwoFatWmzevDnjOb1ez+bNm6lXr94zXzdlyhTGjRvHunXrqF27dl5ENQ1rB2sVd4dvQadTnUZYoIqF3ejfvBxzt1/gcPQ91XGsyoR9E0hJT2F0/dHo5PoWucG3CjQZCuHfwJUDqtPkKuXdUgMHDmT+/Pn88ssvREZG8umnn/Lw4UN69eoFQI8ePRg2bFjG9pMnT2bkyJH89NNP+Pv7ExMTQ0xMDA8eWPgsqyeXw4m/oO10cH1+q5YQOfFxo1JULebBoCURPEqR7qm8sP7Sev659A/DA4dTyKWQ6jjCkgX1hyI1IOwTSLHcxXOVFzfdunVj2rRphISEUL16dY4ePcq6desybjKOjo7mxo0bGdvPnj2blJQUXn/9dQoXLpzxmDZtmqq3kPse3ITVA6FiB6jymuo0wsLZ2dowvUsA1+MeMWX9adVxLN7tR7cJ3RtKixItaFOyjeo4wtLZ2mndU/FXYcs41WlyjfJ5bvKa2c1zYzDA4rchei/03gf5vFUnElbih50XCV0TyZ8fvkS90gVUx7FIBoOB/lv7c/TWUZZ3XI6X09OntBDC6PbMgvUj4N3V4N9AdRqjU95yI17g2GI4vRrafS2FjchTvYJKUtffiy+WRfAgOU11HIu0+uJqtlzZwsiXRkphI/JW4KdQvB6EfaYt5WNhpLgxZfHXYO2XULUrVOqgOo2wMrY2OqZ2qcadBylMWGtdU7fnhZiHMUzcN5G2pdrSvMTT5+kSItfY2ECnWfDwNmwcqTqN0UlxY6oMBljZBxxcoM0U1WmElSpRIB/D21Zk4b5otp+9pTqOxTAYDIzePRonOyeG1R324hcIkRu8SkHLsXDwJzi/+cXbmxEpbkzV4V/gwmbo8B04e6pOI6zY24HFaVDGmyHLjhH/KFV1HIvw17m/CL8ezuj6o3F3dFcdR1iz2u9Dqabal+lHcarTGI0UN6bo3mXtRq8a70DZFqrTCCun0+mY/Ho1HianMXbVKdVxzN7V+1eZemAqr5Z9lUbFGqmOI6ydTgcdZ0LyfVhnOa2IUtyYGr0eVvTWWmtaTVCdRggAino4M7J9Jf46fJWNp2Jf/ALxVHqDnpHhI3F3dOeL2l+ojiOExr0YtJ4EEQvh9FrVaYxCihtTs38eXNqpLYrpZAZD1YXV6FKrGM0qFGLY38e5+zBFdRyz9OfpPzkYe5BxQePI75BfdRwh/qv6m1CuNazqpy31Y+akuDElt8/DptFQ9yMo1Vh1GiEeo9PpmPhqVdL0ekauOKE6jtm5FH+JGYdm0L1CdwILB6qOI8TjdDpo/w3oU2HNINVpckyKG1OhT9dWa3UrDM1Hq04jxFMVcnNibMcqrDl2g1UR11XHMRvp+nRGhI+gkEsh+tfsrzqOEE/n6gttpsHJv+HE36rT5IgUN6Zi93dw9QB0mg0O+VSnEeKZ2lcrTNuqhRm54gQ37yepjmMWFpxcwPFbxwltEIqLvYvqOEI8W5XXoFInrfXmvvneXyfFjSmIPQVbx0P9PlD8JdVphHgunU7HuE5VsLPRMfzvE1jZCi5Zdu7eOWYdnUXPyj2pUaiG6jhCPJ9OB22/AhtbWN1fm3PNDElxo1p6qrY6q1cpaDpCdRohMsUrnwPjO1dlU2Qsfx2+pjqOyUrVpzJi1wj8XP34vMbnquMIkTn5CkC7GXBmLUQsUp0mW6S4UW3ndIg5oXVH2TupTiNEprWq7MurNYoyZtVJrsc9Uh3HJP1w7AfO3jvLhAYTcLR1VB1HiMyr2A6qvQH/DNGWAjIzUtyodP0o7JgKDQdB0Zqq0wiRZaPaVyafgx1D/jom3VP/curOKeYdm8cHVT+gsndl1XGEyLpXJmn3gK783Oy6p6S4USUtWRsdVagiNJLJvIR5cnexZ9JrVdl57jYL90erjmMyUtJTGLFrBGU8y/BxtY9VxxEie5w9tSWALmyBQz+rTpMlUtyosm0i3D4HneaAnYPqNEJkW5Pyhehetzjj10QSfSdRdRyT8P3R77mUcInQoFDsbe1VxxEi+8o2h1rvwvpguBulOk2mSXGjwpUDEP4NNB0GvlVUpxEix0a0rYhXPgcGL4tArzev5mtji7gVwc8nf+azgM8o71VedRwhcq5lqHaT8YrPtSWCzIAUN3ktJVEbHVWkBtTvpzqNEEaR39GOqa8HsD/qLj/vvqQ6jjKP0h4RvCuYygUq06tKL9VxhDAOR1fo+D1c3gX756pOkylS3OS1LeMg/qrWHWVrpzqNEEZTr3QB3q3vz5R1p7lw64HqOEp8e/hbbjy8QWiDUOxs5PoWFqRkQwj8RFsi6PY51WleSIqbvHRpF+z9HpqFQMFyqtMIYXRDWlegiIczg5ZEkJZuHs3XxnIg5gC/R/5O3xp9KeVeSnUcIYyv2ShwK6oNhklPU53muaS4ySvJ9yHsMygRBIGfqk4jRK5wdrBlWpcAjl2NY97Oi6rj5JmHqQ8ZGT6SmoVq8nalt1XHESJ3OLhA5zlw7RDs/lZ1mueS4iavbBgJD29Dx1lgI6ddWK5aJTz5qFFpvt54ltMxCarj5InpB6dzN+kuoUGh2Ojk+hYWzK+utlTQ1gkQe1J1mmeSqzAvnN+kzRHQchx4lVSdRohcN6BFWUp652PQkghS0iy7eyr8WjhLzy5lUK1B+Ln5qY4jRO5rMhwKlIHln0Baiuo0TyXFTW57FAcr+kCpplD7PdVphMgTjna2TO9SnTMx95m59bzqOLkmISWBkN0h1Ctcj67lu6qOI0TesHeCzrO1lpud01SneSopbnLbumGQ8gA6ztRWWxXCSlQt5k7vpmWYtfU8x6/Gq46TKybvn0xiaiJjg8aik+tbWJMiNbTZ9XdMg+tHVKd5ghQ3uen0WohYCK0ngXsx1WmEyHOfv1yGCr6uDFxylKTUdNVxjGpr9FZWXljJkLpD8M3nqzqOEHmv0WDwqax1T6UmqU7zGClucsvDO7CqH5R7Baq/qTqNEErY29rwVdfqXL6TyNebzqqOYzT3ku4xZs8YGhdrTMfSHVXHEUINW3tt9NTdi7Btguo0j5HiJresHQT6VGj/jXRHCatW3teVAS3KMW/HRQ5dvqs6jlGM3zeeNEMao+qNku4oYd18KkOTYRD+LUTvU50mgxQ3ueHEX3ByObSdDq4+qtMIodxHjUpR3c+DQUsiSEwx7cm/XmRd1DrWX1rPiMARFHQpqDqOEOrV7wvFamtLC6U8VJ0GkOLG+O7HwppBUKkTVHlNdRohTIKtjY7pXQKISUhiyrozquNk2+1HtwndF0rLEi1p7d9adRwhTIOtHXSaDQnXYdMY1WkAKW6My2CA1f3Bxg7afqU6jRAmpVTB/HzZqgILdl9i94XbquNkmcFgYMyeMdjqbAl+KVi6o4T4X95lteUZ9s+FqB2q00hxY1QRf8KZtdp9NvkKqE4jhMl5t74/gSW9+GLpMe4npaqOkyUrL6xk25VthNQLwdPJU3UcIUxP4CdQogGE9YYktbOTS3FjLPFX4Z+hENAdKrRVnUYIk2Rjo2NalwDiElOYsDZSdZxMi3kYw+T9k2lfqj3NijdTHUcI02Rjo83plngHNgSrjaL06JbCYICVfcAhnzanjRDimfy8XBjRthJ/7r/C1jM3Vcd5IYPBwKjdo3C2d2ZI3SGq4whh2rxKQqtQOPwLnNuoLIYUN8Zw6Ge4sAU6fgfOHqrTCGHyutf1o1G5ggz96xjxiabdPbX07FJ2X9/NmPpjcHd0Vx1HCNNXqxeUfln70v/onpIIUtzk1N0oWB8Mtd6FMs1VpxHCLOh0Oia/VpXElHRGrzLdlYWv3L/CtIPTeL3c6zQo2kB1HCHMg04HHb6DlET4R01rpxQ3OaHXw4re2s3DLUNVpxHCrBR2d2Z0+8osP3KNdSdiVMd5gt6gZ2T4SLycvBhce7DqOEKYF/di8MokOLYYIlfn+eGluMmJfXPgcjh0/B4cXVWnEcLsvFqzKC0q+TBi+XHuPEhWHecxf0T+waHYQ4wLGkc++3yq4whhfgK6Q/k22hQpD/N2+gcpbrLr9jnYPAYCP4WSDVWnEcIs6XQ6JnSuit5gIDjsBAaDQXUkAKLio/jm8De8VfEt6vjWUR1HCPOk00G7GaBPgzUDtcE3eUSKm+xIT9NWQXUrCs1CVKcRwqwVdHUktFNV/jkRw8qI66rjkKZPI3hXML75fOlXs5/qOEKYN1cfbVLbUyu0pYnyiBQ32bH7W7h+WFsN1cFFdRohzF7baoVpV60wIStOcjMhSWmWBScXcOLOCUKDQnG2c1aaRQiLUOVVqNxZW5roft7cXyfFTVbFnoStE7SFwvzqqk4jhMUY17EK9rY2DP37uLLuqbP3zjLr6Czerfwu1QtVV5JBCIvUZjrYOsCqfnnSPSXFTVakpWjdUQXKQNPhqtMIYVE88zkw6dWqbDl9k6WHrub58VPTUxmxawT+bv70rt47z48vhEXLV0BbmujsOjj6R64fToqbrNg5DW6e0rqj7BxVpxHC4jSv5MPrtYoxdtUprsU9ytNjzzs+j/P3zhPaIBQHW4c8PbYQVqFCGwh4E9YNg7gruXooKW4y6/oR2DENGg6GItVVpxHCYoW0r4Srkx1Dlh1Dr8+b7qmTt08y/9h8Pqz2IZULVM6TYwphlVpPBIf8sPLzXO2ekuImM1KTtO4on8rQSCbzEiI3uTnZM/m1auw6f5s/9l3O9eMlpyczYtcIynmW48NqH+b68YSwas4e2uKaF7fBwR9z7TBS3GTGtglw9yJ0ngu29qrTCGHxGpUryFuBxZmw9jSX7zzM1WPNOjKL6PvRjG8wHnsbub6FyHVlmkHt92BDiPZvay6Q4uZFovdB+LfaDcQ+lVSnEcJqDG9TEW9XBwYvjSA9l7qnjt48yoKTC+hdvTdlPcvmyjGEEE/RYhzk84aw3tpSRkYmxc3zpDyEsE+gWG1t6LcQIs/kc7Rj2usBHLx8j5/Do4y+/8TUREbsGkHVglV5t/K7Rt+/EOI5HPNDp+8heg/sm2303Utx8zybxkDCDeg0B2xsVacRwuoElipAr/olmbL+DOdv3jfqvr85/A03E28yPmg8tnJ9C5H3/BvAS59q/9beOmvUXUtx8ywXt8P+udB8FHiXUZ1GCKv1ZevyFPN0ZtCSCNLSjdN8ve/GPhaeXkj/Wv3xd/c3yj6FENnQLAQ8imu9JOlpRtutFDdPk5QAKz6HEg2g7seq0whh1ZzsbZneJYDj1+KZuyPnNx8+SHlASHgIdXzr0L1CdyMkFEJkm72zNnfc9SMQPsNou5Xi5mk2BEPiHeg0C2zkFAmhWo3innzSuDQzNp3l1PWEHO1r2sFpxCXHMbb+WGx0cn0LoVyx2hDUH7ZNgpgTRtmlXNn/dm4jHP4FWoWCp7/qNEKI/9eveVlKF8zPoKURpKRlr3tq59Wd/HXuLwbXGUwx12JGTiiEyLYmQ8G7nDanXFpKjncnxc3/enQPVvaB0i9DrV6q0wgh/oejnS3TugRwLvY+3205l+XXxyfHM3r3aIKKBPF62ddzIaEQItvsHKHzbLgVCTum5nh3Utz8r3+GQEoidJgJOp3qNEKIf6lS1J0+L5fl+20XiLgSl6XXTto/iUdpjxhdfzQ6ub6FMD2FA6DRl7BzOlw7lKNdSXHzH5Gr4NhieGUyuBdVnUYI8QyfNS1NpcJuDFoaQVJqeqZes/nyZlZfXM2wwGH45vPN5YRCiGxrOBB8q8LyT7Wlj7JJihuAh7dhVX8o3wYC3lCdRgjxHPa2NkzvGkD0nUS+2vjiuTHuJt1l7N6xNPVrSrtS7fIgoRAi22zttdFT96Jga2i2dyPFjcEAqweAQQ/tZkh3lBBmoJyPK4NalmP+zoscuHT3mdsZDAZC94aiN+gJqRci3VFCmINCFeHlYNg9E6L3ZmsXUtyc+AsiV0Lb6eDqozqNECKTPmhYiprFPfnw14NsOhX7xM8TUxMJDg9m4+WNBL8UjLezt4KUQohsqfc5+NXVRk+lZH3xXOsubu7HwJpBUPlVqPKq6jRCiCywtdHxQ4/a1CruyQe/HmTsqlMZQ8TP3D1Dt9Xd2Hh5I+MbjKeVfyvFaYUQWWJjC51ma/9Obxqd5ZfrDAZD7iy3a6ISEhJwd3cnPi4Ot9UfarMi9t4HLl6qowkhssFgMPBT+CUm/RNJeV9X2taP4odT3+Dv7s+0xtMo6V5SdUQhRHbtmwv/fAk9VkCpJpl+mUm03MyaNQt/f3+cnJwIDAxk//79z91+6dKlVKhQAScnJ6pWrcratWuzftBjS+Dcemj/jRQ2QpgxnU7H+w1K8usHVbnuMJfvT0ylhlcrFrZdKIWNEOauzofg31BbEikp87OTKy9uFi9ezMCBAxk1ahSHDx8mICCAVq1acfPmzaduv3v3brp3787777/PkSNH6NSpE506deLEiSxO2bxxFAS8CRXaGOFdCCFUOnbrGGMOf4ij6wUq2/Vh084gRoWd4VFK5oaKCyFMlI0NdJylTbK7fnimX6a8WyowMJA6deowc+ZMAPR6PX5+fvTp04ehQ4c+sX23bt14+PAhq1evznjupZdeonr16syZM+eFx8volhpfDrcB+8DZw2jvRQiRt/QGPb+c/IVvD39LJe9KTGk0hSL5irD4wBVGrzpJcS8XZr5Zk3I+rqqjCiFy4tAvsKovjI7P1OZ2uRznuVJSUjh06BDDhg3LeM7GxobmzZuzZ8+ep75mz549DBw48LHnWrVqRVhY2FO3T05OJjk5OePP8fHaianvYovtb41z+A6EECoZMJCmT+Odiu/wUcBH2OvtuX//Pm0qeFDOqxqDl0bQYvI67GQBXCHMXD6+s61Cg4QEXF1dXzitg9Li5vbt26Snp+Pj8/gQbB8fH06fPv3U18TExDx1+5iYmKduP3HiRMaMGfPE8ycHRGYztRDC1Az///8JISxXW4Ap7sTHx+Pm5vbcbZUWN3lh2LBhj7X0xMXFUaJECaKjo3F3d1eYzDIkJCTg5+fHlStXXvjLJl5Mzqdxyfk0PjmnxiXnM+tcXV/czay0uPH29sbW1pbY2Mcn4IqNjcXX9+nrv/j6+mZpe0dHRxwdHZ943t3dXX6RjMjNzU3OpxHJ+TQuOZ/GJ+fUuOR8GpfSjmgHBwdq1arF5s2bM57T6/Vs3ryZevXqPfU19erVe2x7gI0bNz5zeyGEEEJYF+XdUgMHDqRnz57Url2bunXrMmPGDB4+fEivXr0A6NGjB0WLFmXixIkA9OvXj8aNGzN9+nTatm3LokWLOHjwIPPmzVP5NoQQQghhIpQXN926dePWrVuEhIQQExND9erVWbduXcZNw9HR0dj8z0iH+vXrs3DhQoKDgxk+fDhly5YlLCyMKlWqZOp4jo6OjBo16qldVSLr5Hwal5xP45LzaXxyTo1LzmfuUD7PjRBCCCGEMcnkD0IIIYSwKFLcCCGEEMKiSHEjhBBCCIsixY0QQgghLIpFFDezZs3C398fJycnAgMD2b9//3O3X7p0KRUqVMDJyYmqVauydu3ax35uMBgICQmhcOHCODs707x5c86dO5ebb8GkGPt8vvvuu+h0uscerVu3zs23YFKycj5PnjzJa6+9hr+/PzqdjhkzZuR4n5bG2Odz9OjRT/x+VqhQIRffgWnJyvmcP38+DRs2xNPTE09PT5o3b/7E9vL5adzzae2fn9lmMHOLFi0yODg4GH766SfDyZMnDR9++KHBw8PDEBsb+9Ttw8PDDba2toYpU6YYTp06ZQgODjbY29sbjh8/nrHNpEmTDO7u7oawsDBDRESEoUOHDoaSJUsaHj16lFdvS5ncOJ89e/Y0tG7d2nDjxo2Mx927d/PqLSmV1fO5f/9+w+DBgw1//vmnwdfX1/D111/neJ+WJDfO56hRowyVK1d+7Pfz1q1bufxOTENWz+ebb75pmDVrluHIkSOGyMhIw7vvvmtwd3c3XL16NWMb+fw07vm05s/PnDD74qZu3bqG3r17Z/w5PT3dUKRIEcPEiROfun3Xrl0Nbdu2fey5wMBAw8cff2wwGAwGvV5v8PX1NUydOjXj53FxcQZHR0fDn3/+mQvvwLQY+3waDNrF2bFjx1zJa+qyej7/V4kSJZ76j3FO9mnucuN8jho1yhAQEGDElOYjp79LaWlpBldXV8Mvv/xiMBjk89PY59NgsO7Pz5ww626plJQUDh06RPPmzTOes7GxoXnz5uzZs+epr9mzZ89j2wO0atUqY/uoqChiYmIe28bd3Z3AwMBn7tNS5Mb5/I9t27ZRqFAhypcvz6effsqdO3eM/wZMTHbOp4p9movcfO/nzp2jSJEilCpVirfeeovo6OicxjV5xjifiYmJpKam4uXlBcjnp7HP539Y4+dnTpl1cXP79m3S09MzZjP+Dx8fH2JiYp76mpiYmOdu/5//z8o+LUVunE+A1q1b8+uvv7J582YmT57M9u3beeWVV0hPTzf+mzAh2TmfKvZpLnLrvQcGBrJgwQLWrVvH7NmziYqKomHDhty/fz+nkU2aMc7nkCFDKFKkSMY/6PL5adzzCdb7+ZlTypdfEJbvjTfeyPjvqlWrUq1aNUqXLs22bdto1qyZwmRCwCuvvJLx39WqVSMwMJASJUqwZMkS3n//fYXJTNukSZNYtGgR27Ztw8nJSXUcs/es8ymfn9lj1i033t7e2NraEhsb+9jzsbGx+Pr6PvU1vr6+z93+P/+flX1aitw4n09TqlQpvL29OX/+fM5Dm7DsnE8V+zQXefXePTw8KFeunPx+Pse0adOYNGkSGzZsoFq1ahnPy+encc/n01jL52dOmXVx4+DgQK1atdi8eXPGc3q9ns2bN1OvXr2nvqZevXqPbQ+wcePGjO1LliyJr6/vY9skJCSwb9++Z+7TUuTG+Xyaq1evcufOHQoXLmyc4CYqO+dTxT7NRV699wcPHnDhwgX5/XyGKVOmMG7cONatW0ft2rUf+5l8fhr3fD6NtXx+5pjqO5pzatGiRQZHR0fDggULDKdOnTJ89NFHBg8PD0NMTIzBYDAY3nnnHcPQoUMztg8PDzfY2dkZpk2bZoiMjDSMGjXqqUPBPTw8DCtWrDAcO3bM0LFjR6saymjM83n//n3D4MGDDXv27DFERUUZNm3aZKhZs6ahbNmyhqSkJCXvMS9l9XwmJycbjhw5Yjhy5IihcOHChsGDBxuOHDliOHfuXKb3acly43wOGjTIsG3bNkNUVJQhPDzc0Lx5c4O3t7fh5s2bef7+8lpWz+ekSZMMDg4OhmXLlj02NPn+/fuPbSOfn8Y5n9b++ZkTZl/cGAwGw3fffWcoXry4wcHBwVC3bl3D3r17M37WuHFjQ8+ePR/bfsmSJYZy5coZHBwcDJUrVzasWbPmsZ/r9XrDyJEjDT4+PgZHR0dDs2bNDGfOnMmLt2ISjHk+ExMTDS1btjQULFjQYG9vbyhRooThww8/tIp/iP8jK+czKirKADzxaNy4cab3aemMfT67detmKFy4sMHBwcFQtGhRQ7du3Qznz5/Pw3ekVlbOZ4kSJZ56PkeNGpWxjXx+Gu98yudn9ukMBoMhb9uKhBBCCCFyj1nfcyOEEEII8W9S3AghhBDCokhxI4QQQgiLIsWNEEIIISyKFDdCCCGEsChS3AghhBDCokhxI4QQQgiLIsWNEEIIISyKFDdCCIt16dIldDodR48eVR1FCJGHpLgRQgghhEWR4kYIIYQQFkWKGyGEWVu3bh0NGjTAw8ODAgUK0K5dOy5cuKA6lhBCISluhBBm7eHDhwwcOJCDBw+yefNmbGxs6Ny5M3q9XnU0IYQisiq4EMKi3L59m4IFC3L8+HHy589PyZIlOXLkCNWrV1cdTQiRR6TlRghh1s6dO0f37t0pVaoUbm5u+Pv7AxAdHa02mBBCGTvVAYQQIifat29PiRIlmD9/PkWKFEGv11OlShVSUlJURxNCKCLFjRDCbN25c4czZ84wf/58GjZsCMCuXbsUpxJCqCbFjRDCbHl6elKgQAHmzZtH4cKFiY6OZujQoapjCSEUk3tuhBBmy8bGhkWLFnHo0CGqVKnCgAEDmDp1qupYQgjFZLSUEEIIISyKtNwIIYQQwqJIcSOEEEIIiyLFjRBCCCEsihQ3QgghhLAoUtwIIYQQwqJIcSPE/7VbBzIAAAAAg/yt7/EVRQCsyA0AsCI3AMCK3AAAK3IDAKzIDQCwEvsHprSTp1b8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGsUlEQVR4nOzdd1wU1/rH8c/SQQFBFCwo9g52olhjjd0kakzRmMTExFiiJjbEhl0TTTRqTDHNxJKINfaOvWHDjmIDK6Aidff3x/wu9xobZeFsed73ta8bl9mZ747M+uw5c87RGQwGA0IIIYQQFsJGdQAhhBBCCGOS4kYIIYQQFkWKGyGEEEJYFCluhBBCCGFRpLgRQgghhEWR4kYIIYQQFkWKGyGEEEJYFCluhBBCCGFRpLgRQgghhEWxuuLGYDCQkJCATMwshBBCWCalxc2OHTto3749RYsWRafTERYW9sLXbNu2jZo1a+Lo6EjZsmVZuHBhlo55//593N3duX//fvZCCyGEEMKkKS1uHj58SEBAAHPmzMnU9lFRUbRt25amTZty9OhRBg4cyAcffMD69etzOakQQgghzIXOVBbO1Ol0LF++nE6dOj1zm6FDh7JmzRpOnDiR8dwbb7xBXFwc69aty9RxEhIScHd3Jz4+Hjc3t5zGFkIIIUQeMBgM6HS6TG1rVvfc7Nmzh+bNmz/2XKtWrdizZ88zX5OcnExCQsJjD4D7Sam5mlUIIYQQxrPiwopMb2tWxU1MTAze3t6PPeft7U1CQgKPHj166msmTZqEu7t7xsPX1xeA6evP5HpeIYQQQuRczMMYpuyfkuntzaq4yY7hw4cTHx+f8bhy5QoAfx2+xtYzNxWnE0IIIcTzGAwGQsJDcLF3yfRrzKq48fHxITY29rHnYmNjcXNzw9nZ+amvcXR0xM3N7bEHQP2yBRn21zHiE6V7SgghhDBVS88uZc+NPYyrPy7TrzGr4qZevXps3rz5sec2btxIvXr1sryvcR2qkJiSzphVJ40VTwghhBBGdOX+FaYfnE6X8l0IKhaU6dcpLW4ePHjA0aNHOXr0KKAN9T569CjR0dGA1qXUo0ePjO379OnDxYsX+eKLLzh9+jTffvstS5Ys4bPPPsvysX3cnRnTvgrLj1xj3YkYo7wfIYQQQhiH3qAneFcwnk6eDK49OEuvtculTJly8OBBmjZtmvHnQYMGAdCzZ08WLlzIjRs3MgodgFKlSrFmzRo+++wzZs2aRfHixfn+++9p1apVto7/as1irDsZw8jlx6nj50HB/I45e0NCiLx1MgyO/Pb8bZw9oPUkyOeVJ5GEEMbx26nfOHzzMD+2+pF89vmy9FqTmecmr/x7nptb95Np+dV2XipdkG/fqpnpMfRCCMVunYX5DaFwZXAr+uztLu2CUo2g6y8g17cQZuFi/EW6rupKl/JdGFp3aJZfr7TlxhQUcnUktFM1+i46zMqI63SsXkx1JCHEi6SnQVgfcC8O764Bh+eMoji5HJa+Cyf+gmqv51lEIUT2pOnTCN4VTJF8Rehfs3+29mFWNxTnlrb+RWjnX4SQFSe5mZCkOo4Q4kV2z4LrR6DTvOcXNgBVOkOVV2HNYLgv99cJYeoWnlzIyTsnCW0QirPd00dCv4gUN/9vfMeq2NvaMOzv47JiuBCmLOYEbJ0E9fuDb53MvabtDLB1gJX9Qa5vIUzWmbtnmHN0Dr2q9CKgUEC29yPFzf/zyOfA5FerseX0TZYeuqo6jhDiadJStO6ogmWh6YjMv87FEzp8DefWw9Hfcy+fECLbUtNTCQ4Pxs/Nj0+qf5KjfUlx8z+aV/bmtZrFGbfqFNfinr6cgxBCoR3T4GYkdJ4Hdlkc3VjhFQh4E/4ZBnFXciefECLb5h+bz/l755nQYAIOtg452pcUN/8S0r4yrk52DF12DL1emq+FMBnXDsPOGdDocyhaPXv7aD0JnNxg5aeg1xs1nhAi+07ePsn3x7/nQ/8PqVywco73J8XNv7g72zPlNX92nb/N7/suq44jhABITYLlfcCnKjTM2mRej3EuAB2+gYvb4OAPxkonhMiB5PRkRuwaQXmP8nzg/4FR9inFzVM0Kl+ItwJLMHHtaS7feag6jhBi6wS4F6WNjrK1z9m+yjaD2u/BxhC4e9E4+YQQ2TbnyByu3L/CxAYTsbfJ4fX9/6S4eYYRbSrh5erAkKURpEv3lBDqRO+F3d9oNxB757y5GoAW4yFfIQj7BPTpxtmnECLLjt48ysKTC/m0xqeU9ShrtP1KcfMM+RztmP56AAcv3+On8CjVcYSwTikPIexjKF5bG/ptLI75odO3WuG0d67x9iuEyLTE1ERG7hqJfyF/elbuadR9S3HzHIGlC/JeUCmmrj/D+Zv3VccRwvpsGgMJN7TuKBtb4+7brwG89DFsHge3zhh330KIF5p1eBY3E28SGhSKrZGvbyluXuDzVhUo7uHM4CURpKXL6Aoh8szF7bD/O2g+BryM11z9mGYhUKCEdrNyelruHEMI8YR9N/ax6PQiBtYaiJ+7n9H3L8XNCzjZ2zKjSwDHr8Uzf4fcfChEnkhKgBV9wa8h1P0w945j76zNmXPjKIR/lXvHEUJkeJDygJDwEOr41KF7xe65cgwpbjKhRgkP+jQuw8xNZzl1PUF1HCEs34aR8OgedJwNNrn8MVW8NgQNhG1TIOZ47h5LCMH0g9OJS45jXP1x2Ohy5/qW4iaTBjQvR5lC+Rm8NIKUNOmeEiLXnN0Ah3+BlqHg4Zc3x2wyDLzKa91TaSl5c0whrNDOqzv569xfDKkzhOKuxXPtOFLcZJKjnS0zugZwLvY+32w5pzqOEJYp8S6s7AdlmkGtd/PuuHaO0Hku3DoNO6bm3XGFsCLxyfGM2T2GoKJBvF7u9Vw9lhQ3WVClqDv9m5Xj220XiLgSpzqOEJbnn6GQ9kjrjtLp8vbYRQKg0Rew80u4dihvjy2EFZi8fzKP0h4xpv4YdLl8fUtxk0UfNylD5SJuDF4aQVKqTP4lhNGcWgnHl8ArU8GtqJoMDQeBTzVY/jGkyuK5QhjL5ujNrL64mmGBw/DJ55Prx5PiJovsbW34smsA0XcT+XLjWdVxhLAMD2/D6s+gYjvw76Yuh629NnrqXhRsCVWXQwgLcjfpLuP2jKOpb1Pal26fJ8eU4iYbynm7MrhFeRbsvMiBS3dVxxHCvBkMsHogGPTQ7qu87476t8KV4OVg2DMHLu9Rm0UIM2cwGAjdG4reoCekXkiud0f9hxQ32fRBw9LULOHBkKURJKbI5F9CZNvxZRC5Sits8hdWnUZT71Pwrast/ZAii+cKkV3/RP3DxssbCX4pGC9nrzw7rhQ32WRro2N6lwBiE5KY/M9p1XGEME8JN2DtEKj6GlTppDrNf9nYQqe5cD8GNo5WnUYIs3Qz8SYT9k2gtV9rWvm1ytNjS3GTA6W88jH8lUr8sucy4edvq44jhHkxGGBVf20YdpvpqtM8qWAZaDEWDiyAi9tUpxHCrBgMBsbuGYu9jT0jA0fm+fGluMmhd14qSb3SBfli2THuJ6WqjiOE+TjyG5zbAO2/BhdP1Wmerk5vbQmIsL6QFK86jRBmI+x8GDuu7mBM/TEUcCqQ58eX4iaHbGx0TH3dn/hHqYSujlQdRwjzEBcN64ZD9behQmvVaZ7NxgY6zoGkOFg/QnUaIczC9QfXmXJgCh3LdKSJbxMlGaS4MQJfTxeC21Zi8cErbDkdqzqOEKZNr9cWxXRyh9YTVad5MY+S0Gqi1tJ0dr3qNEKYNL1BT8juEFwdXBlad6iyHFLcGEm3Or40qVCIYX8dJy5R1qYR4pkO/gBRO7RZiJ3cVafJnJo9oGwLbWmIRJn+QYhnWXJmCftu7GNs/bG4OrgqyyHFjZHodDqmvOZPUmo6o1eeVB1HCNN05wJsDIHa70OZpqrTZJ5OBx2+hrQk+OcL1WmEMEnRCdF8eehLulXoRv2i9ZVmkeLGiLzdnBjXsSorjl7nn+M3VMcRwrTo07XuqPyFocU41Wmyzq0ovDINji+FUytUpxHCpKTr0wkOD6agU0EG1RqkOo4UN8bWsXpRWlXxZmTYCW4/SFYdRwjTsfdbiN6rzR/jmF91muzx76otEbH6M3hwS3UaIUzGb5G/cfTmUcYHjcfF3kV1HClujE2n0zGhczUARi4/jsFgUJxICBNw6wxsHg/1+kJJtc3VOaLTQbuZ2n+vHqjN1SOElbsQd4GvD3/N25XfprZPbdVxAClucoVXfkcmdKrK+pOxrDh6XXUcIdRKT4PlfbRRRy8Hq06Tc/kLQdsv4fRqrYtKCCuWpk8jeFcwxVyL0b9Gf9VxMkhxk0teqVaEjtWLErLiBDHxSarjCKFO+Fdw4yh0mgf2zqrTGEeVTlD1dW3piAT5AiOs148nfuTU3VOEBoXiZOekOk4GKW5y0dgOVXCyt2XY38eke0pYp5jjsG0KNPgMitdSnca42kwDOydY2V+6p4RVOnP3DHMj5vJ+1ffxL+SvOs5jpLjJRQVcHJj8WjW2nbnF4gNXVMcRIm+lpWjdUYUqQGN1k3nlGhdP6PANnN8Ih39RnUaIPJWansqIXSMo5V6KPgF9VMd5ghQ3uezlit50rV2c8atPceVuouo4QuSd7VPg1mltdJSdo+o0uaN8K6jxtrY0w73LqtMIkWfmRszlYtxFJjaYiIOtg+o4T5DiJg+MaleZAi4OfLHsGHq9NF8LK3D1EOz6SmuxKWJazdVG12oSOBXQ5vDR61WnESLXnbh9gh9P/MhHAR9R0bOi6jhPJcVNHnB1smfq6/7suXiHX/fKtzth4VIfQVgfrahpoH4yr1zn5KYtJXFpJxz4XnUaIXJVUloSI3eNpKJnRd6v9r7qOM8kxU0eCSrrRY96JZn0TyRRtx+qjiNE7tkSqnXRdJoHtnaq0+SNMk2hzgfa0hJ3LqhOI0SumX1kNlfvX2VCgwnY29irjvNMUtzkoWGvVMTbzYkhSyNIl+4pYYku74Y9c7T5bAqbZnN1rmk+Flx9IOxjbakJISzM4djD/HLqF/rV6EeZAmVUx3kuKW7ykIuDHdO7BHA4+h7f77yoOo4QxpX8QPuH3TdQm4nY2jjm126evrIf9sxWnUYIo0pMTSQ4PJjqhavzTuV3VMd5ISlu8lgdP08+aFCKGRvOcjb2vuo4QhjPptHw4CZ0+hZsbFWnUaNkPa2w2zIBbp5WnUYIo/nq0FfcfnSb0KBQbM3g+pbiRoHBLStQoqALg5dEkJouoyuEBbiwVbuZtvlYKGjazdW57uVgbamJsD6Qnqo6jRA5tvfGXv488ycDaw6khFsJ1XEyRYobBZzsbZnRJYBTNxKYu01uPhRmLikeVnwKpRppN9VaO3tn7WbqG8e04fBCmLEHKQ8ICQ+hrk9d3qj4huo4mSbFjSIBvgX4pEkZvt58jhPX4lXHESL71o/QCpyOc8BGPlIAbamJBp9pExneOKY6jRDZNu3gNBJSEhgXNA4bnflc3+aT1AL1e7kc5bxdGbI0guQ0GV0hzNDZ9XDkN2g9EQqYR3N1nmk8FApV1JagSEtWnUaILNtxdQd/n/ubz2t/TrH8xVTHyRIpbhRysLPhy64BXLj1gFmbzqmOI0TWJN6Flf2gXEuoYfqjJ/KcnQN0nge3z2otOEKYkfjkeMbsHkODYg14tdyrquNkmRQ3ilUq4saAZuWYt/0CR6LvqY4jROat/RzSkqD916DTqU5jmnyqaS04u76CqwdVpxEi0ybum0hSehJj649FZ4bXtxQ3JqBP4zJUK+bO4KURJKVK95QwAyfD4MQyaDMd3IqoTmPaGnwGRapr3VOpj1SnEeKFNl7eyNqotYwIHEFhl8Kq42SLFDcmwM7WhhldA7h67xHT1p9RHUeI53twC9YMgortoFoX1WlMn62d1j0VFw2bx6tOI8Rz3Xl0h/F7xtO8RHPalmqrOk62SXFjIsoWduWLVhX4MTyKfRfvqI4jxNMZDLB6oPbf7WZKd1RmFaoAzUbB3m/hUrjqNEI8lcFgIHRvKADBLwWbZXfUf0hxY0J6BZWidkkPhiyL4GFymuo4Qjzp2BI4vRrafQX5C6lOY15e+kRbmiLsY22pCiFMzJqoNWyK3kRIvRAKOhdUHSdHpLgxIbY2OqZ3CeD2/RQm/ROpOo4Qj0u4Dv98DlVfh8odVacxPza22tIUD29pq4cLYUJuJt5k4r6JtCnVhuYlm6uOk2NS3JiYkgXzMaJNRX7bG83Oc7dUxxFCYzBow77tnKHNNNVpzFfBMtBiHBz8AS5sUZ1GCEDrjhq9ezROtk6MCByhOo5RSHFjgt4KLEmDsl58sewY8Y9kbRphAg7/Auc3QYevwcVTdRrzVvt9KNVYW7LiUZzqNEKw/Pxydl3bxZj6Y3B3dFcdxyikuDFBNjY6przuz4OkNMavPqU6jrB29y5rSyzUeBvKt1KdxvzZ2GhLVSQlaOdVCIWuP7jO1ANTebXcqzQq3kh1HKOR4sZEFSvgzKj2lVl26CqbTsWqjiOslV4PK/qCswe0mqQ6jeUo4AutJ8HR3+HMP6rTCCulN+gJCQ/BzcGNz2t/rjqOUUlxY8K61CpOs4qFGfb3ce49TFEdR1ijA9/DpZ3QcTY4ualOY1lqvA3lWsHK/tpSFkLksT9P/8m+mH2MCxpHfof8quMYlRQ3Jkyn0zHp1WqkpusJWXlSdRxhbe5c0Eb11OkNpZuoTmN5dDrtHqb0FFg7RHUaYWUuJ1xm5uGZvFHhDV4q8pLqOEYnxY2JK+zmxLiOVVgVcZ01x26ojiOshT5dm4/F1QdajFWdxnK5+kDbGXDiLzi5XHUaYSXS9ekE7wrGy9mLz2p9pjpOrpDixgx0CChKm2o+BIcd59b9ZNVxhDXYMxuu7NeWDXDIpzqNZav6GlTqAKsHwYObqtMIK/DrqV+JuBVBaFAoLvYuquPkCiluzIBOp2N8x6rY6HSMWH4cg8GgOpKwZDcjYUso1OsLJSyvudrk6HTajM86G1g1UJtTSIhcciHuAt8c+YYelXtQ07um6ji5RnlxM2fOHPz8/HByciIwMJD9+/c/d/uZM2dSoUIFnJ2d8fX15bPPPiMpKSmP0qpTML8jE1+txsZTsSw/ck11HGGp0lO11as9SsHLo1SnsR75vKD9TDizBo4tVp1GWKhUfSojd42kuGtx+tXspzpOrlJa3CxevJhBgwYxevRoDh8+TEBAAK1ateLmzac3zS5atIhhw4YxevRoIiMj+eGHH1i8eDEjRljHXBGtqvjQuUYxRq88yY34R6rjCEu06yuIOQ6d54K9k+o01qVSe/DvBmu/gHj5AiOM74fjP3D67mkmNJiAo62j6ji5Smlx8+WXX9K7d2969epF5cqVmTdvHi4uLvz4449P3X737t0EBQXx5ptv4ufnR8uWLenevfsLW3ssyZj2VXBxsGXoX9I9JYzsRgRsnwINB0GxWqrTWKdXpoCDi7bUhVzfwohO3z3N/Ij5vF/tfap6VVUdJ9cpK25SUlI4dOgQzZv/d4EuGxsbmjdvzp49e576mvr163Po0KGMYubixYusXbuWNm3aPPM4ycnJJCQkPPYwZ+4u9kx5zZ8dZ2/x54ErquMIS5GWrHVHFaoEjb5QncZ6OXtAh2/gwmY4tFB1GmEhUtJTGLFrBGUKlKGPfx/VcfKEsuLm9u3bpKen4+3t/djz3t7exMTEPPU1b775JuPGjaNBgwbY29tTpkwZmjRp8txuqUmTJuHu7p7x8PX1Ner7UKFJhcK8UceX0NWnuHI3UXUcYQm2TYbb57TRUXYOqtNYt3ItoGYP2BAM9y6pTiMswLyIeUTFRzGhwQTsbe1Vx8kTym8ozopt27YxceJEvv32Ww4fPszff//NmjVrGD9+/DNfM3z4cOLj4zMeV65YRmvHyLaVKODiwOfLItDrpfla5MCVAxA+E5oMBR/Lb642Cy0ngLMnhPXVlsAQIpuO3TrGDyd+4OOAj6ngWUF1nDyjrLjx8vLC1taW2NjH102KjY3Fx8fnqa8ZNWoU77zzDh988AHVqlWjc+fOTJw4kUmTJqF/xgeAo6Mjbm5ujz0sgauTPdO6+LP34l1+3nNJdRxhrlISIawPFKkOQZY5mZdZcnKDTnPg8i7Y/53qNMJMJaUlMXLXSCp7Vua9qu+pjpOnlBU3Dg4O1KpVi82bN2c8p9fr2bx5M/Xq1XvqaxITE7GxeTyyra0tgFXeXFu/jBfv1vdjyrrTXLz1QHUcYY62jIe4K1p3lK2d6jTif5VqBHU/gk1j4PZ51WmEGfr6yNdcf3CdCQ0mYGdjXde30m6pQYMGsWDBAn7++WciIyP5+OOPefjwIb169QKgR48eDB8+PGP79u3bM3fuXP7880+ioqLYuHEjo0aNon379hlFjrX5onUFfNycGLI0gnTpnhJZcWkX7J0LzUKgkPU0V5uV5qPBrYjWuqZPV51GmJGDMQf57dRv9K/Zn9IFSquOk+eUlnLdunXj1q1bhISEEBMTQ/Xq1Vm3bl3GTcbR0dGPtdQEBwej0+kIDg7m2rVrFCpUiPbt2zNhwgRVb0E5Fwc7ZnQNoMu8PSzYeZE+jcuojiTMQfIDCPsEStSDlz5RnUY8i0M+6DQPfmoNu7+GBtJ1KF4sMTWR4PBgahSuwduV3lYdRwmdwcr6cxISEnB3dyc+Pt5i7r8BmLQ2kp/CL7GqXwMq+LiqjiNM3erPIGIxfLwLPK3vW53Z2TAK9s2DD7eDd2XVaYSJC90bysoLK/mr/V/4upn/COHsMKvRUuLZPmtRnpIFXRi89Cip6TK6QjzH+U1w8EdttW8pbMxD05Ha39Xyj7QlMoR4ht3Xd7P4zGIG1RpktYUNSHFjMZzsbZnRNYDIG/eZs1VuPhTP8CgOVvSD0k2g9vuq04jMsnfSbvqOPQk7Z6hOI0zU/ZT7hISH8FKRl+haoavqOEpJcWNB/IsXoG+TMszecp4T1+JVxxGmaN1wSHkAHWaDjVz+ZqVoDWg0BHZMg+tHVacRJmjK/ik8TH3IuPrjsNFZ9/Vt3e/eAn36cjnKe7syaMlRktNkdIX4H6fXQsQiaD0JClhvc7VZazgEClfSlspIS1adRpiQbVe2seLCCr6o8wVF8hdRHUc5KW4sjIOdDV92CyDq9kNmbjqnOo4wFYl3YdUAKN8aqr+lOo3ILjsH6Dwf7pyHrRNVpxEmIi4pjjG7x9C4eGM6le2kOo5JkOLGAlX0cWNg8/LM336Bw9H3VMcRpmDNYEhPgfazQKdTnUbkhHcVaDpcGxp+Zb/qNMIETNg3gVR9KqPrjUYn1zcgxY3F+qhRafyLF2DwkggepUj3lFU78Tec/BvazgDXpy9tIsxM/QFQtKbWPZUii+das/WX1rPu0jpGBo6kkEsh1XFMhhQ3FsrO1obpXQK4HveIqetPq44jVLkfq7XaVO4IVV9TnUYYi62dNnoq4RpsHqc6jVDk9qPbhO4NpUXJFrxS6hXVcUyKFDcWrGzh/HzeqgI/hV9iz4U7quOIvGYwwOqBoLOBtl9Kd5Sl8SoHzUbDvrkQtVN1GpHHDAYD4/Zoo6KCXwqW7qh/keLGwr0XVIq6pTz5fFkED5LTVMcReSniTzizVrvPJp+X6jQiNwT2gZJBsOITSL6vOo3IQ6surmLrla2E1AvB08lTdRyTI8WNhbOx0TH99QDuPkxhwppI1XFEXom/Bv8MBf9uUKmd6jQit9jYQMc58PAObAhWnUbkkZiHMUzeN5l2pdvRrEQz1XFMkhQ3VqBEQRdGtKnEH/uj2X72luo4IrcZDLDyU3BwgVemqE4jcptnKWg5Hg4t1JbWEBbNYDAwZvcYnO2cGVZ3mOo4JkuKGyvxVmAJGpbzYuiyY8Q/krVpLNqhn+DCFm0WYmcP1WlEXqj9HpRuqi2t8ShOdRqRi5adW0b49XDGBo3F3dFddRyTJcWNldDpdEx5zZ+HyWmMXXVSdRyRW+5GwfpgqNkTyjVXnUbkFZ0OOs7WltZYJ9/mLdXV+1eZfmA6r5V7jQbFGqiOY9KkuLEiRQs4M7pDFf4+fI0NJ2NUxxHGptfDik/BpSC0mqA6jchr7sW1bsiIP+D0GtVphJHpDXpGhY+igGMBPq/zueo4Jk+KGyvzWs1iNK9UmBHLj3P3YYrqOMKY9s+Hy7ug0xxwdFWdRqgQ0B3Kv6IttfFQpn+wJH+c/oODsQcZHzSefPb5VMcxeVLcWBmdTsfEV6uRpjcQHHYcg8GgOpIwhtvnYNMYqPsRlGqkOo1QRafThv7r02DNINVphJFExUfx1aGveLPim9QtUld1HLMgxY0VKuzqxPiOVVl7PIZVx26ojiNySp8OYR+DWzFoPkZ1GqGaq7e21MapMDjxl+o0IofS9ekEhwfjk8+HgbUGqo5jNqS4sVLtA4rS1r8IIStOcDMhSXUckRO7v4Zrh6DTXG34txBVX4MqnbWlN+7Hqk4jcmDhyYWcuH2C0KBQnO2cVccxG1LcWLHxHatiZ6Nj+N/SPWW2Yk/B1olQvx+UCFSdRpiSNjPAxg5W9dfmPhJm59y9c8w5OoeelXtSvXB11XHMihQ3VswznwOTXvVn8+mbLDt0VXUckVXpqbD8I/AsDU1GqE4jTE2+gtr9N2fXwdFFqtOILErVpzJy10hKuJagb42+quOYHSlurFyLyt68WrMY41ad4lrcI9VxRFbsmA6xJ7XVoe2dVKcRpqhiW20E1bphEC9fYMzJgmMLOHvvLBMaTsDR1lF1HLMjxY1gdPsq5HO0Y+iyY9I9ZS6uH4Gd06HREChaQ3UaYcpaTwaH/NocSHJ9m4WTd06y4NgCevv3pkrBKqrjmCUpbgTuzvZMed2fXedv89u+aNVxxIukJcPyj6FwZWg4RHUaYeqcC0DHb+DiVjj4o+o04gVS0lMI3hVMOY9yfFjtQ9VxzJYUNwKAxuUL8WZgCSatjST6TqLqOOJ5tk6EO+e17ig7B9VphDko2xxqvQsbRmlLdAiTNefoHC4lXCK0QSj2tvaq45gtKW5EhhFtKuGZz4EhSyPQ66X52iRd2a8N/W46AryluVpkQctQ7SbjFX21pTqEyTl68ygLTy6kb/W+lPcorzqOWZPiRmTI72jH9C4B7L90lx/D5dudyUlJhOV9oGhNqN9fdRphbhxdoeO3cDkc9s1TnUb8y6O0RwSHB1O1YFXerfKu6jhmT4ob8ZiXShekV5Af09af4cKtB6rjiP+1eSwkXNO6o2ztVKcR5qhUQwjso/0u3T6nOo34H7MOzyLmYQyhDUKxs5HrO6ekuBFP+KJVRYoVcGbwkgjS0qX52iRE7dC+bTcbDV7lVKcR5qzZaG2pjuV9ID1NdRoB7L+xn98jf2dAzQGUci+lOo5FkOJGPMHZwZbpXQM4djWO+Tsuqo4jku9r90mUbKB96xYiJxxctNa/64dh9yzVaazew9SHhOwOobZ3bd6q9JbqOBZDihvxVDVLePBR4zLM3HSWyBsJquNYtw3B8PAOdJwNNnLJCiPwravdt7V1kjYRpFBm+sHp3E26y7igcdjo5Po2FjmT4pkGNi9Haa/8DF4SQUqadE8pcW4THFoIrULBU5qrhRE1HQEFy2pLeKSlqE5jlcKvhbPs7DKG1B6Cr6uv6jgWRYob8UyOdrbM6BrA2dj7zN56XnUc6/PoHqzsB2Vehlq9VKcRlsbOUeueuhmpzXYt8lRCSgIhu0OoX7Q+Xcp3UR3H4khxI56rajF3Pn25LHO2nufY1TjVcazLP8Mg5SF0+AZ0OtVphCUqWh0afa6tU3btsOo0VmXK/ik8Sn3E2Ppj0cn1bXRS3IgX6tu0LJWKuDJ4SQRJqemq41iHyNVw7E94ZTK4F1edRliyhoPBpyqEfQypSarTWIUt0VtYeWElQ+sOxSefj+o4FkmKG/FC9rY2fNm1OpfvJPLVxrOq41i+h7dh9UCo0EZb0VmI3GRrD53mwd2LsHWC6jQW717SPcbuGUsT3yZ0KNNBdRyLJcWNyJTy3q4Malme73Ze5NDlu6rjWC6DAdYMAn0atJsp3VEib3hX1m4w3v0NRO9Tncaihe4NJd2Qzuh6o6U7KhdJcSMyrXfD0tTwLcDgJREkpsjkX7nixF9wagW0nQGu3qrTCGtSvz8Urw1hfbR7vYTRrYtax4bLGwgODMbL2Ut1HIsmxY3INFsbHdO7BBCTkMTUdWdUx7E892NgzWCo0hmqvqY6jbA2NrZa91TCDdg0VnUai3P70W1C94XSyq8VrUu1Vh3H4klxI7KkdKH8DG1dkYW7L7H7/G3VcSyHwQCrBoCtA7SZoTqNsFZeZaH5aNg/X1vyQxiFwWBgzO4x2OpsGRk4UnUcqyDFjciynvX8eKm0J58vO8b9pFTVcSzD0d/h7DpoPwvyFVSdRlizuh9pS32E9YUkmZ3cGFZcWMH2q9sZU28MHk4equNYBSluRJbZ2OiY9noAcYkpTFgTqTqO+Yu7AuuGQ8CbULGN6jTC2tnYQKc58OgubJBWhpyKeRjDlP1T6FCmA01LNFUdx2pIcSOyxdfThZFtK/PngStsPXNTdRzzZTDAyk/BIT+0nqQ6jRAaDz9oGQqHf4FzG1WnMVsGg4GQ8BBc7F0YWneo6jhWRYobkW3d6/rSqHwhhi47RnyidE9ly8Ef4OI2bVFM5wKq0wjxX7XehTLNtCVAHt1TncYsLT27lD039jCu/jjcHNxUx7EqUtyIbNPpdEx5rRqPUtMZs0pWFs6yuxdhwyht3aiyzVSnEeJxOp229EdKIvwjrQ5ZdeX+FaYfnM7r5V8nqFiQ6jhWR4obkSNF3J0Z26EKy49cY92JG6rjmA99unbDZr5C0HK86jRCPJ17MWgzFY4thshVqtOYDb1Bz6jwUXg6eTKk9hDVcaySFDcixzrXKEaLyt6MXH6COw+SVccxD3vnQvRu6PQtOLqqTiPEs/l3gwptYdVAbWkQ8UK/R/7OodhDjA8aTz77fKrjWCUpbkSO6XQ6Jnauht5gYOTyExgMBtWRTNuts7B5HLz0Cfg1UJ1GiOfT6aD9TDDotTXP5Pp+rqj4KGYdnsXbld6mjk8d1XGslhQ3wigKuToS2qka607GsDLiuuo4pis9TZvevoAvNAtRnUaIzMlfGNp9qXVNHV+mOo3JStOnEbwrmCL5itC/Zn/VcayaFDfCaNr6F6F9QFFCVpwkNiFJdRzTFD4Trh/Rprm3d1adRojM+8+yIGuHaEs0iCcsPLmQE3dOENogFGc7ub5VkuJGGNW4DlVwsLNh2F/HpHvq32JOwLbJEDQAfKW5WpihNtPBzhFW9ZfuqX85e+8sc47OoVeVXgQUClAdx+pJcSOMyiOfA5M6V2PrmVssPXhVdRzTkZYCy/uAVzloMlx1GiGyx8VTWyLk3AY48pvqNCYjNT2VkbtG4ufmxyfVP1EdRyDFjcgFzSt783qt4oxbfYqr9xJVxzENO6bBrUjoPE/75iuEuarwClR/S1syJC5adRqT8N3x7zh/7zwTG0zEwdZBdRyBFDcil4S0r4yrkx1fLDuGXm/lzdfXDsHOGdDoCygizdXCArSeBE7usOJT0OtVp1Hq5O2TLDi2gA8DPqRSwUqq44j/J8WNyBVuTvZMec2f3Rfu8Nu+y6rjqJOaBMs/Bp9q0HCQ6jRCGIeTO3T8BqK2a0uIWKnk9GRG7hpJBc8KfFDtA9VxxP+Q4kbkmkblC/FWYAkmrT3NpdsPVcdRY2so3IvSuqNs7VWnEcJ4yrwMtd+HjSFw54LqNErMOTKH6PvRTAiagL2NXN+mRIobkatGtKlEIVdHhiyNIN3auqei98Lu2dB0JBSW5mphgVqM0+bAWdFXW1LEihy9eZSFJxfyaY1PKetRVnUc8S9S3Ihclc/Rjmmv+3Mo+h4/7opSHSfvpDyEsI+heB2o3091GiFyh2N+6PitVsjv/VZ1mjyTmJrIyF0j8S/kT8/KPVXHEU8hxY3IdYGlC/JeUCmmbTjDudj7quPkjU1jtInOOs0FG1vVaYTIPX5BUK8vbB4Pt86oTpMnZh2exc3Em0xoMAFbub5NkhQ3Ik983qoCxT2cGbw0grR0Cx9dcXE77P8Omo8BL2muFlbg5WDwKKnN5ZSepjpNrtp3Yx+LTi9iYK2BlHQrqTqOeAYpbkSecLK3ZUaXAE5ci2fuNgu++TApQbv/wK8h1P1QdRoh8oa9s7akyI2jEP6V6jS55kHKA0LCQ6jrU5fuFburjiOeQ4obkWdqlPDg4yZl+HrLOU5dT1AdJ3dsGAmP7kHHOWAjl5ewIsVrQYPPYNsUuHFMdZpcMf3gdOKS4xgXNA4bnVzfpkz5386cOXPw8/PDycmJwMBA9u/f/9zt4+Li6Nu3L0WKFMHR0ZHy5cuzdu3aPEorcqp/s3KUKZSfQUuOkpJmYd1T5zbC4V+gZajWRC+EtWk8FApV0G6mT0tRncaodl7dyV/n/uLzOp9TLH8x1XHEC2S7uNm8eTPt2rWjTJkylClThnbt2rFp06Ys7WPx4sUMGjSI0aNHc/jwYQICAmjVqhU3b9586vYpKSm0aNGCS5cusWzZMs6cOcOCBQsoVkx+0cyFo50tM7oGcP7mA77efE51HONJvKvN1lq2OdR6V3UaIdSwc9Ruor91GnZMVZ3GaOKT4xmzewxBxYJ4rdxrquOITMhWcfPtt9/SunVrXF1dGTBgAAMGDMDNzY02bdowZ86cTO/nyy+/pHfv3vTq1YvKlSszb948XFxc+PHHH5+6/Y8//sjdu3cJCwsjKCgIPz8/GjduTECATGlvTqoUdad/s3LM3X6Bo1fiVMcxjn+GQtoj6PAN6HSq0wihThF/aDwMdn4JVw+pTmMUk/dP5lH6I8bWG4tOrm+zoDMYsr5uffHixRk2bBiffvrpY8/PmTOHiRMncu3atRfuIyUlBRcXF5YtW0anTp0ynu/ZsydxcXGsWLHiide0adMGT09PXFxcWLFiBYUKFeLNN99k6NCh2No+fThecnIyycnJGX9OSEjA19eX+Ph43NzcMvmOhbGlput5be5uHiansaZ/Q5zszXg45amVsOQd6DwfAt5QnUYI9dLT4Ifm2nxPH+3Qbjg2U5svb2bgtoFMbDCR9mXaq44jMskuOy+Ki4ujdevWTzzfsmVLhg4dmql93L59m/T0dLy9vR973tvbm9OnTz/1NRcvXmTLli289dZbrF27lvPnz/PJJ5+QmprK6NGjn/qaSZMmMXbs2ExlEnnH3taGGV0CaPvNLmZsOMPItpVVR8qeh7dh9WdQsR34d1OdJlsMBgNpaZY9fNec2draYmNuN6fb2mmjp+Y3gi2h0GqC6kTZcjfpLuP2juNl35dpV7qd6jgiC7JV3HTo0IHly5fz+eefP/b8ihUraNcu934B9Ho9hQsX5rvvvsPW1pZatWpx7do1pk2b9sziZvjw4Qwa9N8FC//TciPUK+ftypCW5Zn0z2laVvGhjp+n6khZYzDA6oFg0EO7r8yyOyotLY1bt26RjQZckYdcXFxwd3c3ry6RwhW1+W82hkDFtlCyvupEWWIwGBi/ZzwGg4FR9UaZ17kX2StuKleuzIQJE9i2bRv16tUDYO/evYSHhzN48GC+/vrrjG379+//1H14eXlha2tLbGzsY8/Hxsbi4+Pz1NcUKVIEe3v7x7qgKlWqRExMDCkpKTg4ODzxGkdHRxwdHbP8HkXeeL9BaTacjGXwkgjWDWyIi0O2fiXVOL4MIldBl5+19XXMjMFgIC4uDhsbGzw8POTD2wQZDAZSUlJISNCmTihQoIDaQFlVry+cXqONnuoTri3XYCbWRq1lU/QmZjSegZezl+o4Iouydc9NqVKlMrdznY6LFy8+8+eBgYHUrVuXb775BtBaZkqUKMGnn37KsGHDnth+xIgRLFq0iIsXL2Y0086aNYspU6Zw/fr1TGVKSEjA3d1d7rkxIZduP+SVWTvpUrs44zpWVR0ncxJuwLeB2uio159+A7ypS09PJzY2Fg8PD5ydzfeeCGvw4MEDEhIS8PHxMb8uqjsXYF4DqP4mtJ2hOk2m3Ey8SecVnQkqGsTUxpYz6suaZOtrclSUcRZAHDRoED179qR27drUrVuXmTNn8vDhQ3r16gVAjx49KFasGJMmTQLg448/Zvbs2QwYMIB+/fpx7tw5Jk6c+MzWIWEe/LzyMbxNRUJWnKRVFR+Cypr4tySDAVb1BzsnaDNddZps0+u1eYaedTO+MB3/aZVOT083v+KmYBloPhb++Vy7N61MU9WJnstgMDBm9xgcbB0Y+dJI1XFENintA+jWrRu3bt0iJCSEmJgYqlevzrp16zJuMo6Ojn7sQvb19WX9+vV89tln+Pv7U6xYMQYMGJDpm5iF6Xo7sCTrTsTwxbJj/DOwIW5O9qojPduRX+HcBui+GFzM7D6hp5DuKNNn9n9HdT6A06u0uaA+2Q1O7qoTPVPY+TB2XtvJ7Jdn4+5oujnF82W6W2rQoEGMHz+efPnyPXaD7tN8+eWXRgmXG6RbynRdvZdI65k7aVPNh6mvm+jcRXHR8G19qNwROmV+TidTlJqayq1btyhUqBD29iZcTArL+Lv6z7VTpaO2PIkJuv7gOq+ufJUWJVswPmi86jgiBzLdcnPkyBFSU1Mz/vtZzP4bhlCmuIcLo9pVYuhfx2ld1YeXK3q/+EV5Sa/XFsV0cofWE1WnEcK8FCihXTcr+0HF9lDhyelEVNIb9ISEh+Dq4MoXdb5QHUfkUKaLm61btz71v4Uwpq61fVl3Ioahfx1n42ceFHB5cgScMgd/gKgd8E6YSTerW7omTZpQvXp1Zs6cqTqKyKoa72gjDFf1B9+9JtWtu/jMYvbF7OO7Ft/h6uCqOo7IITO7M01YOp1Ox+TX/ElJ0zN65UnVcf7rzgVtvo7a75v8DZFCmCydDtp/DWnJsPbzF2+fR6ITovnq0Fd0q9CNekXrqY4jjCBbxc3Dhw8ZNWoU9evXp2zZspQuXfqxhxA54e3mxNgOVVhx9Dprj99QHQf06RD2iTaXTYtxqtMIYd7cikCbaXBiGZwMU52GdH06o8JHUdCpIINqPf9+UmE+sjVa6oMPPmD79u288847FClSRO6zEUbXsXpR1p2IITjsBHVLeeKVX+FEjHvmwJV90GutWU1CZg3u3bvHgAEDWLVqFcnJyTRu3Jivv/6acuXKYTAYKFy4MHPnzuX1118HoHr16sTGxnLjhlY079q1i2bNmnHv3j1cXFxUvhXrUq0LRK6ENYOgZBDkL6Qsym+Rv3Hk5hF+bPUjLvbyO2ApslXc/PPPP6xZs4agoCBj5xEC0LqnQjtXpeVXOxjx93Hmv1NLTRF987S2Nk69vmY3fXx2PEpJ58KtB3l+3DKF8uPskPX5dt59913OnTvHypUrcXNzY+jQobRp04ZTp05hb29Po0aN2LZtG6+//jr37t0jMjISZ2dnTp8+TcWKFdm+fTt16tSRwiav6XTQ9ittIszVA6Hbb0qWL7kYd5GvD3/N25XfprZP7Tw/vsg92SpuPDw88PQ0nRvBhGXyyu/IxM5V6fPbYcKOXqNzjeJ5GyA9DcL6gEdJbY0cK3Dh1gPafbMrz4+7ul8DqhbL2k3a/ylqwsPDqV9fKzx///13fH19CQsLo0uXLjRp0oT58+cDsGPHDmrUqIGPjw/btm2jYsWKbNu2jcaNGxv9/YhMyF9IW5NtSQ84tgQC8nbh2TR9GiN3jaRo/qL0ryETwVqabBU348ePJyQkhJ9//lm+8Yhc1bpqETpWL8roFSepV9oLH3envDv4rq/gRgS8vwnsrWN5gjKF8rO6XwMlx82qyMhI7OzsCAwMzHiuYMGCVKhQgcjISAAaN27MgAEDuHXrFtu3b6dJkyYZxc3777/P7t27+eILGfarTOWOWhfVP59DqYbgVjTPDv3jiR85dfcUv77yK052efi5IvJEpoubGjVqPNYtcP78eby9vfHz83tiUqnDhw8bL6GwemM7VGHPhTsM/esYC3vVyZvuqRvHYPsUaPAZFK+V+8czEc4OtlluQTFl1apVw9PTk+3bt7N9+3YmTJiAj48PU6ZM4cCBA6Smpma0+ghFXpkKUTu1+W/eWpYn3VNn7p5hbsRc3qv6Hv6F/HP9eCLvZbq46dSpUy7GEOLZCrg4MOU1f3otPMDiA1d4o26J3D1gWoq2inGhCtBYlvYwVZUqVSItLY19+/ZlFCh37tzhzJkzVK5cGdDu3WrYsCErVqzg5MmTNGjQABcXF5KTk5k/fz61a9cmX758Kt+GcPGEDl/Doq5w+Beo1TNXD5eansqIXSMo5V6KjwM+ztVjCXUyXdyMHj06N3MI8VxNKxamW21fxq8+RVBZL3w9c7E7dPsUuHUaem8FO4WjtMRzlStXjo4dO9K7d2/mz5+Pq6srw4YNo1ixYnTs2DFjuyZNmjB48GBq165N/vxa91ejRo34/fff+fxz05lrxaqVbwU13ob1I6B0E+0+t1wyN2IuF+Mu8ke7P3CwNaFJQoVRZWuemytXrnD16tWMP+/fv5+BAwfy3XffGS2YEP8W3K4SBVwc+GLZMfT6TC2JlnVXD8GuL6HxMCgizdWm7qeffqJWrVq0a9eOevXqYTAYWLt27WNd5Y0bNyY9PZ0mTZpkPNekSZMnnhOKtZoEzh7aEif/v2K9sR2/dZwfT/zIRwEfUdGzYq4cQ5iGTC+c+b8aNmzIhx9+yDvvvENMTAzly5enatWqnDt3jn79+hESEpIbWY1CFs40b+Hnb/PW9/sY26EKPev7GXfnqY9gfiNwyKfdRGybrfvtzYZFLMZoJazm7+riNvilo3YfTuBHRt11UloSXVd3xcXOhV/b/Iq9jQWfR5G9lpsTJ05Qt25dAJYsWUK1atXYvXs3v//+OwsXLjRmPiEeE1TWix71SjLpn0iibj807s63hMK9y9BpnsUXNkKYpNJNoM4HsHG0tuSJEc0+Mptr968xocEEKWysQLaKm9TUVBwdtXsRNm3aRIcOHQCoWLFixsyfQuSWYa9UxNvNiSFLI0g3VvfU5d3aTMQvB0Nhaa4WQpkW48DVB5b30ZY+MYJDsYf45dQv9KvRjzIFyhhln8K0Zau4qVKlCvPmzWPnzp1s3LiR1q21peuvX79OwYIFjRpQiH9zcbBjRpcADkff4/udF3O+w+QH2ugo37raTMRCCHUc8kGnuXD1AOyZnePdJaYmErwrmOqFq/NO5XeMEFCYg2wVN1OmTGH+/Pk0adKE7t27ExAQAMDKlSszuquEyE21/Tzp3bA0Mzac5Wzs/ZztbNNoeHBT+0C1yfoSAEIIIytZT/uisSUUbkbmaFdfHvqSO0l3CA0KxVaub6uR5RsLDAYDpUuXJjo6mrS0NDw8PDJ+9uGHH8qMxSLPDGpRni2nbzJ4SQR/f1Ife9ts1OoXtsKB76HNdCgozdVCmIyXg+HcBq176oNNYJv1+2T2XN/D4jOLGV53OCXccnl+LGFSsvyvgcFgoGzZssTExDxW2AD4+flRuHBho4UT4nmc7G2Z0SWAUzcSmLstGzcfJsXDik+hVCOo/b7xAwohss/eWbu5P+Y47Pwyyy+/n3KfkN0hBPoE8kbFN3IhoDBlWS5ubGxsKFeuHHfu3MmNPEJkSYBvAT5pUoavN5/jxLX4rL14/QitwOk4B2yy1UMrhMhNxWtBw0GwY6q2zlsWTDswjfsp9xkXNA4bnVzf1iZbf+OTJ0/m888/58SJE8bOI0SW9Xu5HOW8XRm8JILktEyOrjizDo78Bq0nQgFprhbCZDX6AgpV0rqn0pIz9ZLtV7az/PxyvqjzBUXz591inMJ0ZKu46dGjB/v37ycgIABnZ2c8PT0fewiRlxzsbPiyawAXbz9g1qZzL35B4l1Y1R/KtYQaMnpCCJNm5wCd58Ltc7Bt8gs3j0uKY8yeMTQs1pDOZTvnQUBhirI1U9nMmTONHEOInKlUxI2BzcszY8MZWlT2pkYJj2dvvPZz7Rtg+6/zZAViIUQO+VSDJkNh60So0AZ86zxz04n7J5KSnsKY+mPQyfVttbJV3PTsmburtgqRHR81Ks2GU7EMXhrB2v4NcbJ/yrDPk2FwYhm8+j24FcnzjEKIbAr6DE6vhbA+8NFOcHhyZO6GSxv4J+ofJjecTGEXGdxizbJ9l9WFCxcIDg6me/fu3Lx5E4B//vmHkydPGi2cEFlhZ2vDjC4BXLv3iGnrzzy5wYNbsGYQVGoP1V7P+4DCbKWnp6PPpcUcRSbZ2kHneRB3BbaMf+LHdx7dIXRvKM1LNKdNqTYKAgpTkq3iZvv27VSrVo19+/bx999/8+DBAwAiIiIYPXq0UQMKkRVlC+fn81YV+DE8in0X/2dEn8EAqwcCOmj7lXRHmbl169bRoEEDChQoQMGCBWnXrh0XLmjTAdSvX5+hQ4c+tv2tW7ewt7dnx44dACQnJzNkyBCKFStGvnz5CAwMZNu2bRnbL1y4kAIFCrBy5UoqV66Mo6Mj0dHRHDhwgBYtWuDl5YW7uzuNGzfm8OHDjx3r9OnTNGjQACcnJypXrsymTZvQ6XSEhYVlbHPlyhW6du1KgQIF8PT0pGPHjly6dClXzpVFKVQBmoXA3rlwaVfG0waDgXF7xqHT6Qh+KVi6o0T2ipthw4YRGhrKxo0bcXBwyHj+5ZdfZu/evUYLJ0R29AoqRZ2SngxZFsHD5DTtyWNL4PRqaPcV5C+kNqApS0mE60fz/pGSmKWYDx8+ZNCgQRw8eJDNmzdjY2ND586d0ev1vPXWW/z5558YDP9dd2zx4sUULVqUhg0bAvDpp5+yZ88e/vzzT44dO0aXLl1o3bo1587994b0xMREpkyZwvfff8/JkycpXLgw9+/fp2fPnuzatYu9e/dSrlw52rRpw/372izZ6enpdOrUCRcXF/bt28d3333HyJEjH8uemppKq1atcHV1ZefOnYSHh5M/f35at25NSkpKls6DVXrpYyjxEoR9oi2dAqy+uJotV7Yw6qVRFHSWJYAE6Az/+wmQSfnz5+f48eOUKlUKV1dXIiIiKF26NJcuXaJixYokJSXlRlajSEhIwN3dnfj4eNzc3FTHEbnk8p2HtJ65k1drFmNCs4Lw7Uva6KjXvlcdzWSkpqZy69YtChUqhL39/8/+ev0ofNc478N8uB2KVs/2y2/fvk2hQoU4fvw43t7eFC1alC1btmQUM/Xr16dRo0ZMnjyZ6OjojFnWixb97zDh5s2bU7duXSZOnMjChQvp1asXR48ezVhe5mn0ej0FChRg0aJFtGvXjnXr1tG+fXuuXLmCj48PoC0u3KJFC5YvX06nTp347bffCA0NJTIyMqOFISUlhQIFChAWFkbLli2fOM5T/66s2d2LMDcIAt4gtukwOq/sTKPijZjc8MWjqYR1yNYNxQUKFODGjRuUKlXqseePHDlCsWLFjBJMiJwoWTAfI9pWYlTYcQbfHIGnnTO0maY6lunzKq8VGiqOmwXnzp0jJCSEffv2cfv27Yz7YaKjo6latSotW7bk999/p2HDhkRFRbFnzx7mz58PwPHjx0lPT6d8+cePmZyc/NjCvw4ODvj7+z+2TWxsLMHBwWzbto2bN2+Snp5OYmIi0dHRAJw5cwZfX9+MwgZ4Yr29iIgIzp8/j6ur62PPJyUlZXStiRfwLA0txmFYO4TR6VdxsnVieN3hqlMJE5Kt4uaNN95g6NChLF26FJ1Oh16vJzw8nCFDhtCjRw9jZxQiW94OLEHyvp/wvLGDh6//QT7n5wwPFxoHlxy1oOSV9u3bU7JkSRYsWEDRokXR6/VUrVo1o1vnrbfeon///nzzzTcsWrSIatWqUa1aNQAePHiAra0thw4dwtb28RF1+fPnz/hvZ2fnJ+7d6NmzJ3fu3GHWrFmULFkSR0dH6tWrl6XupAcPHlCrVi1+//33J35WqJB0mWZa7ff5O3IR4XGnmdNwKu6O7qoTCROSreJm4sSJ9O3bF19fX9LT06lcuTLp6em8+eabBAcHGzujENmii4vmvQff8ZfhZfZEFmN6VdWJhDHcuXOHM2fOsGDBgoxup127dj22TceOHfnwww9Zt24dixYteuxLV40aNUhPT+fmzZsZr8+s8PBwvv32W9q00UbjXLlyhdu3b2f8vEKFCly5coXY2Fi8vb0BOHDgwGP7qFmzJosXL6Zw4cLSNZ4D1xJvMNX2Ia8mJNMoYiWUfkV1JGFCsnVDsYODAwsWLODChQusXr2a3377jdOnT/Prr78+8U1ICCX0eljRFxsXT3StJ7Ls0FU2nopVnUoYgYeHBwULFuS7777j/PnzbNmyhUGDBj22Tb58+ejUqROjRo0iMjKS7t27Z/ysfPnyvPXWW/To0YO///6bqKgo9u/fz6RJk1izZs1zj12uXDl+/fVXIiMj2bdvH2+99RbOzs4ZP2/RogVlypShZ8+eHDt2jPDw8IwvfP9pBXrrrbfw8vKiY8eO7Ny5k6ioKLZt20b//v25evWqsU6TRdMb9ISEh+DuVIDP6w6FiEXaHDhC/L8crSZWokQJXnnlFbp06UK5cuWMlUmInDuwAC7thI5z6PxSRZpVLMzwv49z76GMRjF3NjY2/Pnnnxw6dIiqVavy2WefMW3ak/dTvfXWW0RERNCwYUNKlHh8/bCffvqJHj16MHjwYCpUqECnTp04cODAE9v92w8//MC9e/eoWbMm77zzDv3796dw4f9OFmdra0tYWBgPHjygTp06fPDBBxmjpZycnABwcXFhx44dlChRgldffZVKlSrx/vvvk5SUJC05mfTH6T/YH7Of8UHjyV/rPSjfGlYN0JZWEYJsjpYC7SL/6quvMoZOlitXjoEDB/LBBx8YNaCxyWgpK3D7PMxrADXehrbTAbiZkETLmTtoUNaL2W/WVBzQNMgInLwRHh5OgwYNOH/+PGXKlMnWPuTv6r8uxV+iy6oudC7XmRGBI7Qn78fAnEAo8zJ0+UltQGESsnXPTUhICF9++SX9+vWjXr16AOzZs4fPPvuM6Ohoxo0bZ9SQQmSaPh3CPgZXH2gxNuPpwm5OjOtYlf5/HKF11eu085eVgkXuWL58Ofnz56dcuXKcP3+eAQMGEBQUlO3CRvxXuj6d4PBgCrsUZmDNgf/9gasPtJ0Bf72vzUBe9VVlGYVpyFZxM3fuXBYsWPBYP3aHDh3w9/enX79+UtwIdXZ/A1cPwHvrwCHfYz9q71+EdSduMCrsBIGlClLI1VFRSGHJ7t+/z9ChQ4mOjsbLy4vmzZszY8YM1bEsws+nfubYrWP8/MrPuNj/a22pqq9B5EpYMxj8GkB+WVvKmmXrnpvU1FRq1679xPO1atUiLS0tx6GEyJabkbB1AtT/VJvB9F90Oh3jO1bF1kbH8L+Pk80eWSGeq0ePHpw9e5akpCSuXr3KwoULH5s/R2TP+XvnmX1kNj2r9KRG4RpPbqDTQdsvQWcDqwZqS64Iq5Wt4uadd95h7ty5Tzz/3Xff8dZbb+U4lBBZlp4Kyz8Cj1LQ9NnTERTM78iEztXYFBnL34ev5WFAIUR2pepTGbFrBL6uvnxa49Nnb5jPC9rPgjNr4NjivAsoTE6mu6X+d6ilTqfj+++/Z8OGDbz0kvYNed++fURHR8skfkKNnTMg5gR8sBHsnZ67aasqPrxaoxhjVp2kftmCFHF3fu72Qgi1vj/+PWfvneX3Nr/jaPuC7uRK7cC/G6z9AvwagrvMmm+NMl3cHDly5LE/16pVCyBjunAvLy+8vLw4efKkEeMJkQnXj8KOadBwEBSrlamXjG5fhfALtxn613F+7lVHVhEWwkSdunOK7yK+44NqH1DFq0rmXvTKFIjaASv7wdt/aV1Wwqpkeyi4uZKh4BYmLRnmNwYbO+i9BewcXvya/7ftzE3e/ekAEztX483A589vYolkeLH5sNa/q5T0FLqt7oadjR2L2izC3jYL7/3cJvj9NWg3E2r3yrWMwjTlaBI/IZTbNgnunIfO87JU2AA0qVCY7nV9mbDmFFfuJuZSQCFEdn179FsuJVwiNCg0a4UNQLnmULMnbAiGe5dyJZ8wXdkqbpKSkpg2bRpt2rShdu3a1KxZ87GHEHniygEInwVNhoFP9haOGtm2MgVcHBiyNAK93qoaMYUwaRG3Ivjp5E/0rd6XCp4VsreTVhPA2RPC+mpLsgirka3i5v3332fq1KmULFmSdu3a0bFjx8ceQuS6lEQI6wNFa0DQwGzvJr+jHdO6+LMv6i4/77lktHgi9zRp0oSBAwc+8+c6nY6wsLBM72/btm3odDri4uJynE0Yx6O0RwTvCqZKwSq8W+Xd7O/I0RU6zYHLu2D/fKPlE6YvW5P4rV69mrVr1xIUFGTsPEJkzpbxEH8V3vgDbLP1a5yhfhkv3q3vx5R1p2lcvhClC+U3Ukihwo0bN/Dw8FAdQ+TA14e/5sbDG8x6eRZ2Njm7vinVCOp+BJvGQNnm4CXrIFqDbLXcFCtWDFdXV2NnESJzLu2CvXPh5VFQqLxRdjm0dUWKuDszeGkE6dI9ZdZ8fHxwdJTZp83VgZgD/Bb5G/1r9Ke0e2nj7LT5GHArpi3Nok83zj6FSctWcTNjxgyGDh3K5cuXjZ1HiOdLfgBhn0CJevDSx0bbrbODLdO7+BNxJY7vdlw02n5F7tDr9XzxxRd4enri4+PDmDFjMn72726p3bt3U716dZycnKhduzZhYWHodDqOHj362D4PHTpE7dq1cXFxoX79+pw5cyZv3ozIkJiayKjwUdTyrsXbld823o4dXKDTXLh2CHZ/bbz9CpOVrfa+2rVrk5SUROnSpXFxcXliaOLdu7LsvMglG0fBw9vQIwxsbI2661olPendqDRfbTzLyxULU8HH+lonH6U9Iio+Ks+PW8q9FM52mZ9M8eeff2bQoEHs27ePPXv28O677xIUFESLFi0e2y4hIYH27dvTpk0bFi1axOXLl595v87IkSOZMWMGhQoVok+fPrz33nuEh4fn5G2JLJpxcAZ3k+6yoOUCbHRGHsxbIhDq94OtE6FcK/CubNz9C5OSreKme/fuXLt2jYkTJ+Lt7S0ToIm8cX4zHPxRW/3X00jN1f/yWfPybIm8yaAlRwnrG4S9rXXNlhAVH0W31d3y/LiL2y2mcsHM/2Pj7+/P6NGjAShXrhyzZ89m8+bNTxQ3ixYtQqfTsWDBApycnKhcuTLXrl2jd+/eT+xzwoQJNG7cGIBhw4bRtm1bkpKScHJ6/ozXwjh2X9vNkrNLCA4MxtfVN3cO0mQEnF2vLdXSewtkdXi5MBvZKm52797Nnj17CAgIMHYeIZ7uUZw222jpplD7/Vw7jJO9LV92rU6nb8OZs/U8A5sb554ec1HKvRSL2+X9mjyl3EtlaXt/f//H/lykSBFu3rz5xHZnzpzB39//sQKlbt26L9xnkSJFALh58yYlSljfBI95LSElgZDdIdQrUo+uFbrm3oHsnbQ5sRY0gx3Toenw3DuWUCpbxU3FihV59OiRsbMI8WzrR0Dyfeg4O9enUq9W3J2+Tcsye8t5mlfypmox91w9nilxtnPOUguKKv/uCtfpdOhzOI/J/+7zP63ROd2nyJwp+6fwMPUh44LG5X5PQNEa0GiItmRLhdban4XFyVab++TJkxk8eDDbtm3jzp07JCQkPPYQwqhOr4Wjv0PrSeBePE8O+WnTslTwcWXQkqMkp8noCnNVoUIFjh8/TnJycsZzBw4cUJhI/NvW6K2svLCSoXWH4pPPJ28O2nCIds/N8j6QmpQ3xxR5KlvFTevWrdmzZw/NmjWjcOHCeHh44OHhQYECBWR+CWFciXdh1QAo3xqqv5Vnh3Wws2FG1wAu3U7kq43n8uy4wrjefPNN9Ho9H374IZGRkaxfv57p06cDyL2CJuBe0j3G7hlL4+KN6VgmDyeAtXOAzvPhzgXYNjHvjivyTLa6pbZu3WrsHEI83ZrBoE+F9rPyfGXfij5uDGxRjunrz9Cisje1Skrhbm7c3NxYtWoVH3/8MdWrV6datWqEhITw5ptvyo3CJmDCvgmkGdIYXW903heb3lW0e262hELFduD79HuxhHmSVcGF6TrxNyzrBa/9ANVeVxIhLV1Pl/l7iEtMZW3/hjg7GHf4uUrWutL077//Tq9evYiPj8fZOfPDz1WyxL+rdVHr+HzH50xtNJVXSr2iJkR6GvzYCh7dgz67tPlwhEXI9jjXnTt38vbbb1O/fn2uXbsGwK+//squXbuMFk5YsQc3tVabyp2g6mvKYtjZ2jC9SwDX4x4xZd1pZTlE9v3yyy/s2rWLqKgowsLCGDp0KF27djWbwsYS3X50m9B9obQs2ZLWfq3VBbG100ZPJVyDzWPV5RBGl63i5q+//qJVq1Y4Oztz+PDhjJv14uPjmThR+i9FDhkM2n02NrbQ9ss87476tzKF8jO0dUUW7r7E7gu3lWYRWRcTE8Pbb79NpUqV+Oyzz+jSpQvfffed6lhWy2AwMHbPWGx1tgS/FKz+3ievctBsNOybB1E71GYRRpOt4iY0NJR58+axYMGCx5pIg4KCOHz4sNHCCSsV8SecWQvtZkK+gqrTAPBufT8CS3ny+dJjPEhOUx1HZMEXX3zBpUuXSEpKIioqiq+++goXF+l+UGXlhZVsu7KNkHoheDiZyH1sgX2gZANY0VebckKYvWwVN2fOnKFRo0ZPPO/u7k5cXFxOMwlrFn8N/hkK/m9ApXaq02SwsdExvUsAcYkpTFgTqTqOEGYp5mEMU/ZPoX3p9jQr0Ux1nP+ysdHm0Hp4BzYEq04jjCBbxY2Pjw/nz59/4vldu3ZRunTuTIsvrIDBACs/BYd88Mpk1Wme4Ovpwoi2lfhjfzTbzjw5G665srIxBWbJEv6ODAYDo3ePxtnemaF1h6qO8yTPUtAqFA4thHObVKcROZStoeC9e/dmwIAB/Pjjj+h0Oq5fv86ePXsYMmQIo0aNMnZGYS0OLYQLW+Ctv8DZRJqr/+XNuiVYdyKGYX8dZ/3ARri7mO/IFVtbW3Q6Hffv38fV1VX9vQ/iCQaDgfT0dBISEtDpdNjZZesj2yQsPbuU3dd3M7f5XNwdTXTW71q9IHKVttTLJ7tN9nNIvFi2hoIbDAYmTpzIpEmTSExMBMDR0ZEhQ4Ywfvx4o4c0JhkKbqLuRsHcIPDvos1pY8JuxD+i5Vc7aFHJmy+7VVcdJ0eSk5O5e/euRbQMWDIHBwcKFChgtsXNlftXeG3la7Qt3ZbR9UarjvN88Vfh2/pQ4RV4db7qNCKbcjTPTUpKCufPn+fBgwdUrlyZ/PnzGzNbrpDixgTp9fBze4iPho93g6Or6kQv9NehqwxeGsH8d2rRqkoeTRmfS/R6PenpssSEqbKxscHGxsZsW9b0Bj3vr3+fGw9v8FeHv8hnn091pBc7+geE9YE3FkHFtqrTiGzI0teA9957L1Pb/fjjj1kKMWfOHKZNm0ZMTAwBAQF88803z1y593/9+eefdO/enY4dOxIWFpalYwoTsn8+XN4FPVebRWED8GrNYvxzIoaRy49Tx88Tz3wOqiNl23/+8RQiNyyKXMTB2IP80PIH8yhsAALegMiV2pQUvi+ZzKhNkXlZ+kRbuHAhW7duJS4ujnv37j3zkRWLFy9m0KBBjB49msOHDxMQEECrVq24efP5N2xeunSJIUOG0LBhwywdT5iY2+dg0xhtKGYp8/m71Ol0THy1Kml6A8Fhx6VbR4iniIqPYubhmbxV6S3qFjGj5Q10Om0qCn06rBmkOo3Ihix1S/Xt25c//viDkiVL0qtXL95++208PT1zFCAwMJA6deowe/ZsQGsi9/X1pV+/fgwbNuypr0lPT6dRo0a899577Ny5k7i4uGe23CQnJz+2InBCQgK+vr7SLWUK0tPgp9ba4phmOvX56mPX+XTREb7uXoMOAUVVxxHCZKTp0+i5rifxyfEsbb8UZzsznBH6P0vAvP6j0pnSRdZlqeVmzpw53Lhxgy+++IJVq1bh6+tL165dWb9+fba+uaakpHDo0CGaN2/+30A2NjRv3pw9e/Y883Xjxo2jcOHCvP/++y88xqRJk3B3d894+Pr6ZjmnyCW7v4Zrh7Tpz82wsAFo51+Utv5FCFlxgpsJSarjCGEyFp5cyInbJwgNCjXPwgag6qtQpbO2FMz9WNVpRBZkuaPd0dGR7t27s3HjRk6dOkWVKlX45JNP8PPz48GDB1na1+3bt0lPT8fb2/ux5729vYmJiXnqa3bt2sUPP/zAggULMnWM4cOHEx8fn/G4cuVKljKKXBJ7ErZNgvr9zX413vEdq2JnY8Pwv6V7SgiAs/fO8u3Rb+lZpSfVC1dXHSdn2swAG3tY1V+bi0uYhRzdRfifO/j/MxdDbrt//z7vvPMOCxYswMvLK1OvcXR0xM3N7bGHUCw9FZb3Ac8y0HSE6jQ55pnPgUmvVmPz6ZssO3RVdRwhlErVpxK8K5iSbiXpW72v6jg5l6+gNj3F2XVwdJHqNCKTslzcJCcn88cff9CiRQvKly/P8ePHmT17NtHR0VkeCu7l5YWtrS2xsY8398XGxuLj8+Tw2gsXLnDp0iXat2+PnZ0ddnZ2/PLLL6xcuRI7OzsuXLiQ1bcjVNgxHW6egs5zwc5RdRqjaFHZm9dqFmfcqlNci3ukOo4Qyiw4toCz984S2iAUR1vLuL6p2AYC3oR1w7R5cITJy1Jx88knn1CkSBEmT55Mu3btuHLlCkuXLqVNmzbZGkrq4OBArVq12Lx5c8Zzer2ezZs3U69evSe2r1ixIsePH+fo0aMZjw4dOtC0aVOOHj0q99OYg+tHYMc0aDgEitZQncaoQtpXJp+jHUOXHZPuKWGVTt45yXfHvqO3f2+qFKyiOo5xtZ4EDvm1xTXl+jZ5WRotZWNjQ4kSJahRo8ZzJ5T6+++/Mx1g8eLF9OzZk/nz51O3bl1mzpzJkiVLOH36NN7e3vTo0YNixYoxadKkp77+3Xfffe5oqX+TSfwUSk2C75qArT303qL9v4XZcfYWPX7cz/hOVXnnpZKq4wiRZ5LTk3lj9RvY29jze5vfsbfA65vzm+C316DtDKjzgeo04jmyNIlfjx49jD5LZrdu3bh16xYhISHExMRQvXp11q1bl3GTcXR0tEwwZim2TYS7F+DD7RZZ2AA0Kl+INwNLMGltJI3LFaJEQfMcBSZEVs05OodLCZdY3G6xZRY2AGWba+tPbQiBMi+DpywUbapytPyCOZKWG0Wi98GPraD5aGjwmeo0uepBchqvzNpBETdn/vzwJWxszHPafCEy6+jNo/Rc15N+NfrxQTULb9FIvg9z64NbcXh3DciXb5Mkfysi96U81NZpKV5bG/pt4fI72jHt9QD2X7rLj+FRquMIkasepT0iODyYqgWr8m6Vd1XHyX2OrtBpLkTvhn1zVacRzyDFjch9m8ZCwg3oNA9sbFWnyRMvlS7Ie0GlmLb+DOdvZm3+JyHMyazDs4h5GENog1DsbMxz1fIs82sAgR/D5nFw66zqNOIppLgRuStqh7YwZvPR4FVWdZo89UXrChQr4MzgpRGkpetVxxHC6Pbf2M/vkb8zoOYASrmXUh0nbzULAffiWqt0eprqNOJfpLgRuScpAcL6QskGUPcj1WnynJO9LdO7BnD8ahzzd1xUHUcIo3qY+pBR4aOo5V2Ltyq9pTpO3nNw0Vqjrx+B3bNUpxH/IsWNyD0bguHRXeg0x2pvuqtZwoOPGpdh5qazRN5IUB1HCKOZdmAa95LvMT5oPDY667y+8a0DQQNg6ySIOaE6jfgfVvobKXLduU1w+GdoOR48/FSnUWpg83KU9srP4CURpKRJ95Qwf7uu7eKvc38xpPYQfF2tfPLUJsPBq5zWPZWWojqN+H9S3Ajje3QPVn6qzQNRq5fqNMo52tkyo2sAZ2PvM3vredVxhMiR+OR4RoePpn7R+nQp30V1HPXsHLXRUzcjtdnXhUmQ4kYY3z/DICUROswGI0/6aK6qFnPn05fLMmfreY5djVMdR4hsm7J/Co/SHjG2/lijT+pqtopWh0afw84ZcO2w6jQCKW6EsUWuhmN/witTwL2Y6jQmpW/TslQq4sqgJREkpaarjiNElm2O3syqi6sYWncoPvmeXNzYqjUcDD5VYXkfbakZoZQUN8J4Ht6G1QOhQhsIeEN1GpNjb2vDl12rE30nka82ytwYwrzcTbrLuD3jaOLbhA5lOqiOY3ps7aHzfLgXBVsnqE5j9aS4EcZhMMCaQaBPh3YzpTvqGcp7uzKoZXm+23mRQ5fvqo4jRKYYDAZC94aSbkhndL3R0h31LIUrQdORsPsbiN6rOo1Vk+JGGMeJv+DUCm21XFdv1WlMWu+GpanhW4DBSyJITJHJv4TpW3dpHRsvbyT4pWC8nL1UxzFt9ftB8ToQ9rG29IxQQoobkXP3Y2DtEKjSGaq+qjqNybO10TG9SwAxCUlM+ee06jhCPNetxFuE7g2llV8rWvu1Vh3H9NnYaqOnEm7ApjGq01gtKW5EzhgMsGoA2NhDmxmq05iN0oXyM7R1RX7ec5nd52+rjiPEUxkMBsbuGYu9jT0jA0eqjmM+vMpC8zGw/zu4uF11GqskxY3ImaOL4Ow6aD8L8hVUncas9Kznx0ulPfl82THuJ6WqjiPEE8LOh7H96nZG1xuNh5OH6jjmpe6H4NcQVvTVlqIReUqKG5F98Vdh3TAI6A4V26hOY3ZsbHRMez2AuMQUJqyJVB1HiMfceHCDqQem0qFMB5qWaKo6jvmxsYGOc7RJTTdIq1dek+JGZI/BoH0jccgPrSerTmO2fD1dCG5XmT8PXGHr6Zuq4wgBaN1RIbtDcLF3YWjdoarjmC+PktBqAhz+Bc5uUJ3GqkhxI7Ln4A9wcRt0nA3OBVSnMWtv1PGlcflCDP3rGHGJsjaNUG/JmSXsvbGX8fXH4+bgpjqOeavZE8o2h5X9IFGmf8grUtyIrLt7ETaEaOtGlW2mOo3Z0+l0THnNn6TUdMasPKk6jrByVxKuMOPQDLqU70L9YvVVxzF/Oh10+AbSHsE/0gqWV6S4EVmj10NYX8jnpa34LYzCx92JMR2qEHb0OutO3FAdR1ipdH06weHBeDp5Mrj2YNVxLIdbUXhlKhxfApGrVKexClLciKzZNxeid0Onb8HRVXUai9K5RjFaVvZm5PIT3HmQrDqOsEK/Rf7G4ZuHGR80nnz2+VTHsSz+3aBiO1g1UFuqRuQqKW5E5t06C5vGwkufgF8D1Wksjk6nY0LnaugNBkYuP4HBYFAdSViRi3EX+frw17xd6W3q+NRRHcfy6HTQ7isw6GH1Z9qgDJFrpLgRmZOeBmF9oIAvNAtRncZiFXJ1ZELnaqw7GcPKiOuq4wgrkaZPY+SukRTNX5QBNQeojmO58hfWCpzIldqSNSLXSHEjMid8Jlw/Ap3mgb2z6jQWrU21IrQPKErIipPEJiSpjiOswE8nfuLU3VOENgjFyc5JdRzLVqUTVH0N1gzWlmgQuUKKG/FiMcdh22QIGgC+0lydF8Z1qIKDnQ3D/jom3VMiV525e4ZvI76lV5VeBBQKUB3HOrSZDnaO2tI1cn3nCiluxPOlpcDyj8GrHDQZrjqN1fDI58DkV6ux9cwtlh68qjqOsFCp6amM3DUSPzc/Pqn+ieo41sPFE9p/DefWw5HfVKexSFLciOfbMRVuRULnedo3DZFnmlXypkut4oxbfYqr9xJVxxEWaN6xeVyIu8DEBhNxsHVQHce6VGgN1d+GdcMhLlp1GosjxY14tmuHYOeX0OgLKCLN1SqMal8ZNyc7vlh2DL1emq+F8Zy4fYIfjv/AhwEfUqlgJdVxrFPrieDkDis+1eYQE0YjxY14utQkrTvKpxo0HKQ6jdVyc7Jn6usB7L5wh9/2XVYdR1iI5PRkRu4aSQXPCnxQ7QPVcayXk7u2hE3Udm1JG2E0UtyIp9saCveitO4oW3vVaaxag3JevP1SCSatPc2l2w9VxxEWYPaR2Vy5f4UJQROwt5HrW6kyTaH2+7AxBO5cUJ3GYkhxI550eQ/sng1NR0Jhaa42BcNfqUQhV0eGLI0gXbqnRA4cjj3Mzyd/5tMan1LWo6zqOAKgxThtDpwVfUGfrjqNRZDiRjwu5SGEfQzF60D9fqrTiP+Xz9GO6V0COBR9jx93RamOI8xUYmoiweHB+Bfyp2flnqrjiP9wzA+d5kL0Xtj7reo0FkGKG/G4jaPhfozWHWVjqzqN+B91S3nyflAppm04w7nY+6rjCDP01aGvuJV4iwkNJmAr17dpKVkf6vWFzePh1hnVacyeFDfivy5ugwMLoMVYKFhGdRrxFENaVcDXw5khSyNIS5fRFSLz9t7Yy59n/mRgrYGUdCupOo54mpeDwaMkLO+jLXkjsk2KG6FJStCGI/o1hDq9VacRz+Bkb8uMrtU5fi2eedvl5kOROQ9SHhASHkJdn7p0r9hddRzxLPbO2hI3N45C+Feq05g1KW6EZv0IeHQPOs4BG/m1MGXVfQvwcZMyzNp8jlPXE1THEWZg2sFpxCfHMy5oHDY6ub5NWvFa0GAQbJuiLX0jskV+ywWc3QBHfoVWE7QmUWHy+jcrR5lC+Rm05CgpadI9JZ5tx9Ud/H3ubz6v8znF8hdTHUdkRuOhUKiC1j2VlqI6jVmS4sbaJd6Flf2gbHOoKaMnzIWjnS0zugZw/uYDvt58TnUcYaLik+MZs3sMQcWCeK3ca6rjiMyyc9AGddw6A9unqE5jlqS4sXb/DIW0R9DhG9DpVKcRWVClqDsDmpVj7vYLHL0SpzqOMEGT9k8iKT2JsfXGopPr27z4VNNacHZ9BVcPqU5jdqS4sWanVsLxJfDKVHArqjqNyIaPm5ShSlE3Bi85SlKqTP4l/mvT5U2subiG4XWH453PW3UckR0NPtPW9QvrA6mPVKcxK1LcWKsHt2D1Z1CxHfh3U51GZJOdrQ0zugRw5d4jZmyQuTGE5s6jO4zfO56XfV+mXel2quOI7LK107qn7l2GLaGq05gVKW6skcEAaz4DDNDuK+mOMnPlvF0Z0rI83++KYn/UXdVxhGIGg4HQvaEYDAZG1Rsl3VHmrlAFaDYK9syBy7tVpzEbUtxYo+NLIXIVtP1SW89EmL33G5SmVgkPhiyN4GGyTP5lzdZGrWVT9CaCXwrGy9lLdRxhDC99Ar6B2tI4yQ9UpzELUtxYm4QbsHYIVH0dqnRSnUYYia2NjuldArh1P5nJ/5xWHUcocjPxJhP2TeCVUq/Q0q+l6jjCWGxsodO38OAmbBqtOo1ZkOLGmhgM2rBvOydoM011GmFkfl75GN6mIr/uvcyuc7dVxxF5zGAwMGb3GBxtHRkZOFJ1HGFsBctoq4cf+B4ubFWdxuRJcWNNjvwK5zdC+6/BxVN1GpEL3g4sSf0yBfliWQQJSamq44g8FHY+jJ3XdjKm3hjcHd1VxxG5ofb7UKqRtlROUrzqNCZNihtrERcN60ZA9behQmvVaUQusbHRMa1LAAlJaYSuPqU6jsgj1x9cZ8qBKXQq24nGvo1VxxG5xcZGWyInKV77PBfPJMWNNdDrYUVfcHKH1hNVpxG5rFgBZ0a1q8SSg1fZHBmrOo7IZXqDnpDwEFwdXPmizheq44jcVqCE9jl+9Dc4s051GpMlxY01OPA9RO2AjrO1AkdYvK61fWlaoRDD/j7OvYeyNo0lW3xmMfti9jGu/jhcHVxVxxF5ocY7UK4lrOqvLaEjniDFjaW7c0G7u77OB1Cmqeo0Io/odDomv+ZPSpqe0StPqo4jckl0QjRfHfqKbhW6Ua9oPdVxRF7R6bR7J9OSYe3nqtOYJCluLJk+XZsXIX9haD5WdRqRx7zdnBjXsQorI66z9vgN1XGEkaXr0wkOD6agU0EG1RqkOo7Ia25FoM10OLEMToapTmNypLixZHvmwJX90GkuOOZXnUYo0CGgKK2r+BAcdoJb95NVxxFG9OupXzl68yihDUJxsXdRHUeoUO11qNRBW0rnwU3VaUyKFDeW6uZpbS2Sen2hZH3VaYQiOp2O0M5V0QEjlx/HYDCojiSM4ELcBb458g3vVH6HWt61VMcRquh02kzzOhutwJHrO4MUN5YoPVVbRdajJLwcrDqNUMwrvyMTOldlw6lYwo5eUx1H5FCaPo2Ru0ZSzLUY/Wr0Ux1HqJa/kLZG4OnVcGyJ6jQmQ4obS7TrK7gRAZ3mgb2z6jTCBLSuWoRO1YsSsuIkMfFJquOIHPjh+A9E3o1kQtAEnOycVMcRpqByB6jWVbu5OOG66jQmQYobS3PjGGyfAg0GQXFprhb/NbZDVZztbRn61zHpnjJTp++eZl7EPN6v+j7VClVTHUeYkjZTtS+zK/tJ9xRS3FiWtGRY3gcKVYTGQ1WnESbG3cWeKa/5s/3sLf48cEV1HJFFKekpjNw1ktIFStMnoI/qOMLUOHtAh2/g/CY4/LPqNMpJcWNJtk+B22eh8zywc1CdRpigphUL0622L6GrT3HlbqLqOCIL5kXM42LcRSY0mICDrVzf4inKt9Qm+Fs/Eu5dVp1GKSluLMXVg9q9Nk2Ggo80V4tnC25XiQIuDny+LAK9XpqvzcGxW8f44cQPfBTwERU9K6qOI0xZq4laK86KvtrSO1ZKihtLkPpI644qUh2CPlOdRpg4Vyd7pr7uz96Ld/l5zyXVccQLJKUlMXLXSCp5VuKDah+ojiNMnZObtrjmpZ1wYIHqNMpIcWMJtoRqq353nge2dqrTCDMQVNaLHvVKMmXdaS7eeqA6jniOb458w/UH15nQYAJ2NnJ9i0wo3RjqfggbR8Pt86rTKCHFjbm7vFubibjZKChUQXUaYUaGvVIRbzcnhiyNIF26p0zSodhD/HrqV/rX7E+ZAmVUxxHmpPkYbYmGsI+1pXisjEkUN3PmzMHPzw8nJycCAwPZv3//M7ddsGABDRs2xMPDAw8PD5o3b/7c7S1a8gPtF7fES/DSJ6rTCDPj4mDHjC4BHLkSx4KdF1XHEf+SmJpI8K5gqheuztuV3lYdR5gbh3za0jtXD8Dub1SnyXPKi5vFixczaNAgRo8ezeHDhwkICKBVq1bcvPn0dTK2bdtG9+7d2bp1K3v27MHX15eWLVty7ZoVzry6MURbT6TTt2BjqzqNMEO1/Tzp3bA0X244y5mY+6rjiP/x5aEvuZN0h9CgUGzl+hbZUeIlqP8pbJ0ANyNVp8lTOoPi2bwCAwOpU6cOs2fPBkCv1+Pr60u/fv0YNmzYC1+fnp6Oh4cHs2fPpkePHi/cPiEhAXd3d+Lj43Fzc8txfmUubIFfO2urwtbtrTqNMGNJqem0+2YXTvY2LP8kCHtb5d95rN7u67v5aONHjAgcQfeK3VXHEeYsNQm+awx2jvDBZrC1V50oTyj9FEtJSeHQoUM0b9484zkbGxuaN2/Onj17MrWPxMREUlNT8fT0fOrPk5OTSUhIeOxh9pLiYcWnUKox1H5fdRph5pzsbZnRJYDIG/eZs9U6bz40JfdT7hMSHkJgkUC6VeimOo4wd/ZOWvdUzAnY+aXqNHlGaXFz+/Zt0tPT8fb2fux5b29vYmJiMrWPoUOHUrRo0ccKpP81adIk3N3dMx6+vr45zq3cuhGQlKAN97ORb9ki5wJ8C/BJkzLM3nKeE9fiVcexalMPTOVB6gPG1x+PjU6ub2EExWpCw8GwYypcP6o6TZ4w6ytn8uTJ/Pnnnyxfvhwnp6cvIDd8+HDi4+MzHleumPm082fWwdHfoPUkKGABhZowGf1eLkc5b1cGLTlKcpr1ja4wBduvbCfsfBhD6wylSP4iquMIS9LocyhcSRuEkpasOk2uU1rceHl5YWtrS2xs7GPPx8bG4uPj89zXTp8+ncmTJ7Nhwwb8/f2fuZ2joyNubm6PPcxW4l1Y1R/KtYIaMnpCGJeDnQ1fdg0g6vZDZm46pzqO1YlLimPMnjE0LNaQTmU7qY4jLI2dA3SaB7fPwbZJqtPkOqXFjYODA7Vq1WLz5s0Zz+n1ejZv3ky9evWe+bqpU6cyfvx41q1bR+3atfMiqmlYO0SruDt8DTqd6jTCAlUq4sbA5uWZv/0Ch6PvqY5jVSbum0hKegpj6o9BJ9e3yA0+VaHJMAifBVcOqE6Tq5R3Sw0aNIgFCxbw888/ExkZyccff8zDhw/p1asXAD169GD48OEZ20+ZMoVRo0bx448/4ufnR0xMDDExMTx4YOGzrJ5cDif+grYzwPX5rVpC5MRHjUpTrXgBBi+J4FGKdE/lhfWX1vPPpX8YETiCwi6FVccRlixoIBStAWF9IMVyF89VXtx069aN6dOnExISQvXq1Tl69Cjr1q3LuMk4OjqaGzduZGw/d+5cUlJSeP311ylSpEjGY/r06areQu57cBNWD4JKHaDqa6rTCAtnZ2vDjC4BXI97xNT1p1XHsXi3H90mdG8oLUq2oE2pNqrjCEtna6d1T8VfhS3jVafJNcrnuclrZjfPjcEAi9+G6L3Qdx/k81KdSFiJ73deJHRNJH/0fol6ZQqqjmORDAYDA7cO5OitoyzvuBxPp6dPaSGE0e2ZA+tHwrurwa+B6jRGp7zlRrzAscVwejW0+0oKG5GnegWVoq6fJ58vi+BBcprqOBZp9cXVbLmyhVEvjZLCRuStwI+hRD0I+0RbysfCSHFjyuKvwdovoFpXqNxBdRphZWxtdEzr4s+dBylMXGtdU7fnhZiHMUzaN4m2pdvSvOTT5+kSItfY2ECnOfDwNmwcpTqN0UlxY6oMBljZDxxcoM1U1WmElSpZMB8j2lZi0b5otp+9pTqOxTAYDIzZPQYnOyeG1x3+4hcIkRs8S0PLcXDwRzi/+cXbmxEpbkzV4Z/hwmbo8A04e6hOI6zY24ElaFDWi6HLjhH/KFV1HIvw17m/CL8ezpj6Y3B3dFcdR1iz2u9D6abal+lHcarTGI0UN6bo3mXtRq8a70C5FqrTCCun0+mY8ro/D5PTGLfqlOo4Zu/q/atMOzCNV8u9SqPijVTHEdZOp4OOsyH5PqyznFZEKW5MjV4PK/pqrTWtJqpOIwQAxQo4M6p9Zf46fJWNp2Jf/ALxVHqDnlHho3B3dOfz2p+rjiOExr04tJ4MEYvg9FrVaYxCihtTs/87uLRTWxTTyQyGqgur0aVWcZpVLMzwv49z92GK6jhm6Y/Tf3Aw9iDjg8aT3yG/6jhC/Ff1N6F8a1g1QFvqx8xJcWNKbp+HTWOg7odQurHqNEI8RqfTMenVaqTp9YxacUJ1HLNzKf4SMw/NpHvF7gQWCVQdR4jH6XTQfhboU2HNYNVpckyKG1OhT9dWa3UrAs3HqE4jxFMVdnNiXMeqrDl2g1UR11XHMRvp+nRGho+ksEthBtYcqDqOEE/n6gNtpsPJv+HE36rT5IgUN6Zi9zdw9QB0mgsO+VSnEeKZ2vsXoW21IoxacYKb95NUxzELC08u5Pit44Q2CMXF3kV1HCGereprULmT1npz33zvr5PixhTEnoKtE6B+Pyjxkuo0QjyXTqdjfKeq2NnoGPH3CaxsBZcsO3fvHHOOzqFnlZ7UKFxDdRwhnk+ng7Zfgo0trB6ozblmhqS4US09VVud1bM0NB2pOo0QmeKZz4EJnauxKTKWvw5fUx3HZKXqUxm5ayS+rr58WuNT1XGEyJx8BaHdTDizFiL+VJ0mW6S4UW3nDIg5oXVH2TupTiNEprWq4sOrNYoxdtVJrsc9Uh3HJH1/7HvO3jvLxAYTcbR1VB1HiMyr1A7834B/hmpLAZkZKW5Uun4UdkyDhoOhWE3VaYTIstHtq5DPwY6hfx2T7ql/OXXnFN8d+44Pqn1AFa8qquMIkXWvTNbuAV35qdl1T0lxo0pasjY6qnAlaCSTeQnz5O5iz+TXqrHz3G0W7Y9WHcdkpKSnMHLXSMp6lOUj/49UxxEie5w9tCWALmyBQz+pTpMlUtyosm0S3D4HneaBnYPqNEJkW5MKheletwQT1kQSfSdRdRyT8O3Rb7mUcInQoFDsbe1VxxEi+8o1h1rvwvpguBulOk2mSXGjwpUDED4Lmg4Hn6qq0wiRYyPbVsIznwNDlkWg15tX87WxRdyK4KeTP/FJwCdU8KygOo4QOdcyVLvJeMWn2hJBZkCKm7yWkqiNjipaA+oPUJ1GCKPI72jHtNcD2B91l592X1IdR5lHaY8I3hVMlYJV6FW1l+o4QhiHoyt0/BYu74L981WnyRQpbvLalvEQf1XrjrK1U51GCKOpV6Yg79b3Y+q601y49UB1HCW+Pvw1Nx7eILRBKHY2cn0LC1KqIQT20ZYIun1OdZoXkuImL13aBXu/hWYhUKi86jRCGN3Q1hUpWsCZwUsiSEs3j+ZrYzkQc4DfIn+jf43+lHYvrTqOEMbXbDS4FdMGw6SnqU7zXFLc5JXk+xD2CZQMgsCPVacRIlc4O9gyvUsAx67G8d3Oi6rj5JmHqQ8ZFT6KmoVr8nblt1XHESJ3OLhA53lw7RDs/lp1mueS4iavbBgFD29DxzlgI6ddWK5aJT34sFEZvtp4ltMxCarj5IkZB2dwN+kuoUGh2Ojk+hYWzLeutlTQ1okQe1J1mmeSqzAvnN+kzRHQcjx4llKdRohc91mLcpTyysfgJRGkpFl291T4tXCWnl3K4FqD8XXzVR1HiNzXZAQULAvL+0Baiuo0TyXFTW57FAcr+kHpplD7PdVphMgTjna2zOhSnTMx95m99bzqOLkmISWBkN0h1CtSj64VuqqOI0TesHeCznO1lpud01WneSopbnLbuuGQ8gA6ztZWWxXCSlQr7k7fpmWZs/U8x6/Gq46TK6bsn0JiaiLjgsahk+tbWJOiNbTZ9XdMh+tHVKd5ghQ3uen0WohYBK0ng3tx1WmEyHOfvlyWij6uDFpylKTUdNVxjGpr9FZWXljJ0LpD8cnnozqOEHmv0RDwrqJ1T6UmqU7zGClucsvDO7BqAJR/Baq/qTqNEErY29rwZdfqXL6TyFebzqqOYzT3ku4xds9YGhdvTMcyHVXHEUINW3tt9NTdi7Btouo0j5HiJresHQz6VGg/S7qjhFWr4OPKZy3K892Oixy6fFd1HKOYsG8CaYY0RtcbLd1Rwrp5V4EmwyH8a4jepzpNBilucsOJv+Dkcmg7A1y9VacRQrkPG5Wmum8BBi+JIDHFtCf/epF1UetYf2k9IwNHUsilkOo4QqhXvz8Ur60tLZTyUHUaQIob47sfC2sGQ+VOUPU11WmEMAm2NjpmdAkgJiGJqevOqI6Tbbcf3SZ0XygtS7aktV9r1XGEMA22dtBpLiRch01jVacBpLgxLoMBVg8EGzto+6XqNEKYlNKF8vNFq4os3H2J3Rduq46TZQaDgbF7xmKrsyX4pWDpjhLif3mV05Zn2D8fonaoTiPFjVFF/AFn1mr32eQrqDqNECbn3fp+BJby5POlx7iflKo6TpasvLCSbVe2EVIvBA8nD9VxhDA9gX2gZAMI6wtJamcnl+LGWOKvwj/DIKA7VGyrOo0QJsnGRsf0LgHEJaYwcW2k6jiZFvMwhin7p9C+dHualWimOo4QpsnGRpvTLfEObAhWG0Xp0S2FwQAr+4FDPm1OGyHEM/l6ujCybWX+2H+FrWduqo7zQgaDgdG7R+Ns78zQukNVxxHCtHmWglahcPhnOLdRWQwpbozh0E9wYQt0/AacC6hOI4TJ617Xl0blCzHsr2PEJ5p299TSs0vZfX03Y+uPxd3RXXUcIUxfrV5Q5mXtS/+je0oiSHGTU3ejYH0w1HoXyjZXnUYIs6DT6ZjyWjUSU9IZs8p0Vxa+cv8K0w9O5/Xyr9OgWAPVcYQwDzoddPgGUhLhHzWtnVLc5IReDyv6ajcPtwxVnUYIs1LE3Zkx7auw/Mg11p2IUR3nCXqDnlHho/B08mRI7SGq4whhXtyLwyuT4dhiiFyd54eX4iYn9s2Dy+HQ8VtwdFWdRgiz82rNYrSo7M3I5ce58yBZdZzH/B75O4diDzE+aDz57POpjiOE+QnoDhXaaFOkPMzb6R+kuMmu2+dg81gI/BhKNVSdRgizpNPpmNi5GnqDgeCwExgMBtWRAIiKj2LW4Vm8Vekt6vjUUR1HCPOk00G7maBPgzWDtME3eUSKm+xIT9NWQXUrBs1CVKcRwqwVcnUktFM1/jkRw8qI66rjkKZPI3hXMD75fBhQc4DqOEKYN1dvbVLbUyu0pYnyiBQ32bH7a7h+WFsN1cFFdRohzF5b/yK08y9CyIqT3ExIUppl4cmFnLhzgtCgUJztnJVmEcIiVH0VqnTWlia6nzf310lxk1WxJ2HrRG2hMN+6qtMIYTHGd6yKva0Nw/4+rqx76uy9s8w5Ood3q7xL9cLVlWQQwiK1mQG2DrBqQJ50T0lxkxVpKVp3VMGy0HSE6jRCWBSPfA5MfrUaW07fZOmhq3l+/NT0VEbuGomfmx99q/fN8+MLYdHyFdSWJjq7Do7+nuuHk+ImK3ZOh5untO4oO0fVaYSwOM0re/N6reKMW3WKa3GP8vTY3x3/jvP3zhPaIBQHW4c8PbYQVqFiGwh4E9YNh7gruXooKW4y6/oR2DEdGg6BotVVpxHCYoW0r4yrkx1Dlx1Dr8+b7qmTt0+y4NgCevv3pkrBKnlyTCGsUutJ4JAfVn6aq91TUtxkRmqS1h3lXQUayWReQuQmNyd7przmz67zt/l93+VcP15yejIjd42kvEd5evv3zvXjCWHVnAtoi2te3AYHf8i1w0hxkxnbJsLdi9B5Ptjaq04jhMVrVL4QbwWWYOLa01y+8zBXjzXnyByi70czocEE7G3k+hYi15VtBrXfgw0h2r+tuUCKmxeJ3gfhX2s3EHtXVp1GCKsxok0lvFwdGLI0gvRc6p46evMoC08upG/1vpTzKJcrxxBCPEWL8ZDPC8L6aksZGZkUN8+T8hDC+kDx2trQbyFEnsnnaMf01wM4ePkeP4VHGX3/iamJjNw1kmqFqvFulXeNvn8hxHM45odO30L0Htg31+i7l+LmeTaNhYQb0Gke2NiqTiOE1QksXZBe9Usxdf0Zzt+8b9R9zzo8i5uJN5kQNAFbub6FyHt+DeClj7V/a2+dNequpbh5lovbYf98aD4avMqqTiOE1fqidQWKezgzeEkEaenGab7ed2Mfi04vYmCtgfi5+xlln0KIbGgWAgVKaL0k6WlG260UN0+TlAArPoWSDaDuR6rTCGHVnOxtmdElgOPX4pm/I+c3Hz5IeUBIeAh1fOrQvWJ3IyQUQmSbvbM2d9z1IxA+02i7leLmaTYEQ+Id6DQHbOQUCaFajRIe9GlchpmbznLqekKO9jX94HTikuMYV38cNjq5voVQrnhtCBoI2yZDzAmj7FKu7H87txEO/wytQsHDT3UaIcT/G9C8HGUK5Wfw0ghS0rLXPbXz6k7+OvcXQ+oMobhrcSMnFEJkW5Nh4FVem1MuLSXHu5Pi5n89ugcr+0GZl6FWL9VphBD/w9HOluldAjgXe59vtpzL8uvjk+MZs3sMQUWDeL3c67mQUAiRbXaO0Hku3IqEHdNyvDspbv7XP0MhJRE6zAadTnUaIcS/VC3mTr+Xy/HttgtEXInL0msn75/Mo7RHjKk/Bp1c30KYniIB0OgL2DkDrh3K0a6kuPmPyFVwbDG8MgXci6lOI4R4hk+alqFyETcGL40gKTU9U6/ZfHkzqy+uZnjgcHzy+eRyQiFEtjUcBD7VYPnH2tJH2STFDcDD27BqIFRoAwFvqE4jhHgOe1sbZnQNIPpOIl9ufPHcGHeT7jJu7zia+jalXel2eZBQCJFttvba6Kl7UbA1NNu7keLGYIDVn4FBD+1mSneUEGagvLcrg1uWZ8HOixy4dPeZ2xkMBkL3hqI36AmpFyLdUUKYg8KV4OVg2D0bovdmaxdS3Jz4CyJXQtsZ4OqtOo0QIpM+aFiamiU86P3LQTadin3i54mpiQSHB7Px8kaCXwrGy9lLQUohRLbU+xR862qjp1KyvniudRc392NgzWCo8ipUfVV1GiFEFtja6Pi+R21qlfDgg18OMm7VqYwh4mfunqHb6m5svLyRCQ0m0MqvleK0QogssbGFTnO1f6c3jcnyy3UGgyF3lts1UQkJCbi7uxMfF4fb6t7arIh994GLp+poQohsMBgM/Bh+icn/RFLBx5W29aP4/tQs/Nz9mN54OqXcS6mOKITIrn3z4Z8voMcKKN0k0y8ziZabOXPm4Ofnh5OTE4GBgezfv/+52y9dupSKFSvi5OREtWrVWLt2bdYPemwJnFsP7WdJYSOEGdPpdLzfoBS/fFCN6w7z+fbENGp4tmJR20VS2Ahh7ur0Br+G2pJISZmfnVx5cbN48WIGDRrE6NGjOXz4MAEBAbRq1YqbN28+dfvdu3fTvXt33n//fY4cOUKnTp3o1KkTJ05kccrmjaMh4E2o2MYI70IIodKxW8cYe7g3jq4XqGLXj007gxgddoZHKZkbKi6EMFE2NtBxjjbJ7voRmX6Z8m6pwMBA6tSpw+zZswHQ6/X4+vrSr18/hg0b9sT23bp14+HDh6xevTrjuZdeeonq1aszb968Fx4vo1tqQnncPtsHzgWM9l6EEHlLb9Dz88mf+frw11T2qszURlMpmq8oiw9cYcyqk5TwdGH2mzUp7+2qOqoQIicO/Qyr+sOY+ExtbpfLcZ4rJSWFQ4cOMXz48IznbGxsaN68OXv27Hnqa/bs2cOgQYMee65Vq1aEhYU9dfvk5GSSk5Mz/hwfr52Y+i622P7aOIfvQAihkgEDafo03qn0Dh8GfIi93p779+/TpmIBynv6M2RpBC2mrMNOFsAVwszl4xvbqjRISMDV1fWF0zooLW5u375Neno63t6PD8H29vbm9OnTT31NTEzMU7ePiYl56vaTJk1i7NixTzx/8rPIbKYWQpiaEf//PyGE5WoLMNWd+Ph43Nzcnrut0uImLwwfPvyxlp64uDhKlixJdHQ07u7uCpNZhoSEBHx9fbly5coLf9nEi8n5NC45n8Yn59S45Hxmnavri7uZlRY3Xl5e2NraEhv7+ARcsbGx+Pg8ff0XHx+fLG3v6OiIo6PjE8+7u7vLL5IRubm5yfk0IjmfxiXn0/jknBqXnE/jUtoR7eDgQK1atdi8eXPGc3q9ns2bN1OvXr2nvqZevXqPbQ+wcePGZ24vhBBCCOuivFtq0KBB9OzZk9q1a1O3bl1mzpzJw4cP6dWrFwA9evSgWLFiTJo0CYABAwbQuHFjZsyYQdu2bfnzzz85ePAg3333ncq3IYQQQggToby46datG7du3SIkJISYmBiqV6/OunXrMm4ajo6OxuZ/RjrUr1+fRYsWERwczIgRIyhXrhxhYWFUrVo1U8dzdHRk9OjRT+2qElkn59O45Hwal5xP45NzalxyPnOH8nluhBBCCCGMSSZ/EEIIIYRFkeJGCCGEEBZFihshhBBCWBQpboQQQghhUSyiuJkzZw5+fn44OTkRGBjI/v37n7v90qVLqVixIk5OTlSrVo21a9c+9nODwUBISAhFihTB2dmZ5s2bc+7cudx8CybF2Ofz3XffRafTPfZo3bp1br4Fk5KV83ny5Elee+01/Pz80Ol0zJw5M8f7tDTGPp9jxox54vezYsWKufgOTEtWzueCBQto2LAhHh4eeHh40Lx58ye2l89P455Pa//8zDaDmfvzzz8NDg4Ohh9//NFw8uRJQ+/evQ0FChQwxMbGPnX78PBwg62trWHq1KmGU6dOGYKDgw329vaG48ePZ2wzefJkg7u7uyEsLMwQERFh6NChg6FUqVKGR48e5dXbUiY3zmfPnj0NrVu3Nty4cSPjcffu3bx6S0pl9Xzu37/fMGTIEMMff/xh8PHxMXz11Vc53qclyY3zOXr0aEOVKlUe+/28detWLr8T05DV8/nmm28a5syZYzhy5IghMjLS8O677xrc3d0NV69ezdhGPj+Nez6t+fMzJ8y+uKlbt66hb9++GX9OT083FC1a1DBp0qSnbt+1a1dD27ZtH3suMDDQ8NFHHxkMBoNBr9cbfHx8DNOmTcv4eVxcnMHR0dHwxx9/5MI7MC3GPp8Gg3ZxduzYMVfymrqsns//VbJkyaf+Y5yTfZq73Difo0ePNgQEBBgxpfnI6e9SWlqawdXV1fDzzz8bDAb5/DT2+TQYrPvzMyfMulsqJSWFQ4cO0bx584znbGxsaN68OXv27Hnqa/bs2fPY9gCtWrXK2D4qKoqYmJjHtnF3dycwMPCZ+7QUuXE+/2Pbtm0ULlyYChUq8PHHH3Pnzh3jvwETk53zqWKf5iI33/u5c+coWrQopUuX5q233iI6OjqncU2eMc5nYmIiqampeHp6AvL5aezz+R/W+PmZU2Zd3Ny+fZv09PSM2Yz/w9vbm5iYmKe+JiYm5rnb/+f/s7JPS5Eb5xOgdevW/PLLL2zevJkpU6awfft2XnnlFdLT043/JkxIds6nin2ai9x674GBgSxcuJB169Yxd+5coqKiaNiwIffv389pZJNmjPM5dOhQihYtmvEPunx+Gvd8gvV+fuaU8uUXhOV74403Mv67WrVq+Pv7U6ZMGbZt20azZs0UJhMCXnnllYz/9vf3JzAwkJIlS7JkyRLef/99hclM2+TJk/nzzz/Ztm0bTk5OquOYvWedT/n8zB6zbrnx8vLC1taW2NjYx56PjY3Fx8fnqa/x8fF57vb/+f+s7NNS5Mb5fJrSpUvj5eXF+fPncx7ahGXnfKrYp7nIq/deoEABypcvL7+fzzF9+nQmT57Mhg0b8Pf3z3hePj+Nez6fxlo+P3PKrIsbBwcHatWqxebNmzOe0+v1bN68mXr16j31NfXq1Xtse4CNGzdmbF+qVCl8fHwe2yYhIYF9+/Y9c5+WIjfO59NcvXqVO3fuUKRIEeMEN1HZOZ8q9mku8uq9P3jwgAsXLsjv5zNMnTqV8ePHs27dOmrXrv3Yz+Tz07jn82ms5fMzx1Tf0ZxTf/75p8HR0dGwcOFCw6lTpwwffvihoUCBAoaYmBiDwWAwvPPOO4Zhw4ZlbB8eHm6ws7MzTJ8+3RAZGWkYPXr0U4eCFyhQwLBixQrDsWPHDB07drSqoYzGPJ/37983DBkyxLBnzx5DVFSUYdOmTYaaNWsaypUrZ0hKSlLyHvNSVs9ncnKy4ciRI4YjR44YihQpYhgyZIjhyJEjhnPnzmV6n5YsN87n4MGDDdu2bTNERUUZwsPDDc2bNzd4eXkZbt68mefvL69l9XxOnjzZ4ODgYFi2bNljQ5Pv37//2Dby+Wmc82ntn585YfbFjcFgMHzzzTeGEiVKGBwcHAx169Y17N27N+NnjRs3NvTs2fOx7ZcsWWIoX768wcHBwVClShXDmjVrHvu5Xq83jBo1yuDt7W1wdHQ0NGvWzHDmzJm8eCsmwZjnMzEx0dCyZUtDoUKFDPb29oaSJUsaevfubRX/EP9HVs5nVFSUAXji0bhx40zv09IZ+3x269bNUKRIEYODg4OhWLFihm7duhnOnz+fh+9Iraycz5IlSz71fI4ePTpjG/n8NN75lM/P7NMZDAZD3rYVCSGEEELkHrO+50YIIYQQ4t+kuBFCCCGERZHiRgghhBAWRYobIYQQQlgUKW6EEEIIYVGkuBFCCCGERZHiRgghhBAWRYobIYQQQlgUKW6EEBZn27Zt6HQ64uLiVEcRQiggMxQLIcxekyZNqF69OjNnzgQgJSWFu3fv4u3tjU6nUxtOCJHn7FQHEEIIY3NwcMDHx0d1DCGEItItJYQwa++++y7bt29n1qxZ6HQ6dDodCxculG4pIayYFDdCCLM2a9Ys6tWrR+/evblx4wY3btzA19dXdSwhhEJS3AghzJq7uzsODg64uLjg4+ODj48Ptra2qmMJIRSS4kYIIYQQFkWKGyGEEEJYFCluhBBmz8HBgfT0dNUxhBAmQoaCCyHMnp+fH/v27ePSpUvkz58fvV6vOpIQQiFpuRFCmL0hQ4Zga2tL5cqVKVSoENHR0aojCSEUkhmKhRBCCGFRpOVGCCGEEBZFihshhBBCWBQpboQQQghhUaS4EUIIIYRFkeJGCCGEEBZFihshhBBCWBQpboQQQghhUaS4EUIIIYRFkeJGCCGEEBZFihshhBBCWBQpboQQQoj/2ygYVgAAmTeOT0Wen9sAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/MUlEQVR4nOzdd1zb95348Zc2S2JvMw0eYOOdxBtPhIMz/OtK0qbpyl2uuaZNe0l6aZPeNU3aa3tp77rSNL2016TNXc92EscIvPCOB94Y24AR2BgQmCGxJJD0+0OBxjbYDElfSXyejwePJtJ3vMmnwFuf9/fz/sicTqcTQRAEQRCEACGXOgBBEARBEAR3EsmNIAiCIAgBRSQ3giAIgiAEFJHcCIIgCIIQUERyIwiCIAhCQBHJjSAIgiAIAUUkN4IgCIIgBBSR3AiCIAiCEFBEciMIgiAIQkCZdMmN0+nEbDYjGjMLgiAIQmCSNLnZt28fGzduJCkpCZlMxtatW+94TllZGfPnz0ej0ZCVlcWbb745pntaLBbCw8OxWCzjC1oQBEEQBJ8maXLT3d3NnDlz+OUvfzmq42tra7n33ntZtWoVp06d4utf/zpf/vKXKSkp8XCkgiAIgiD4C5mvbJwpk8nYsmULDzzwwIjHPPvss3zwwQecO3du6LXPfOYzdHR0YDAYRnUfs9lMeHg4nZ2d6HS6iYYtCIIgCIIXOOwO5IrRzcn41TM3hw8fZu3atTe8VlBQwOHDh0c8x2q1Yjabb/gCsDt8IqcTPK1qJ7xZBA671JEIXnCw4SBfKvkSdjHek0LX/v3Uff4xnHYx3pNB1bHmUR/rV8lNU1MT8fHxN7wWHx+P2Wymt7d32HNeeeUVwsPDh75SUlIAOG5s83i8gg/Y8ndg3A91B6WORPCC5w88z9Gmo5Q3l0sdiuAF1559jp4jR+g5dlzqUAQvqC43jfpYv0puxuPb3/42nZ2dQ19XrlwBoKSiSeLIBI/rbYe+Dtc/n9ssaSiC53VaO+m0dgJgMI6uTC34L3tnJ/aPZuLNhmKJoxE8ra+7n/rzo5+U8KvkJiEhgebmG6elmpub0el0BAcHD3uORqNBp9Pd8AWw83wzA3aHx2MWJHThA1c5avanoPI9sA9IHZHgQbvrd2N32inKLGJn3U4GHGK8A5ll5y6w29HdtxFL6Q6cA2K8A1nt6RYcY3icxK+Sm8WLF7Nr164bXtuxYweLFy8e87Xaevo5fPm6u0ITfNG5zZC2BBb/A/Rch9q9UkckeFBJXQnz4+fzuZzP0W5t52jTUalDEjzIXFxMyMKFRD36eextbXQfOSJ1SIIHVR83kZQVMerjJU1uurq6OHXqFKdOnQJcS71PnTpFfX094CopPfroo0PH//3f/z2XL1/mmWee4cKFC/zqV7/if/7nf/jGN74x5nunRAWz7XSjW74PwQd1X4fLZZD7ICTOhcgMqNgidVSCh3T0dXDk2hH06XpmRs0kVZtKiVG0iAhUA+3tdB8+jG5DIUG5OahSUzEXi9JUoOrr6ufKhXayF8aN+hxJk5vjx48zb9485s2bB8DTTz/NvHnzeOGFFwBobGwcSnQAMjIy+OCDD9ixYwdz5szhpz/9Kb/73e8oKCgY8731uQkYKpqwDYjSVEC68D7ghJz7QSaDWZug8n0YsEkdmeABO+t34sDB2rS1yGQyCtIL2Fm3k357v9ShCR5g2bEDnE6069cjk8nQFRZi2bETZ78Y70BUc9IETieZ8/wkucnPz8fpdN7yNdh1+M0336SsrOyWc06ePInVaqWmpobHHntsXPfWz0qgs7efg9WtE/smBN90bjOkL4Owj34Ycje5Hi6+XCZlVIKHGIwGFsUvIiY4BoCC9ALMNjOHG0duEyH4L3NxMSF334UyOhoAXaEeR2cn3bdpCyL4r+pyE8nTIwnRqUd9jl89c+NO0+K1TI0NZdsZUZoKOF0m1/Lv3E1/ey0+F6KzoUKsmgo013uvc6zpGAUZf5vBnRY5jYzwDFGaCkADra30HDmKrrBw6DXN9OmoMzIwbxelqUDTY7bRcLGdrAWjn7WBSZzcyGQy7s1LovR8E9YB0QAqoJx/F5DBzPv+9tpgaerCB9DfJ1logvvtrNuJDBlrU//W4FMmk6FP17O7fjc2uyhFBhJzaSnI5WjXrRt6bag0tWsXDpsY70By+aQJZDKmjqEkBZM4uQHYmJeIpW+AfZdEaSqgVGyFzHwIjb7x9dxNYDVDza7hzhL8lMFo4J7Ee4gMirzhdX26nq7+Lg42iAaOgcRSbCB08WKUkTeOt65Qj8NiofuAGO9AUnXcRMqMSILCVGM6b1InN9nxWqbHa9l25prUoQjuYm50dSPOffDW9+JmQFyOWDUVQEw9JsqbyylIv3VRQWZEJtmR2aKhXwDpbzbRc/w4Or3+lvc02dlosrPEqqkA0t1h5Vp1B1ljWCU1aFInNwBFeYnsPN9MX78oTQWE8++CXAkzi4Z/P3cTXCyG/uG36xD8y466HSjkClanrh72/YK0AsqulNE3IEqRgcBSUgJKJdq1a4Z9X1tYSNeuXTj6xHgHguoTJuRyGRlzYsd8rkhu5iTRbbOz58Lo96wQfFjFFpi6GoIjh38/90GwdUFVqXfjEjyixFjCkqQlhGvCh31fn6GnZ6CH/Q37vRyZ4Almg4GwpUtRhA8/3rrCQhw9PXTt2+flyARPqCk3kZoTRVDo2EpSIJIbMmJCyU3Sse2sWDXl9zqvwpUPXQ8OjyQmCxJmi72mAkBTdxMnTSfRp99aohiUpktjZtRMDLWiNOXv+hsb6T1xAt2GwhGP0WRkoJk5E4tBjLe/s7T10VjTOeZVUoMmfXIDcG9eIrsrTfTYxN4kfq1iKyjUMH3kX36AqzR1qQSsXV4JS/CMEmMJKrmK/JT82x5XkF7Avqv76Onv8U5ggkeYDSXI1GrCVg9fghyk0+ux7CnD0SPG25/VnDChUMrHVZICkdwAUDQ7id5+O7sqRWnKr1Vshqx1EDT8lPWQ3AdhoBeqRA8Uf1ZqLGVZ8jK0au1tjytIL6DP3se+q6JU4c/MxcWErliOIizstsfpNhTi7O2la6/YS86fVR03kZobhTpYOa7zRXIDpEaHMGdKuFg15c/a66Ch/PYlqUFRGZA0X5Sm/FhDVwNnWs/ctiQ1aIp2CrOiZ4lVU37MdrWBvjNnbmjcNxJ1SgpBs2aJhn5+zNzai8loJnth/LivIZKbjxTlJbHnYguWPrE3iV+q2ALKIJh25z92gCsJqtoBfWbPxiV4RImxBI1Cc8eS1CB9hp79V/fTZROlSH9kMRQjCwpCm58/quN1hYV07duHvavbs4EJHlFdbkKpkpM2O/rOB49AJDcfuTcvEduAg52VzVKHIoxHxWbIXg+a209ZD8l5AOxW17Jwwe8Yag2smLKCEFXIqI4vSC/A5rCx58oeD0cmeIJ5ezFhK1ciDw0d1fE6fQFOq5WuPWK8/VF1uYm02dGog8ZXkgKR3AxJighmQVokH4i9pvzP9RpoPD26ktSgiBSYcpfYa8oP1ZvrqWyrHLZx30gSQhOYGztX7DXlh2x1dfSdPz+qktQgVXIywXPmiIZ+fqjD1ENLvYWsBeMvSYFIbm5w7+xE9l5qobNXlKb8SsUWUIVC9uj/2AGuZKh6F/S2eyYuwSNKjCUEK4NZMWXFmM7TZ+g5eO0gZpsoRfoTc7EBWUgIYSvHNt66DYV079+P3SzG259Ul5tQahQTKkmBSG5ucG9eIgMOJ6UVTVKHIoxFxRaYrgf16EoUQ3IeAMcAXNjukbAEzzAYDeRPySdYGTym89alrcPusLO7freHIhM8wVxcjDY/H3nw2MZbq9fj7O/HsluMtz+pPm4iY3Y0KrViQtcRyc3HxOuCWJQexTZRmvIfLZeg+dzwe0ndiS4R0paI0pQfudx5mUvtl8ZUkhoUFxLH/Pj5YtWUH7Fevoz14sXbNu4biSo+nuAFC0Rpyo+0N3VzvaGLrAmskhokkpubbMxL5GB1K+3dNqlDEUajYjOota7+NuOR+yBcLoOeNreGJXhGibGEUFUoy6YsG9f5+nQ9R64doaOvw72BCR5h3l6MPCyM0OXLx3W+rrCQ7oOHsHd0uDcwwSOqjptQBylIzY2a8LVEcnMT/axEHE4nBlGa8g8VW2DGBlAFje/8nPvB6YDK99wbl+ARJbUlrEpZhUahGdf5a9PW4sDBzvqdbo5M8ASzoRjtmtXINeMbb13BenA4sOwU4+0PqstNZMyJRamaWEkKRHJzi1ithnsyo8WqKX/QfB5aLri2UxivsDhIXyYa+vmBqvYqajprRtW4byQxwTEsSlgkSlN+oO/SJWzVNWj14x9vZWwsIYsWYS4W4+3rrjd00d7YPe69pG4mkpthFOUlcaimldYuq9ShCLdTsRk04TB11cSuk7sJjPuhS2y/4csMRgNalZbFSYsndB19up5jTce43nvdTZEJnmAuLkau0xG2dOmErqMr1NP94YcMtInSsy+rLjehCVGSkjPxkhSI5GZY+lkJyGQyis+J0pTPcjpdsy0zi0A5vinrITPvA2SiNOXDnE4npcZSVqeuRq1QT+haa1PXIkPGzjpRqvBVTqcTy/ZitGvXIlNPbLy169cDYCnd4Y7QBA9wOp1UHW8mY24sCqV70hKR3AwjKlTN0qwYtp0We035rKaz0FYzsZLUoNBoyMyHc1smfi3BIy62X8RoNqLPGH+JYlBEUAT3JN4jSlM+zHrhAra6ujE17huJMiqK0LvvFqumfFjr1S46Tb1uK0mBSG5GVJSXyFFjG83mPqlDEYZTsRmCIyFzpXuuN2sT1B0Es3jWyhcZag2Ea8K5O/Fut1yvIL2A8uZyTD2iFOmLzNuLUUREEHqPe8Zbt6GQnmPHGGhpccv1BPeqPm4iKFTFlBmRbrumSG5GUJCTgFIuo/is+GPnc4ZKUhtBoXLPNWfcC3IlnH/XPdcT3MbpdGIwGlibuhaV3D3jvTp1NQq5gh11olTha5xOp6tx37p1yFTuGW/t2rUgl2MuLXXL9QT3cTqdVJc3kzkvFoXCfSmJSG5GEB6iYnl2rGjo54uunYCOOveUpAYFR8LU1aKhnw86f/08DV0N42rcN5JwTThLk5aKvaZ8UN+5c/RfvTquxn0jUUREELpksShN+SBTnQVzax9ZC91XkgKR3NxWUV4ix+vaudbRK3UowsdVbIGQGEgfX2OvEc3aBFeOQOdV915XmBCD0UBUUBSLEha59boF6QWcNJ2kqVssHPAl5mIDiuhoQha5d7x1hRvoLT9Bf3OzW68rTEx1uYlgrYrk7Ai3XlckN7exLicetVLOdlGa8h1OJ1RshZz7QKF077WnbwCFxnV9wSc4nU5KjCWsTV2LUu7e8V6Vsgq1XC1mb3yI0+l0Ne5bvw6Z0r3jrV2zGplSiaVEjLevGCxJTZ0Xh9yNJSkQyc1taYNU5E+L5X1RmvIdV49B5xX3lqQGBekge50oTfmQ0y2naexudMsqqZuFqcNYlrxMJDc+pPfUKQauNbplldTNFDodocuWYd4uSlO+ornWTFeb1e0lKRDJzR0VzUni9JUOrrT1SB2KAK4HicPiXRteekLug9BQDu1Gz1xfGJMSYwkxwTHMj5vvkevrM/ScbT3LVYsoRfoCc3Gxq6vwggUeub5uQyG9p07Rf020+fAFVcebCQlXk5gV4fZri+TmDtbMiCNIJecDUZqSnsMB57dCzgMgn/jeI8OapgdlsOu5HkFSDqeD0rpS1qetR+Gh8V45ZSVBiiAxe+MDnA4HFkMJWr0emcIz4x22ajUyjUZsx+ADnA4nNeUmps6PQy6Xuf36Irm5g1CNktUz4th2RmT6krvyIVgaXbMrnqIJg2nrxV5TPuCk6SSmHpNbV0ndLEQVwoopK0Ry4wN6T5xgwGRCV+j+EuQgRVgoYStWYDaI5EZqjTWddHfayHZj476PE8nNKBTlJXGuwYyxtVvqUCa3c5tBmwQp7mnsNaLcTdB0Bq7XePY+wm0Zag3EhcQxN26uR++jz9BT2VZJvbneo/cRbs+8vRhlQgLBc+d69D66Qj19Z89iu3LFo/cRbq/6eDNhkRoSMsM9cn2R3IzCqulxhKgVYvZGSg67q8Fe7oMg9/D/bbPXgypUPFgsIbvDzo66HRSkFyCXeXa8lycvJ1gZLLZjkJDTbsdcWopOr0fm4Z/vsPx8ZMHBojQlIYfDSfXJFqYuiEPmgZIUiORmVILVCtbOjBcN/aRUdxC6Ta5eNJ6mDoHphWKvKQmVN5dzve86+nTPlSgGBSmDyE/JF8mNhHqOHcfe2urWxn0jkYeEEJa/UjT0k9C1qg56zTa37iV1M5HcjFJRXiIXmixUmyxShzI5ndsM4amQ7JlVFLeYtQlMFdBy0Tv3E25gMBpICk1idsxsr9xPn66nqr2Kyx2XvXI/4Ubm4mJUyckEzfbOeOsKC7FWVmKtrfXK/YQbVR9vRhsdRHy6zmP3EMnNKK2YFotWoxSzN1KwD0Dle5D7AMg8M4V5i6lrQKMTDxZLYMAxwM66nRSkFyDz0ngvS15GmCpMzN5IwDkwgKW0FF2h3mvjHbZiBfKQECziwWKvc9gd1JxsIWtBnEfHWyQ3oxSkUrAux1WacjqdUoczudTuhZ7r3ilJDVIFuToWV2x2dUUWvOZo01Hare0UZHhuldTN1Ao1q1NXU2IsET/fXtb94RHs7e1oPdC4byTyoCDCVq8WDf0kcPViO31d/WQvjPfofURyMwZFcxKpNnVxsVmUpryqYgtEZkDiXO/ed9YmaL0EpvPeve8kV2IsIUWbQk5UjlfvW5BewOXOy1R1VHn1vpOd2VCMKi2VoBzvjrduQyHWqiqs1dVeve9kV11uQhcbTExKmEfvI5KbMViWFUt4sIptp0VpymsGbFD5vmuVlLdKUoMyV0FQhChNeVG/vd/rJalBixMXo1PrMNSKUoW3OG02LDt2otMXen28Q5ctQx4WJlZNeZF9wMHlky1ke7gkBSK5GRO1Uk5BbjzbzlwTU9fecrkM+jq8W5IapFTDzCJRmvKiw42HMdvMXlkldTOVQsWa1DWiNOVF3YcP4+js9MoqqZvJ1Wq0a9ZgLi4W4+0lVyrbsPYMkOXhkhSI5GbMivKSMF7voeKaWepQJoeKzRCdDfGzpLl/7iZouwyNp6W5/yRTYiwhXZfOtMhpktxfn66n3lJPZVulJPefbMzbi1FnZqKZJs146zYUYrt8GeulS5Lcf7KpLjcRmRBCdHKox+8lkpsxWjw1msgQlVg15Q0DVrjwgWvWxtslqUEZKyA4SjT08wKb3cae+j3oM7y3auZmdyXeRaQmUqya8gKHzYZl1y50hd4vSQ0KXbwYeXi4eLDYC+z9DmpPfdS4zwvjLZKbMVIp5OhnJYrSlDdU7wKr2bN7Sd2JQgU597keahbj7VEHGw5i6bdQkOa9VVI3U8qVrE1bS6mxVPx8e1j3gQM4uro8upfUncjUarTr1mI2iNKUp9Wfv46tz072As+XpEAkN+OyMS+Rq+29nL7aKXUoga1iM8TOhLiZ0saRuwk66qHhhLRxBDiD0UBWRBZZkVmSxqFP19PQ1cC51nOSxhHozNuL0WRno8mSdrx1+kL66+rpOy9WRXpS1XETUUmhRCV5viQFIrkZl7szo4kJ07DttNhrymP6e+FisTQPEt8sfRmExonSlAf1DfRRdqXMozuAj9aC+AVEB0WL0pQHOfr66Nq9W5IHiW8Wes/dKCIjsYjtGDxmwGbHeKaV7IWe227hZiK5GQeFXMaG2Ql8cLYRh0NMZXpE1Q6wdUlbkhokV0DO/a7SlMMhdTQB6UDDAXoGenwiuVHIFaxLW0eJsQSHU4y3J3Tt24ejpwetXrqS1CCZUol2/XrMxQZRmvKQuorr9FvtZHmpJAUiuRm3orwkGjv7OFHfLnUogaliM8TPhphsqSNxmbUJzA1w9ajUkQQkg9HA9MjpZIRnSB0KAPoMPc09zZxuEavkPMFcXIxm5kw0Gb4x3rrCQvobGug7e1bqUAJS9XETMSlhRMSHeO2eIrkZp4VpkcTrNGLVlCfYuuFSCczygVmbQSn3gDZRNPTzgJ7+HvZd3Yc+Q/pP8YPmxc0jLiRONPTzAEdPD11le9F5cbuFOwlZtBBFTIxYNeUB/VY7xrOtHt0BfDgiuRknuVzGhtmJbD/biF2UptzrkgH6e1wP8voKuRxyHoDzW8FhlzqagLKvYR+9A70+UZIaJJfJWZ+2nh11O7CL8XarrrIynL29kq6SuplMoUC3fj1mgwGnKD27lfFsKwM2h1dLUiCSmwkpykvCZLFyzNgmdSiBpWILJM2DKN+Ysh4yaxN0NUP9YakjCSgltSXkRueSok2ROpQb6DP0tPS2cMIkVsm5k7nYQNDs2ahTfGu8dRsKGWhqoveUKEW6U3W5ibg0LeGxwV69r0huJmB+agTJEcFsOyNWTbmN1eJ6mNgXHiS+2ZRFEJ4iSlNu1N3fzf6G/T41azMoLyaPxNBESowlUocSMOxd3XTt24fOBx4kvlnw/Pko4+Iwi1VTbmPrG6Du3HWvz9qASG4mRCaTcW9eIsVnmxiwi6lMt7hYDAN9vpncyGSQ+wCcfxfsA1JHExD2XNmD1W71yeRGJpNRkF7AjrodDDjEeLtD157dOK1WnypJDZLJ5Wj1BVgMBpx2UYp0h9rTrdj7HWR5cQn4IJHcTFBRXiLXu218eFmUptzi3GbXDElEqtSRDC93E/S0gnG/1JEEhBJjCXmxeSSFJUkdyrD06Xra+to41nRM6lACgnl7McFz56JK8s3x1hUWMtDSQk95udShBITqchMJmTq0UUFev7dIbiZodnI4qVEhfHBWlKYmrLcDanb51oPEN0uaB5HpoqGfG5htZg42HJRkB/DRyonOYUrYFFGacgO72Uz3gQM+0bhvJMFz56JMSsRiEKvkJsra00/9eWlKUiCSmwkbKk2da6JflKYm5uJ2sNtcDfN8lUzmKplVvg/2fqmj8Wt76vfQ7+hnXdo6qUMZkUwmQ5+hZ2f9TvodYrwnwrJrN86BAbQFvleCHCSTydDpCzGXlOIcEKXIiag93YrD7mTqfO+XpEAkN25RlJdIR08/B6tbpQ7Fv53bDKmLITxZ6khuL3cT9LbD5b1SR+LXDEYD8+PmkxCaIHUot6VP19Np7eRI4xGpQ/Fr5uLtBC+Yjypemk/yo6Ur1GO/fp2eY6IUORFVx00kTg0nLFIjyf1FcuMGOYk6MmNCRUO/iehpg8t7fLskNShhNkRnidLUBHRaO/nw2oc++SDxzaZFTiNdly4a+k3AQHs73YcO+1TjvpEEzZqFKiVFNPSbgL6ufq5WtpG9ULpEViQ3biCTySjKS6SkognrgHjKflwubHM1x/PlktQgmcyVhFVugwGr1NH4pV31u7A77axPXy91KHc0uGpqd/1ubHab1OH4pa5du8DhQLfeP8Zbp9dj2bEDZ78oRY7H5dMtOJ1OMufFShaDSG7cpGhOEpa+AQ5UidLUuJzb7Np9W+vbU9ZDZm0CayfU7JY6Er9kqDWwMGEhMcExUocyKvp0PZZ+C4euHZI6FL9k3l5MyKJFKGOl+2M3FroNhdg7Ouj+UJQix6P6eDNJ0yIIDZemJAUiuXGbafFasuPCRGlqPLpboXafb/a2GUncTIidIRr6jUNbXxtHm4769Cqpm2VFZpEVkYXBKEpTYzXQ1kb3kSN+UZIapJkxA3VammjoNw69FhtXL3ZItkpqkEhu3KgoL4kd55vp6xelqTE5/67rf/2hJPVxuZtcK7z6e6WOxK/srNsJwNq0tRJHMjYF6QXsqd9D30Cf1KH4FUtpKQDa9b67Ku5mMpkM7YZCLDt34rSJUuRY1JxsAWCqhCUpEMmNWxXNSaTLOkDZxRapQ/EvFVsgYwWE+keJYsisTWDrguqdUkfiV0qMJdyVcBdRQVFShzImBekF9Az0cLDhoNSh+BVzsYHQu+9GGeVf460rLMRhNtN1SJQix6K6vJkp0yMI1qoljUPy5OaXv/wl6enpBAUFcffdd3P06NHbHv+zn/2M6dOnExwcTEpKCt/4xjfo6/ONT1JTY8OYmagTe02NhaUZ6g76V0lqUEw2xM8WpakxaO1t5Xjzcb9YJXWzjPAMpkdOF6WpMRhoaaHn2DGfbtw3Ek12NuqpU7GI0tSodXdauXapgywJV0kNkjS5eeedd3j66ad58cUXOXHiBHPmzKGgoACTyTTs8W+//TbPPfccL774IpWVlbzxxhu88847/PM//7OXIx9ZUV4iuypN9NhEA6hROf8uyOQwc6PUkYzPrAfhkgFs3VJH4hdKjaXIkftdSWqQPkPP3qt76envkToUv2AuKQW5HO1a/xtvmUyGrrAQy85dOKxiVeRo1JxoQSaTkTlX+gfHJU1u/v3f/52vfOUrfOELXyAnJ4ff/OY3hISE8Pvf/37Y4w8dOsTSpUt5+OGHSU9PZ/369Tz00EN3nO3xpqK8RHr77ey5IEpTo1KxGTJXQYh/TVkPyX0Q+nvgkmjPPxolxhLuSbqHcE241KGMS0F6Ab0Dvexr2Cd1KH7BXFxM6NIlKCIipA5lXHQbCnF0d9O9X+wlNxrV5c2k5EQRFKqSOhTpkhubzUZ5eTlrP5bRy+Vy1q5dy+HDh4c9Z8mSJZSXlw8lM5cvX2b79u1s2LBhxPtYrVbMZvMNX56UFh3K7ORwUZoaDfM1qD/senbFX0VlQuJc0dBvFJq7mzlpOulXq6RulqJNITc6l5JakczeSX9zM73l5ej0/leSGqTJzEQzfTrmYlGKvJOudiuN1Z1kLZBmu4WbSZbctLa2Yrfbib+pFXd8fDxNTU3DnvPwww/zr//6ryxbtgyVSsXUqVPJz8+/bVnqlVdeITw8fOgrJSXFrd/HcIryEtl9wUSXVZSmbqtiKyjUMH3k5NQvzNoEVTvAapE6Ep9WWleKUq5kVeoqqUOZEH26nv0N++nuF6XI27EYDMhUKrRr10gdyoToCvVY9uzB0StWRd5OzQkTcqWMDB8oSYEPPFA8FmVlZbz88sv86le/4sSJE2zevJkPPviA73//+yOe8+1vf5vOzs6hrytXrng8znvzErEOONhV2ezxe/m1is0wdQ0ER0gdycTkPggDfXBRfLq7HYPRwNKkpejUOqlDmZD16eux2q2UXSmTOhSfZt5eTOjy5Si0WqlDmRBdYSHOnh669opS5O1UHW8mNScaTbBS6lAACZObmJgYFAoFzc03JgDNzc0kJAy/kd53v/tdPve5z/HlL3+Z2bNn8+CDD/Lyyy/zyiuv4HAMvyO3RqNBp9Pd8OVpUyJDmJcawfunRUO/EXXUw9Vj/l2SGhSRClMWidLUbVzrusaZljMUZPjfKqmbJYUlkRebJ1ZN3UZ/QwO9p0/7VeO+kajT0gjKyREN/W7DfL2X5loz2Qt9oyQFEiY3arWaBQsWsGvXrqHXHA4Hu3btYvHixcOe09PTg1x+Y8gKhQIAp9PpuWDHoSgviX2XWujsFXuTDKtiKyg0MN3/f/kBroZ+1Tuht0PqSHxSqbEUtVzNqhT/LkkN0qfrOdhwELPNs8/w+SuzoQSZRkPYqsAYb92GQrr27sXRLUqRw6kpb0GhkpOe5zu9yiQtSz399NO8/vrr/OEPf6CyspInnniC7u5uvvCFLwDw6KOP8u1vf3vo+I0bN/LrX/+av/zlL9TW1rJjxw6++93vsnHjxqEkx1dsmJ2Aze5g53lRmhpWxWbIXgca/56yHpJzP9htro7Fwi0MRgPLpywnVBUqdShusT5tPQOOAfbU75E6FJ9kLi4mbMUKFGGBMd5avR5nXx+WsjKpQ/FJ1eXNpM2KRh3kGyUpAEkj+fSnP01LSwsvvPACTU1NzJ07F4PBMPSQcX19/Q0zNd/5zneQyWR85zvfoaGhgdjYWDZu3MgPfvADqb6FESWGB7MoPZJtZ67x/xZMkToc39J2Ga6dhCX/KHUk7hOeDKmLXQ395j4sdTQ+5Yr5ChXXK3gs9zGpQ3Gb+NB45sXNw2A0cH+Wn20b4mG2+nr6zp0j+ktflDoUt1FPmUJQXh7m4mLC771X6nB8SmdLD6Y6C3PXpUodyg0kT7OefPJJnnzyyWHfK7spS1Yqlbz44ou8+OKLXohs4orykvj+tvN09NiICJG2FbVPqdgCqhCY5r9LgoeVuwlKvg09bf7bt8cDSupKCFYGs2LKCqlDcSt9hp5/O/pvdFo7/bZvjyeYiw3IgoMJW7lS6lDcSldYSMurr2Lv6kIRFiZ1OD6jutyEUi0nfbbvlKTAz1ZL+ZvC2Qk4nE5KKoZf2j5pVWyBaQWgDowp6yE594PTARe2SR2JTykxlrBiygpCVCFSh+JW69LW4cDBrvpddz54EjEbDITlr0QeEljjrdMX4LTZ6Nq9W+pQfEp1uYn02TGoNL71aIhIbjwoThvE3RnRbDsjVk0Naa2GprP+uZfUnWjjIW2p2GvqY4ydRi60XfDLvaTuJCY4hoXxCzHUilVTg6y1tVgrKwNildTNVImJBM+bh3m7WDU1qKO5h9YrXWT50CqpQSK58bCiOYkcqrnO9S6xNwngepBYHQbZ66WOxDNmbYLafdDdKnUkPqHEWEKIMoTlyculDsUjCtILONp0lLa+NqlD8Qnm4mLkISGErQisEuQgXWEhXQcPYu/slDoUn1B1vBmVRkFabrTUodxCJDceps919ewxiNKUy7nNruXfqmCpI/GMmfe5/vf8u9LG4SMMRgP5KfkEKYOkDsUj1qWtA2Bn3U6JI/ENlmIDYWvWIA8KzPHWFhTAwACWnaIUCa6SVMacGJRq3ypJgUhuPC46TMOSqdFsEw39wFQJLZWuB28DVWgMZKxwPVc0ydV01FDdUe3Xe0ndSWRQJHcn3i0a+gHW6mqsVVXoCgN3vFXxcYQsXIjZIMb7+rUu2q51+8xeUjcTyY0XFOUlcqT2OiZLn9ShSKtiC2h0kOXfe83c0axNYDwAlsnd48hgNBCmCmNp8lKpQ/Eofbqe403Hae2d3KVI8/Zi5FotocuWSR2KR2kL9XQfPsxAe7vUoUiqutyEOlhJao7vlaRAJDdeUZCbgFwmo/jsJC5NOZ2uktSMe0GpkToaz5pRBHLFpC5NOZ1OSowlrE5djVoR2G0QVqeuRiFTUGoslToUyTidTszFxWjXrEGuDuzx1q1fDw4Hlh07pA5FMk6nk+rjJjLnxKBQ+WYa4ZtRBZiIEDXLs2PYduaa1KFIp/kcXK8K7JLUoJAomLp6Uu81dan9ErWdtQG5Supm4ZpwFictpsRYInUokrFeuoStthbdhsBbJXUzZUwMIXffNan3mrre0EVHcw9ZC+OlDmVEIrnxkqK8JI4Z22ns7JU6FGlUbIGgCMjMlzoS78jdBPWHobNB6kgkUWIsQafWsThx+H3iAo0+Q88J0wmauifn7Kx5ezHy8HBC77lH6lC8QldYSM+Rowxcvy51KJKoPm5CE6JkyoxIqUMZkUhuvGRdbjxqhZztk7E0NViSmlkEysCesh4yYwMo1HB+q9SReJ3T6cRgNLAmdQ0qhUrqcLxiVcoqVHLVpCxNDZWk1q1FFuAlqUHadetAJsNSOjnHu6rcROa8WBRK300hfDeyAKMLUrFiWuzkLE01noL22slRkhoUFA5ZaydlQ7/KtkquWK4E9Cqpm2nVWpYlL5uUpam+ivP019cHZOO+kSgjIwldvHhSNvRrqbdgbukle4HvlqRAJDdetXFOIifrO7ja3iN1KN5VsQVCoiEjsPaauaPcTdBwHNrrpI7EqwxGA5GaSO5KvEvqULxKn67nTOsZGromVynSYihGERlJ6N13Sx2KV+kKC+k5fpz+ZpPUoXhV9XETQWEqkqdHSB3KbYnkxovWzIxHo5TzwWTajsHpdCU3M+8DheT7tHrXdD0ogyZVacrpdFJqLGVt2lqU8sk13itTVqJRaCZVacpVkjKgXb8emXJyjbd27RpQKidVacrpdFJdbmLqvFjkCt9OH3w7ugATplGyekbc5NprqqEcOuoDcy+pO9FoXdtMTKLS1NnWszR0NUyKVVI3C1WFsmLKiknV0K/vzBn6GxomVUlqkCI8nLAlSybVqqlmoxlLW59Pr5IaJJIbL7s3L5GzDZ3UXe+WOhTvOLcZQuMgPbAbe41o1ibXM0fXa6SOxCtKjCVEB0WzMH6h1KFIoiC9gPPXz1Nvrpc6FK8wby9GERtDyKLJOd66DYX0njhBf+Pk+MBafdxEsE5NUnaE1KHckUhuvGz1jDiCVYrJMXvjcLhKMjn3u5raTUbZ60EVMim2Y3A4HZQYS1iXtg7FJB3vFVNWEKwMnhQPFjsdDswlJejWFyBTTM7xDluzBplajdkwGcbbSc0JE1nzYpHLZVKHc0ciufGyELWSNTMnSWnq6lEwN7hmLyYrdShM00PFVqkj8bjTLadp7mlGnzF5VkndLFgZTP6U/EmR3PSeOsVAU1NA7yV1J4qwMEJXLMdsCPzSVNPlTrrarX5RkgKR3EiiKC+JykYzNS1dUofiWec2gzYRUiZHY68RzdoEzWehtUrqSDzKUGsgLjiOeXHzpA5FUgUZBVxsv0htZ63UoXiUeXsxyvh4gufPlzoUSen0hfSdPoPtamCvkqsqNxEaoSFxarjUoYyKSG4kkD89ljCNMrB3CnfYPypJPQDySf5/s6x1oNYG9IPFdoedHXU7WJ++Hrlsco/3suRlhKpCA/rBYqfdjrnEgE5fgGyS/3xrV+UjCwrCEsCzNw6Hk5pyE1nz45D5QUkKRHIjiSCVgnU58YHd0K/+MHQ1T+6S1CBVkKtjcQDvNXXCdIKW3pZJuUrqZhqFhlUpqyipDdzSVE95OfaW1km5Supm8tBQwlauDOiGfo3VHfSYbWQtjJM6lFETyY1E7p2dSJWpi0vNFqlD8YxzmyE8BaYskjoS35C7CVouQPN5qSPxiBJjCYmhicyJnSN1KD5Bn66nprOGqvbALEWai4tRJiUSNEeMN7ga+vWdP4+tLjAbdlYfNxEWpSE+Qyd1KKMmkhuJLJ8WgzZIybbTATh7Yx+A8++6VknJ/GMK0+OmrgJNeEDO3gw4BlwlqbT1yMR4A7AkaQlatTYgS1POgQEsJaXo9IVivD8StnIFspAQzMWBN94Ou4OakyayFsT71XiL5EYiGqWCgtwEtp1pxOl0Sh2Oexn3Q0+rKEl9nFLj2ji0Youra3MAOd58nLa+tkm9SupmKoWKNalrKDWWBtzPd8/Ro9jb2kRJ6mPkwcFo8/MDsqFfw6UOei39ZPtRSQpEciOporxELrd2c77RLHUo7lWxBSLTIWlyr6K4Re4muF4NTWeljsStDLUGpoRNITc6V+pQfIo+XY/RbORi+0WpQ3Erc7EBVUoKQbPEeH+cbkMh1osXsV6+LHUoblVdbkIXE0RsqlbqUMZEJDcSWpoVQ2SIKrB63tj7ofI913YLfjSF6RWZKyE4KqBKU/2OfnbW76QgvcCvpqy94a7Eu4jQRGCoDZxShbO/H0tpKTq9Xoz3TUKXL0ceGhpQszd2Py1JgUhuJKVSyNHPSmDbmWuBM3V9eS/0tk/OvaTuRKGCmRtdD1sHyHgfaTxCp7VTrJIahkruKk0ZjIaA+fnu/vBD7J2d6DaIktTN5BoNYWtWB1Ryc/VCO9buAb9aJTVIJDcSu3d2Elfaejnb0Cl1KO5RsRmipkJCntSR+KZZm6CjDq6dkDoStygxlpCmS2NG1AypQ/FJ+gw9DV0NVFyvkDoUtzBvL0adno5mhhjv4egKC7FV19B36ZLUobhF9fFmIuJDiJkSJnUoYyaSG4ndkxlFdKg6MEpTAzao3Ob6A+5nU5hek7YMQmICoqFfv72fXfW7REnqNhbGLyQqKCogSlNOmw3Lzp3oNohVUiMJW7oUuU4XELM39gEHl0+1krUgzi/HWyQ3ElMq5BTOTuCDQFg1VbMbrJ2uB2eF4SmUriXyFVv9vjR16NohLDYL+nSxSmokSrmSdWnrKKkr8fuf766DB3FYLGj1YrxHIlOr0a5di6XY/0uRV863YesdIGuB/5WkQCQ3PqEoL4mGjl5O1HdIHcrEVGyGmOkQN1PqSHzbrE1gvgpXj0kdyYQYjAYywzPJisiSOhSfVpBeQFN3E6dbTksdyoSYi4tRZ00laNo0qUPxabpCPTajEeuFC1KHMiFV5c1EJoYSnex/JSkQyY1PWJQeRZxW49/bMfT3wYXtoiQ1GqmLISzBr0tTVruVPVf2oE8Xq2buZH7cfGKDY/16p3CH1UrXrt2it80ohN5zD4qICL/ejmGg307t6Va/623zcSK58QEKuYwNsxPZfrYRh8NPpzKrd4LNIkpSoyFXQO4Dro1FHQ6poxmXAw0H6O7vpiBDrJK6E4Vcwfr09ZQaS3E4/XO8u/fvx9HdLZKbUZCpVGjXrcNcXOy3pan6ijb6++x+W5ICkdz4jKK8RJrNVo7XtUsdyvhUbIb4WRArpqxHJXcTWBpdG4z6oZLaEqZFTiMzPFPqUPyCPl2PqdfEiWb/XCVn3l6MZvp0NJlivEdDt6GQ/qtX6Tvnn6vkqo83E50cRmRCqNShjJtIbnzE/NRIEsOD/LM0ZeuBiwbXbIQwOlMWgS7ZLxv69Q70Una1TPS2GYO82DwSQhP8cq8pR28vlrIyMWszBiGLFqGIivLLVVP9Nju1Z6/7ZW+bjxPJjY+Qy2XcOzuR7WebsPtbaaqqBPq7RUlqLORyV6PD8++Cwy51NGOy/+p+egd6xSqpMZDL5BSkFbCjbgd2Pxvvrr17cfb0oCsU4z1aMqUSbcF6zAb/K03Vnb3OgNW/S1IgkhufUjQnidYuK0cuX5c6lLGp2AKJcyB6qtSR+JfcTdDdAsYDUkcyJgajgZlRM0nVpUodil8pSC+gra+N483HpQ5lTMzFBoJyclCnpUkdil/RFRYycK2R3lOnpA5lTKrLm4lN1RIRFyJ1KBMikhsfMmdKOFMig3nfnxr6WbvgUqmYtRmP5PkQkeZXpame/h72X90vdgAfh1kxs0gOS/ar0pSju5uuvXvFdgvjELJgAcrYWCwG/xlvW98AdWev+/2sDYjkxqfIZDLuzUvEcK6RfrufrKq4ZICBXvG8zXjIZB+Vpt5zbTjqB8qulNFn72N92nqpQ/E7MpmMgvQCdtbtpN/hH+Nt2VOGs68PrV4kN2MlUyjQFhRgNpTg9JNVkcazrQz0O0RyI7jfxrwk2nv6OVzjJ6Wpc5sheQFEpksdiX/KfRB626B2r9SRjEqJsYTZMbOZop0idSh+SZ+up8PawdHGo1KHMirm4mKC5uShnpIsdSh+SbehkIHmZnpP+McquerjJuIzdOhigqUOZcJEcuNjcpN0pEeH+MeqqT4zVO8QJamJSJwDUZmu55Z8XJetiwMNB8QqqQmYETWDNF2aX5Sm7F1ddO/bh07M2oxb8Ny5KBMS/KKhn613gLqKwChJgUhufI5MJqMoLwnDuSZsAz4+lXlxO9htoiQ1ETKZKzmsfN+18agP23NlDzaHTSQ3EzBYmtpVv4t+Hy9Fdu3ahbO/H51ejPd4yeRydHo95tJSnHbfXiVXe7oFx4CTqfNFciN4SNGcRMx9AxyobpE6lNs7txlS7oZwUaKYkFmboK8TLu+ROpLbMhgNzI2dS0JogtSh+LWC9AIsNguHG327gaN5ezHB8+ejSkyUOhS/pivUY29tpeeYb6+Sqyo3kTg1HG1UkNShuIVIbnzQ9HgtWXFhbDvtw6umettdu4CLktTExeW4Nhz14b2mOq2dHLp2SKyScoPsiGwywzMx1Ppuacre2UnXoUOicZ8bBOXloUpO9umGfn3d/Vw53+b3jfs+TiQ3PkgmczX0Kz3fTF+/j05lXvgAHAOQc7/Ukfg/mcw1e3PhA9cGpD5od/1u7A4769LWSR2K35PJZOjT9ey+shur3Sp1OMOy7NwFAwNo14tVcRMlk8nQFeqxlJbiHBiQOpxh1Z5uweFwMnWeSG4ED9s4J5Eu6wD7LvloaercZkhbCjoxZe0WuQ+6Nh6t3il1JMMqMZawIH4BcSGB88tPSgUZBXT3d3OgwTcbOJqLiwlZuBBVvBhvd9AWFmJvb6f7yBGpQxlW9XETSVkRhEZopA7FbZRSByAMLytOy4wELdvONLI+18eecei+DpfLoPBHUkcSOGKnQ1yua9XUzCKv3trpdDJwm0+UHX0dVLZU8uTcJ+nv9+2HYP1FSkgK86Lnsde4lxWJK257rEKhQC733ufQgfZ2ug8fJuE7z3vtnoEuKCcHVWoq5uJiwpYulTqcG/R22bhyoZ0Vn86WOhS3EsmNDyvKS+RXZTX02uwEqxVSh/M3le8BTlGScrdZD8L+V10bkaq90/p8YGCAlpaW2+5/U9dZx0MpD7EgbAEtLT46k+iHvpj+RS51XKKxuRGl/Pa/ikNCQggPD0cmk3k8LkvpDnA6RUnKjVylqULa//IXnC+8gEytljqkIZdPtoDTSWYAlaRAJDc+rSgviZ+UXmLPRRMbZvtQ+adiC6Qvh7DA+mGQXO4m2P0SVJV6ZXm90+mko6MDuVxOZGTkiH84T3SfYErCFFISUzwe02Si0WmoqqrCGmQlMXz4n2+n04nNZsNsNgMQERHh8bjMhmJC7r4LZXS0x+81meg2FHL9tdfoPnyYsJUrpQ5nSHW5ieTpkYTofCfhcgeR3Piw9JhQZiXr2Hbmmu8kN10mMO6HoleljiTwRE91NfWr2OyV5MbhcGCz2YiMjEQ9wifJnv4ervRcYcWUFahUKo/HNJlEq6KJCIngctdlsmNGLgkMjo3ZbEan03m0RDXQ2krPkaMkfO9Fj91jstJMm4Y6MxNzscFnkpses42Gi+2sfHi61KG4nXig2MfdOzuJ3RdMdFt95Cn78+8CMpixUepIAlPuJtdGpNYuj9/K8dF+NwrFyCXPy52XkSEjMzzT4/FMRlmRWdSZ6+7Y0G8wwbF7uBGcubQU5HK068SqOHeTyWTo9Hosu3bhsPlGw86aEyZkMllArZIaJJIbH1eUl0hfv4NdF0xSh+JSsQUy8yFUTFl7RO4Dro1IL3mvB8rtnuOo7qhmStgUgpX+v9eML5oaMZUBxwBGs/G2x3njWRsAy/ZiQhcvRhkZ6ZX7TTa6DYU4LBa6D/jGKrnqchNTZkYSFBZ4s7IiufFxKVEhzEmJYNtpH9hrytwIdYdcPVkEz4hMd21E6gN7TXX3d9PY1cjUiKlShxKwdGod8SHxVHdUSx0K/c0mesrL0elFo0ZP0WRlocnO9om9pro7rFyr7giYvaRuJpIbP7AxL5GySy1Y+iRehnv+XZArYca90sYR6HI3QdUO18akEqrpqEEmk5ERniFpHIEuKyKLenM9Nru0pQpLSQkolWjXrpE0jkCn21BI1+7dOPqkbdhZfcKEXC4jY06spHF4ikhu/MCG2YnYBhzsON8sbSAVm2HqaggWU9YelfsA2K2ujUklVN1RTYo2hSClb+01k5+fz9e//nWpw3CbqRFTsTvt1HbWShrHYA8WRXi4pHEEOq1ej6Onh659+ySNo/q4idScKIJCA68kBSK58QtJEcEsTItk2xkJ95rqvApXjoiSlDeET4GUeyTda6rL1kVTdxNZEVmSxTBZhKnDSAxNlLQ01d/YSO/Jk+g2iL2kPE2TkYFm5kxJ95qytPXRdLmTrIXxksXgaSK58RP35iWyv6qFzh6JSlMVW0GhgekbpLn/ZDNrk2tj0t52SW5f3VGNQqYQJak7sLlp1cvUiKlcsVyhb0CaUoXZUIJMrSZs9WpJ7j/Z6AoL6Srbi6OnR5L715wwoVDKyciLkeT+3iCSGz+xYXYiAw4nJeebpAmgYjNkr4MgnTT3n2xm3ufamLRymyS3r+moIVWXilrh24292tvbefTRR4mMjCQkJITCwkKqqqoAVwO82NhY/vrXvw4dP3fuXBIT/9Yz6sCBA2g0Gno++iPT0dHBl7/8ZWJjY9HpdKxevZrTp08PHf+9732PuXPn8rvf/Y6MjAyCgtxTspsaMRWn0ylZacpcXEzoiuUowsIkuf9koyvU4+ztpWvvXknuX3XcRGpuFOrgwG11F7jfWYCJ1wVxV3oU28408qmFXu4U226EhnL4f294976TmS7RtTFpxRaY/zmv3bbXZud0QzOnr7ZzT+I0zjV0euW+U2PDxrXFyGOPPUZVVRXvvfceOp2OZ599lg0bNnD+/HlUKhUrVqygrKyMT3ziE7S3t1NZWUlwcDAXLlxgxowZ7N27l0WLFhES4tru4pOf/CTBwcEUFxcTHh7Oa6+9xpo1a7h06RJRUVEAVFdX83//939s3rz5tj2CxiJUFUpSWBLVHdXMjJ7plmuOlu3qVfrOnCHppz/x6n0nM3VKCkGzZmHeXoyu0LulQHNrLyajmfVfyvXqfb1NJDd+pGhOEt97r4K2bhtRoV78RF2xBZTBME0sEfWqWQ/C9mdcG5V6qa9QTUsXn3ntJJDIH6kH6r1y323/uIxZyWN7kHUwqTl48CBLliwB4K233iIlJYWtW7fyyU9+kvz8fF577TUA9u3bx7x580hISKCsrIwZM2ZQVlbGyo+6xR44cICjR49iMpnQaFy7I//kJz9h69at/PWvf+Xxxx8HXKWoP/7xj8TGuneVydSIqRxoOEDvQK9X+wqZi4uRBQWhzc/32j0FV2mq5T/+A3tXN4qwUK/dt7rchFIlJ212YPcqE8mNHymclcCL757DcK6Jh+9O9d6NK7bAtPWgEVPWXjXzftj+T66NShd+wSu3nBobxlMbewlTh7E4abFX7jl437GqrKxEqVRy9913D70WHR3N9OnTqaysBGDlypU89dRTtLS0sHfvXvLz84eSmy996UscOnSIZ555BoDTp0/T1dVF9E17KvX29lJTUzP072lpaW5PbAAywzPZ37Cfy52XyY323qdqy0fbAchDvfcHVnCVpkw//jFde3YTvtF7Hd+ry02kzY5GHRTYf/4D+7sLMDFhGpZMjWHbmWveS26u10DjaVj2tHfuJ/xNWCxkrHA97+Sl5Mbm7EITamJV+lyyIvx/SfDs2bOJiopi79697N27lx/84AckJCTwox/9iGPHjtHf3z8069PV1UViYiJlZWW3XOfjG1aGeigJCFGFkByWTE17jdeSG1tdHX3nzxP90ayU4D2qpCSC587FXGzwWnLTYeqhpd7C/II0r9xPSuKBYj9zb14iH16+TovF6p0bVmwGVShkr/fO/YQb5W4C4wHXhqVeUN1RjUquIk3n+7/8Zs6cycDAAEeOHBl67fr161y8eJGcnBzAtW3B8uXLeffdd6moqGDZsmXk5eVhtVp57bXXWLhw4VCyMn/+fJqamlAqlWRlZd3wFRPjnVUlWRFZNHQ30NPvnVU05uJiZCEhhK1c4ZX7CTfSFerp3r8fu9k7DTurj5tQahQBX5ICH0hufvnLX5Kenk5QUBB33303R48eve3xHR0dfPWrXyUxMRGNRsO0adPYvl3aZmfepM9NQC6TYTjnpZ4357bAdD2oQ7xzP+FGMzeCTP7RhqWeV91RTbouHZXc9xt7ZWdnc//99/OVr3yFAwcOcPr0aT772c+SnJzM/fffP3Rcfn4+f/7zn5k7dy5hYWHI5XJWrFjBW2+9NfS8DcDatWtZvHgxDzzwAKWlpRiNRg4dOsTzzz/P8ePHvfI9ZYZnIkNGTWfNnQ92A/P2YrSrViEPFnuHSUGr1+McGMCya7dX7ldd3kxGXgyqcTy872/Gndzs2rWLoqIipk6dytSpUykqKmLnzp1jusY777zD008/zYsvvsiJEyeYM2cOBQUFmEzDf0q12WysW7cOo9HIX//6Vy5evMjrr79OcnLyeL8NvxMZqmZpVgzve6OhX8tFMFW4Zg8EaYREuTYq9cJeU+197Vzvvc7USP/ZS+q//uu/WLBgAUVFRSxevBin08n27dtRqf6WnK1cuRK73U7+xx6Yzc/Pv+U1mUzG9u3bWbFiBV/4wheYNm0an/nMZ6irqyM+3jvNzoKUQUzRTqG63fMN/aw1NVgvXUJXKBYKSEUVH0/wgvmYiz3/Ab2tsZvrDd0Bu5fULZzj8Mtf/tKpVCqdn/nMZ5w///nPnT//+c+dDz30kFOlUjl/8YtfjPo6d911l/OrX/3q0L/b7XZnUlKS85VXXhn2+F//+tfOzMxMp81mG0/YTqfT6ezs7HQCzs7OznFfQ2r/c6zemf7cNmdTZ69nb7TnFafzB8lOp83D9xFu78SfnM4Xw53OzmtuvazNZnM2NDQM/TwdbTzqfP3M685+e79b7yOMTeX1SuevTv7KabFahl67eazcwfSfv3BeWLDQae/rc9s1hbG7/qc/Oc/nznIOtLd79D5H3r/s/O1TZc5+24BH7+MrxjVz8/LLL/Pqq6/y5z//ma997Wt87Wtf4+233+bVV1/l5ZdfHtU1bDYb5eXlrF27dug1uVzO2rVrOXz48LDnvPfeeyxevJivfvWrxMfHM2vWLF5++WXsdvuI97FarZjN5hu+/N363ASUchkfeHL2xul0tf+fsQFUvrW30KQz415QqOD8Vo/dwul0DpWklHKxzkBKGeEZyGVyLnde9tg9nE4n5uJitGtWI/9o2bsgDd369eBwYBlj5WMsnE4n1cebyZgTi1IV+CUpGGdZqqOjA73+1qnM9evX09k5uqZfra2t2O32W6Z74+PjaWoavgvv5cuX+etf/4rdbmf79u1897vf5ac//SkvvfTSiPd55ZVXCA8PH/pKSfFyAzwPCA9WsSI7lm1nrnnuJqbz0HpRlKR8QXAETF3j0b2m2vraaO9rF3tJ+QCNQkOKNsWje01ZL1Vhq6lB6+UGcsKtlLGxhCxahHm75/aaarvWTXtTD1kLJ0lJinEmN/fddx9bttz6DMC7775LUVHRhIMaicPhIC4ujt/+9rcsWLCAT3/60zz//PP85je/GfGcb3/723R2dg59XblyxWPxeVPRnERO1HfQ0NHrmRtUbAFNuGsXcEF6szbB1aPQ4Zn//1Z3VA/9URWklxWZRVN3ExabxSPXNxuKket0hH20DF6Qlq6wkO4jRxhoa/PI9avLTWhClKTMjPLI9X3RuOafc3Jy+MEPfkBZWRmLF7safX344YccPHiQb37zm/zHf/zH0LFf+9rXhr1GTEwMCoWC5ubmG15vbm4mISFh2HMSExNRqVQ3tDyfOXMmTU1N2Gw21Opbu/ZqNJqhbqOBZO3MeNRKOdvPNPKVFZnuvfhgSWpmESh9e2+hSWOa3rVx6fmtsOQf3Xppp9NJTUcNGeEZKOSTY8ra1w2WB2s6apgbN9et13Y6nVi2F6NduxbZML8zBe/Trl9H0/e/j6V0B5Gf+bRbr+10Oqk63kzG3FgUSskXSHvNuL7TN954g8jISM6fP88bb7zBG2+8QUVFBREREbzxxhu8+uqrvPrqq/zsZz8b8RpqtZoFCxawa9euodccDge7du0aSphutnTpUqqrq3E4HEOvXbp0icTExGETm0CmDVKxarqHSlNNZ6CtRpSkfEmQzrVxqQdKU229bXRYO0RJyoeoFWpStakeKU1ZKyux1dV5fU8jYWTKqChC774bc7H7S1OtV7roNPWSPVlWSX1kXMlNbW3tqL4uX779A3FPP/00r7/+On/4wx+orKzkiSeeoLu7my98wdWN9dFHH+Xb3/720PFPPPEEbW1tPPXUU1y6dIkPPviAl19+ma9+9avj+Tb8XlFeEqevdlJ/3c0Nv85thuAoyFx552MF75m1Ca6dgDb37hxtNBsJUgaRrJ08LRX8QVZEFqYeE51W925eai4uRhERQeg9d9/5YMFrdBsK6Tl2jIGWFrdet7q8maBQFckzIt16XV8n6RzVpz/9aX7yk5/wwgsvMHfuXE6dOoXBYBh6yLi+vp7Gxr+tCEpJSaGkpIRjx46Rl5fH1772NZ566imee+45qb4FSa2ZGUeQSs62s26cvXE6Xc/bzNzoWqEj+I5pelCFuLXnjdPpxGg2khmeiUImSlK+JE2XhkquoqbDfQ39XKukDGjXrUOmEj/fvkS7di3I5ZhLS912TafTSXW5icx5sSgUk6ckBWN45ubpp5/m+9//PqGhoTz99O33Gfr3f//3UQfw5JNP8uSTTw773nB7vCxevJgPP/xw1NcPZCFqJWtmxLPtdCP/kO+mksK1E9BRB7kPuud6gvuoQ2FagWtLjOXu2eurw9qBxWZhacRSt1xPcB+VwrUNRnVHNbOjZrvlmn3nztF/9Sq6DaIk5WsUERGELl2CubiYqEceccs1TXUWzK19k2qV1KBRJzcnT56kv79/6J9HIpPJJh6VMGpFeYk88dYJLrd0kTmOnZVvcW4zhMRA+vKJX0twv9xN8D+fg9ZqiJl4Qnut65qrJBUmSlK+KCsiC4PRQGefe0pT5u3FKKKjCVm0yC3XE9xLpy+k8Z//mf7mZlRu6IpdfbyZYK2K5OyIiQfnZ0ad3OzZs2fYfxaktWpGHKFqBR+caeQf12RP7GIOB1RshZz7QSEaufmk7HWgDnOVplb+04Qu5XQ6aehuYGrSVOQy/5myzs/PZ+7cubddsBAoUnWpqOQqjGYjSbKkCV3L6XBgNhjQFaxHphQ/375Iu3YNTS8osRgMRH3+8xO6ltPhKklNnR+HfJKVpMAHNs4UJiZIpWBtTjzb3NGtuOE4mK+6HlwVfJMqGKYXukpTE1RxvYLe/l7Swn1/B/DJSilXkhGeQW3nxB8i7z19moHGRrTDNGAVfINCqyV0+XLMxYYJX6vZaKar3Tp59pK6ybiSm+7ubr773e+yZMkSsrKyyMzMvOFL8K6ivCQuNluoap5gw69zmyEsHlKHX4ov+IjcTa4O0qYLE7pM2ZUyNEoN8SHe2RRSGJ+pEVPpsHZgtk1s6xhzcbGrG+6CBW6KTPAEXWEhvadO0X9tYgtFqo43ExKuJjErwj2B+ZlxJTdf/vKXeeONN1i+fDlPPvkkTz311A1fgnetmBaDVqOc2E7hDoerQVzOAyAaufm2rDWu7tETmL1xOB3svbKX5NBkvypJ3ay9vZ1HH32UyMhIQkJCKCwspKqqCnCV3WJjY/nrX/86dPzcuXNJTEwc+vcDBw6g0Wjo6XFzOwU3StWmolaoudY1/j92TocDi6EErV6PTCF+vn1Z2KpVyDSaCc3eOB1OaspNZM2PQy6fnM/BjqvwWlxczAcffMDSpWKFhS/QKBWsy41n25lrfGNt9vge6q4/DJZGUZLyB0qNazPNc5sh/9swjvE+aTpJa18rSWE3Pcdh64HWS24KdAxipoE6ZMynPfbYY1RVVfHee++h0+l49tln2bBhA+fPn0elUrFixQrKysr4xCc+QXt7O5WVlQQHB3PhwgVmzJjB3r17WbRoESEhY7+3tyjkClK0KTQ0N+B0Osd1jd4TJxgwmdAVipKUr1OEhRK2YgXm4mKiv/TFcV2jsaaD7k4bWQsn76zsuJKbyMhIoqImzx4V/mBjXhKbTzRwocnCzETd2C9QsQV0yTDlLvcHJ7hf7oNw+m1oPgcJY18mbKg1EBscS1TQTT/HrZfgtxI0b3x8LyTNHdMpg0nNwYMHWfLRHklvvfUWKSkpbN26lU9+8pPk5+fz2muvAbBv3z7mzZtHQkICZWVlzJgxg7KyMlau9P1mlRnhGVy8cpGajhpmxs0c8/nm7cUoExIInjvX/cEJbqfbUEjDN57GduUK6nFs9lx93ERYpIaEjHH8LQgQ40puvv/97/PCCy/whz/8wac/8UwmS7NiCA9Wse3MtbEnNw47nH8XZn8S5P5bophUMvMhKMKVlI4xubE77Oyo28EDmQ/cOssXM82VaHhbzLQxn1JZWYlSqeTuu//WaTc6Oprp06dTWVkJwMqVK3nqqadoaWlh79695OfnDyU3X/rSlzh06BDPPPOM274NT0kMS0StULPnyp4xJzdOux1zaSnhRUXIxM+3XwhbuRJZcDDmYgMxj39lTOc6HE6qT7Yw7a54ZJO0JAVjSG7mzZt3wy/C6upq4uPjSU9PR3VTp8sTJ064L0JhVNRKOfrcBLadaeRb66ePrTRlPADdJlGS8idKtauL9LnNsPq7YypNHW8+zvW+66xKWQWOm95Uh4x5BsWXzZ49m6ioKPbu3cvevXv5wQ9+QEJCAj/60Y84duwY/f39Q7M+vkwhU5AYmsibdW/yxPwnxvTz3XPsGPbWVtG4z4/IQ0IIy1+Jubh4zMnNtUvt9JptZC+YvCUpGENy88ADD3gwDMEdiuYk8s7xK5xrMDN7SvjoT6zYDBGpkCxWUfiVWZvg5H9D4ylImjfq00qMJSSHJTMzaiatra2ei8/DZs6cycDAAEeOHBlKUK5fv87FixfJyckBXE1Fly9fzrvvvktFRQXLli0jJCQEq9XKa6+9xsKFCwkNDZXy2xi1pLAkrnVd43zbeXKjc0d9nrnYgCo5maDZ7ulyLHiHrrCQhq89hbW2Fk1GxqjPqyo3oY0OIi5d68HofN+ok5sXX3zRk3EIbrA4M5qoUDXbzlwbfXJjH4Dz78H8z43rwVRBQukrXN2kz20edXIz4BhgZ91OHsgepiTlZ7Kzs7n//vv5yle+wmuvvYZWq+W5554jOTmZ+++/f+i4/Px8vvnNb7Jw4ULCwlxdvFesWMFbb73FP/3TxBohelNMcAwRmghKaktGndw4BwawlJYS8f82+f14TzZhK1YgDwnBYjCgeeKJUZ3jsDu4fKKFmUsTJ/14j6sAe+XKFa5evTr070ePHuXrX/86v/3tb90WmDB2SoUc/SxXaWrUqypq90Jvm9hLyh8plJBzn6ur9CjH+2jjUdqt7RSkF3g2Ni/5r//6LxYsWEBRURGLFy/G6XSyffv2G0rlK1euxG63k5+fP/Rafn7+La/5OrlMzorkFZQYS0b989394RHs7e1oC0VJyt/Ig4IIW7MG8/biUZ9z9WI7fd39ZE/iVVKDxpXcPPzww0NbMDQ1NbF27VqOHj3K888/z7/+67+6NUBhbIryEmno6OXUlY7RnVCxGSIzIHGuJ8MSPCX3Qeish6vHR3W4wWggRZtCTlSOhwPznLKysqGtFyIjI/njH/9IR0cHPT09GAwGsrNv3IZk7ty5OJ1OfvjDHw699vWvfx2n00lBgX8leatSV3Gt+xpnWs+M6nhz8XZUaakE5fjveE9mukI91qoqrNXVozq++riJ8NhgYlLcsM+gnxtXcnPu3Dnuusu1ZPh//ud/mD17NocOHeKtt97izTffdGd8whjdnRFNrFYzuu0YBmxQ+b7r2Y1JPoXpt9KWurpKV2y546H99n521e9Cn66f9FPW/mp2zGxigmMw1N65wZvTZsOycxc6faEYbz8VumwZcq12VLM39gEHl0+1kLUgTow340xu+vv70Wg0AOzcuZP77rsPgBkzZtDY6IY9joRxU8hlbJiVwAdnGnE47jB1fbkM+jpd7fwF/yRXuDY6rdji6jJ9G4cbD2O2mQOmJDUZKeQK1qWto7SuFIfz9uPdffgwjs5OsUrKj8nVarRr1mA2GO5YirxS2Ya1Z2BSN+77uHElN7m5ufzmN79h//797NixA/1HG7Fdu3aN6OhotwYojF3RnCSazH2U17ff/sCKzRCdDfGjX3kh+KDcTWC5BleO3PawEmMJ6bp0pkWOvaeM4Dv06XpMPSZOmU7d9jjz9mLUmZloponx9me6Qj22y5exXrp95/DqchORCSFEJ/vH6j9PG1dy86Mf/YjXXnuN/Px8HnroIebMmQPAe++9N1SuEqSzIDWSBF0Q207fZi+a/j648IEoSQWClLtBm3Tbvaasdiu763ejzxAlKX83N24ucSFxGIwjl6YcViuWXbvQFYqSlL8LXbwYeXj4bUtTA/12akVJ6gZjTm6cTieZmZnU19fT2trK73//+6H3Hn/8cX7zm9+4NUBh7ORyGRtmJ7L9XBP2kUpTNbvBahYlqUAgl7seLD7/rqvb9DAONRyiq78LfbrYW8jfyWVyCtIL2FG3A/sI49198CCOri6xl1QAkKnVaNetxVxcPGJpqr6iDVufnaxJ3rjv48aV3GRlZdHU1ERkZOQN76WnpxMXF+e24ITxK5qTSIvFytHatuEPqNgMcTkQN8O7gQmekfsgdDVD3aFh3zYYDWRFZDE1YqqXAxM8QZ+up7W3lfLm8mHfN28vRpOdjSYry8uRCZ6gKyykv76evvPnh32/utxEVFIoUUmiJDVozMmNXC4nOzub69eveyIewU3mpUSQHBHMtjPDlKb6e+FisehtE0imLITw1GFLU30DfZRdKRMPEgeQ2TGzSQpNGrY05ejro2v3bvEgcQAJvftuFJGRWIpvLU0N2OwYz7SSvVBMLHzcuJ65+eEPf8g//dM/ce7cOXfHI7iJTCajKC8Rw7kmBuw3raqoKgVblyhJBRKZDHIfcHWbtg/c8Nb+hv30DPSIklQAkclkFKQXsLNuJwOOG8e7a+8+HD09aPVivAOFTKlEu3495uJbV03VnbtOv1WUpG42ruTm0Ucf5ejRo8yZM4fg4GCioqJu+BJ8Q1FeEte7bRy+fNMs2+BO0jFiyjqgzNoEPa1g3HfDyyXGEmZEzSA9PF2auASPKMgooN3aztGmoze8bjYUo5k5c0z7EQm+T1dYSH9DA31nbmzgWHXcRExKGBHxIRJF5ptGvbfUxw12BxV826xkHalRIWw73cjy7FjXi7ZuuFQCK/xnTx1hlBLnurpNn9sMU1cD0NPfw76r+3g873FpYxPcLicqhxRtCiXGEpYkuTYOdfT00FW2l5hR7kUk+I+QRQtRxMRgLjYQ/NEK5X6rnbqzrSy8N13a4HzQuJKbz3/+8+6OQ/CAwdLUW0fqeenBWagUcrhkgP4e8bxNIJLJXLM3x96Ae/8dlGr2Xd1H70CveN4mAMlkMvTpet65+A7fufs7qBQqusrKcPb2ilVSAUimUKBbvx6zwUDcM/+ETC7HeLaVgX6HKEkNY1xlKYCamhq+853v8NBDD2EymQAoLi6moqLCbcEJE1eUl0Rnbz8HqltdLwzuIB0lpqwDUu6D0Nfh2hAV1yqp3OhcUrQp0sbl5+x2O447dICWQkF6AWabmcONhwEwFxcTNHs26hQx3oFIt6GQgaYmek+dAlx7ScWlaQmPDZY2MB80ruRm7969zJ49myNHjrB582a6uroAOH36NC+++KJbAxQmZmailszYULadbgSrBap2iAeJA1n8LFfX6XOb6e7vZv/V/QH5ILHBYGDZsmVEREQQHR1NUVERNTU1ACxZsoRnn332huNbWlpQqVTs2+d6HslqtfKtb32L5ORkQkNDufvuuykrKxs6/s033yQiIoL33nuPnJwcNBoN9fX1HDt2jHXr1hETE0N4eDgrV67kxIkTN9zrwoULLFu2jKCgIHJycti5cycymYytW7cOHXPlyhU+9alPERERQVRUFPfffz9Go3HM/x2mRU4jIzyDEmMJ9q5uuvbuQyceJA5YwfPno4yPx7y9GFvvAHXnrotZmxGMqyz13HPP8dJLL/H000+j1WqHXl+9ejW/+MUv3BacMHGu0lQS/3Wwlv7sSlR2q2tVjRCYBktTH/6GPbMKsDlsrE9fP+rTewd6qe2s9WCAw8sIzyBYOfpPn93d3Tz99NPk5eXR1dXFCy+8wIMPPsipU6d45JFH+Ld/+zd++MMfDnVrfeedd0hKSmL58uUAPPnkk5w/f56//OUvJCUlsWXLFvR6PWfPnh3aVbynp4cf/ehH/O53vyM6Opq4uDguX77M5z//ef7zP/8Tp9PJT3/6UzZs2EBVVRVarRa73c4DDzxAamoqR44cwWKx8M1vfvOG2Pv7+ykoKGDx4sXs378fpVLJSy+9hF6v58yZM6jV6lH/dxhcNfWn83/i6esLcdpsoiQVwGRyOTp9AebtxXSu+QL2AQdZYgn4sGTOO+3GNYywsDDOnj1LRkYGWq2W06dPk5mZidFoZMaMGfT19XkiVrcwm82Eh4fT2dmJTqeTOhyvuNRsYf2r+ziW+Tti5Rb48k6pQxI8yXQBfnU3/zivgDaVirc2vDXsYf39/bS0tBAbG4tKpQLg/PXzfHrbp70ZLQDvFL1DTnTOuM9vbW0lNjaWs2fPEh8fT1JSErt37x5KZpYsWcKKFSv44Q9/SH19/VCX9aSkpKFrrF27lrvuuouXX36ZN998ky984QucOnVqaHuZ4TgcDiIiInj77bcpKirCYDCwceNGrly5QkJCAuDaXHjdunVs2bKFBx54gD/96U+89NJLVFZWDiVfNpuNiIgItm7dyvr1tyajw43VoJqOGh549wH+uGcmkX0K0v/y53H/dxR8X8/Jk9Q99DBVn/sN/apQ/t8zC6UOySeNa+YmIiKCxsZGMm5aanjy5EmSk5PdEpjgPtPitcyLg8hr+6Dg+1KHI3ha3AzMcTM52HGBbywa26q4jPAM3il6x0OB3f6+Y1FVVcULL7zAkSNHaG1tHXoepr6+nlmzZrF+/Xreeustli9fTm1tLYcPH+a1114D4OzZs9jtdqbdtKGk1Wq9YeNftVpNXl7eDcc0Nzfzne98h7KyMkwmE3a7nZ6eHurr6wG4ePEiKSkpQ4kNcMt+e6dPn6a6uvqGWW+Avr6+odLaWEyNmMosTQaqY+fQPfvcmM8X/Evw3Lk4p6Rz9Uo/Sz8pSlIjGVdy85nPfIZnn32W//3f/0Umk+FwODh48CDf+ta3ePTRR90do+AGTyRcQt5pp2/aRoKkDkbwuD1pcxloOcD65BVjOi9YGTyhGRRv2bhxI2lpabz++uskJSXhcDiYNWsWNpsNgEceeYSvfe1r/Od//idvv/02s2fPZvbs2QB0dXWhUCgoLy9HoVDccN2wsLChfw4ODr5lE8LPf/7zXL9+nZ///OekpaWh0WhYvHjx0H1Ho6uriwULFvDWW7fOqMXGxo76Oh/3aVMGMnsV6jX54zpf8B8ymQzL4k/iNEHmHNFXbiTjSm5efvllvvrVr5KSkoLdbicnJwe73c7DDz/Md77zHXfHKLjBsr59HHNOp71RiT76zscL/s0g62We1Up8w2kIT5M6HLe6fv06Fy9e5PXXXx8qOx04cOCGY+6//34ef/xxDAYDb7/99g0fuubNm4fdbsdkMg2dP1oHDx7kV7/6FRs2bABcDwa3trYOvT99+nSuXLlCc3Mz8fGuT9XHjh274Rrz58/nnXfeIS4uzm2l8Zmn2jmXAtcGLrKOVLdcU/BdTcHTCO88j7wqFGIWSx2OTxrXaim1Ws3rr79OTU0N27Zt409/+hMXLlzgv//7v2/5JCT4gJ42Qq7uozx0Je+faZQ6GsHDOvo6+LD1DAXyiGH3mvJ3kZGRREdH89vf/pbq6mp2797N008/fcMxoaGhPPDAA3z3u9+lsrKShx56aOi9adOm8cgjj/Doo4+yefNmamtrOXr0KK+88goffPDBbe+dnZ3Nf//3f1NZWcmRI0d45JFHCA7+24PQ69atY+rUqXz+85/nzJkzHDx4cOgD3+As0COPPEJMTAz3338/+/fvp7a2lrKyMr72ta9x9erVMf/3GGhvx3H0JLULkjDU3rrXlBBY+rr6uXa1n6T+y5i337rXlOAy7j43AKmpqRQWFvLJT35yaIWB4IMq3weng+C5m9hdaaLHNnDncwS/tfvKbhw4WJ91v6sbta1b6pDcSi6X85e//IXy8nJmzZrFN77xDX784x/fctwjjzzC6dOnWb58OampN85m/Nd//RePPvoo3/zmN5k+fToPPPAAx44du+W4m73xxhu0t7czf/58Pve5z/G1r32NuLi/rVZRKBRs3bqVrq4uFi1axJe//GWef/55AIKCXAXhkJAQ9u3bR2pqKps2bWLmzJl86Utfoq+vb1wzOZadO8HhIHbDfey7uo+e/p4xX0PwH5dPteB0Osm6KwlLaSnO/n6pQ/JJ41otBa4f8ldffZWqqirA9Ynm61//Ol/+8pfdGqC7TcbVUvzxAXAMUL/xf1jx4z3850Pz2Dgn6Y6nCf7p8dLHsTvtvLHoO/Afc+ETv4dZ/++W4263Akdwn4MHD7Js2TKqq6uZOnXquK5xu7Gq/+KXcNrtyH/xfTZs3sCPV/wYfYZYDh6o3v3ZSZxOJ3p9MLUPbiLl9d8SNsby6mQwrpmbF154gaeeeoqNGzfyv//7v/zv//4vGzdu5Bvf+AYvvPCCu2MUJqK7FWr3waxNpEaHkDclnG1nrkkdleAhbX1tHG066tpuISoDkua7ulILXrNlyxZ27NiB0Whk586dPP744yxdunTcic3tDLS10X3kCLrCQlK0KcyKnoXBKEpTgarXYqPhYjtZC+LRzJiBOj0dc7EY7+GMK7n59a9/zeuvv84rr7zCfffdx3333ccrr7zCb3/7W371q1+5O0ZhIs6/6/rfmfcBUJSXyJ6LLXRZRWkqEO2sc/UwWpu21vXCrE2urtR9ZgmjmlwsFgtf/epXmTFjBo899hiLFi3i3Xff9cy9SksB0Ba4euPoM/Tsv7qfLluXR+4nSKvmZAvIZEydH4tMJkNbqMeycyfOMazWmyzGldz09/ezcOGtjYMWLFjAwID4o+lTKrZAxgoIjQHg3rwkbAMOdp5vljgwwRNKjCXclXAXUUEfLRHNeQDsVteGqYJXPProo1y6dIm+vj6uXr3Km2++eUP/HHcyby8m9J57UEZGAq69pmwOG3uu7PHI/QRpVR9vZsqMSILDXF2sdYWFOMxmug4elDgy3zOu5OZzn/scv/71r295/be//S2PPPLIhIMS3MTSDMYDrk/vH0mOCGZ+aoQoTQWg1t5Wjjcfv/F5i4gUmHKXKE0FoIGWFnqOHbthu4WE0ATmxs6lxFgiYWSCJ3R3Wmmo6iBrwd8eYA+aNg111lTMxWLV1M1G3efm40stZTIZv/vd7ygtLeWee+4B4MiRI9TX14smfr7k/LsgV8CMohteLspL4pXiSjp7+wkPFg+SBopSYyly5KxJXXPjG7M2Qel3obcDgiOkCE3wAHNJKSgUaNeuveH1gvQCflr+U8w2Mzr1JFk0MQnUnGhBLpOROffGRo+6wkLafv9fOKxW5BqNRNH5nlHP3Jw8eXLo6+zZsyxYsIDY2FhqamqoqakhJiaG+fPnU1FR4cl4hbGo2AyZqyDkxi6WG2YnMuBwUlrRJFFggieUGEu4J+kewjXhN76R8wA4BuDC7Xu4CP7FXFxM6NIlKCIibnh9ffp67A47u+t3SxOY4BHV5c2k5EQRFHrjB1JdYSGO7m669++XKDLfNOqZmz17RA3Xr3Q2QP1heODW8mFCeBCL0qL44Gwjn1yYIkFwgrs1dzdzwnSCl5a+dOubukRIW+JKdueJsnEg6G9qore8nMQfvnLLe3EhccyPn4/BaOCBrAe8H5zgdl3tfTRWd7LmsZm3vKfJzEQzfTrm7cW3zOJNZhNq4if4sPPvgkINM+4d9u2iOYkcqGqlvVs8ZR8ISutKUclVrE5dPfwBuQ/C5TLoafNqXIJnWEpKkKlUaNesGfZ9fbqeI9eO0NHX4d3ABI+oLjchV8rImDP83mO6wkIsZWU4enu9HJnvGldy09fXx49//GM2bNjAwoULmT9//g1fgg+o2AxZayEofNi3C2cl4nA6KRGlqYBgMBpYmrwUrVo7/AE594PT4epWLfg98/ZiQpcvR6EdfrzXpq3FgYOd9Tu9HJngCdXlJlJzotEED19s0RXqcfb00LV3n5cj813jSm6+9KUv8W//9m+kpaVRVFTE/ffff8OXILGOerh6zPVpfQSxWg33ZEazTew15feudV3jTMsZV+O+kYTFQfqygNhrKj8/n69//esjvi+Tydi6deuor1dWVoZMJqOjo2PCsXlDf0MDvadPoyssHPGYmOAYFiUsEg39AoD5ei/NtWayF8aNeIw6LY2gnByxaupjxrUr+LZt29i+fTtLly51dzyCO1RsAWUQTB/5lx+4Vk19Z+tZWrusxISJp+z9VamxFI1Cw6qUVbc/MHcTfPA0dLVA2PDT24GgsbGRyI/6vgQis8GATKMhbNXtx7sgvYCXPnyJ673XiQ72TJ8dwfOqy00oVHLS82Jue5xuQyEtv/glju5u5KGhXorOd41r5iY5ORntCNOhgg+o2ALZ60Bz+zHSz0pAJpNRfE6UpvyZwWhgefJyQlV3+IU28z5ABpWe6ZbrKxISEtAE8JJYc7GBsBUrUITdfrzXpq5Fhmyoa7Xgn6qPm0ibFY066PZzEVp9Ic6+Pix7yrwTmI8bV3Lz05/+lGeffZa6ujp3xyNMVNtluHbS9Sn9DqJC1SyZGs0HoqGf37pivkLF9QoKMm5TkhoUGg2Z+XBui8fj8jSHw8EzzzxDVFQUCQkJfO973xt67+ay1KFDh5g7dy5BQUEsXLiQrVu3IpPJOHXq1A3XLC8vZ+HChYSEhLBkyRIuXrzonW9mDGxXr9J37hy6DbeflQWIDIrknsR7RGnKj3W29NBSb7mhcd9I1FOSCZqTh9kgSlMwzrLUwoUL6evrIzMzk5CQkFt2qW1rEysyJFOxBVQhMG0Uf+yAjXlJPLv5DCZzH3G6IA8HJ7hbSV0JwcpgViSvGN0JszbBu0+CpQmCbi1VOHp7sV6+7OYo70yTmYk8OHjUx//hD3/g6aef5siRIxw+fJjHHnuMpUuXsm7duhuOM5vNbNy4kQ0bNvD2229TV1c34vM6zz//PD/96U+JjY3l7//+7/niF7/IQR9ra2/ZswdZcDBhK1eO6viC9AJePPQiph4TcSF3/gMp+JbqchNKtZz02bcvSQ3S6QtpefVV7F1dKMLCPBydbxtXcvPQQw/R0NDAyy+/THx8PDKZzN1xCeN1bosrsVGPruZakJvA81vPsv1sI48tzfBwcIK7lRhLWDFlBSGqkNGdMONeeP/rrlYB8794y9vWy5cx/r9PuDfIUUj/v78SnJs76uPz8vJ48cUXAcjOzuYXv/gFu3btuiW5efvtt5HJZLz++usEBQWRk5NDQ0MDX/nKV2655g9+8ANWfpQ0PPfcc9x777309fURFOQ7SX/X7j1oV+UjDxndeK9OXc2/fviv7KjbwSMzRY8jf1N13ER6XgwqjWJUx+v0BZh+9CO6du0ifJIv7hlXcnPo0CEOHz7MnDlz3B2PMBGtVdB8FlY+M+pTwkNULM+OZdsZkdz4G2OnkQttF/i7vL8b/UnBkTB1tWuvqWGSG01mJun/91c3Rjk6mszMMR2fl5d3w78nJiZiMpluOe7ixYvk5eXdkKDcddddd7xmYmIiACaTidTU1DHF5il2iwVbdTVxj35u1OeEa8JZkrQEQ61BJDd+pr2pm+tXu1h0b/qoz1ElJhI8fz7m7cUiuRnPSTNmzKBXNAvyPRVbQB3meph4DIryEnn6f05zraOXpIjRlwYEaRmMBkKUISxLXja2E2dtgi1/B+ZrwI0lZXlw8JhmUKRycylcJpPhcDjcds3B2eiJXtOd+hsaXCWpFaMsQX5En67nnw/8M03dTSSEJngoOsHdqstNqDQK0nLHttJNV1hI87/9G/bOThThw/c5mwzG9UDxD3/4Q775zW9SVlbG9evXMZvNN3wJEjm32bX8WzW2BGVtTjxqhZztZ0XPG39SYiwhPyWfIOUYyybTN4BCAxcD/0HT6dOnc/bsWaxW69Brx44dkzCi8etvaCB02TLkYyyTrUpZhVquFjuF+5nqchMZc2JQqkdXkhqkXb8eBgaw7Nzlocj8w7iSG71ez+HDh1mzZg1xcXFERkYSGRlJREREQPeX8GmmSmipHNUqqZvpglSsnB4rGvr5ker2aqo7qtGn68d+cpDONbt3cbv7A/MxDz/8MA6Hg8cff5zKykpKSkr4yU9+AuBXzwoOtLVhN5vRrr5DL6NhhKnDWJa8TCQ3fuT6tS7arnWTtTB+zOeq4uMIWbhw0jf0G1dZSmyi6YMqtoAmHLKG32vmToryEnnqL6e40tZDStQoH04VJFNSV4JWpWVp8jgbaeY+CNv+CaxdQOA29NPpdLz//vs88cQTzJ07l9mzZ/PCCy/w8MMP+9SDwndiMxqRqVSEjPC80J3oM/Q8s+8ZrlquMkU7xc3RCe5WXW5CHawkdWbUuM7XbSik6aUfMNDejnKSTjiMK7lZOcpliIKXOJ2uktSMe0E5vuZla2fGE6SS88HZRv5+5VQ3Byi4k9PpxFBrYFXqKtQK9fguMk0Pyu+6tuqY4l8PkpeVld3y2sf72jidzhveW7JkCadPnx7697feeguVSjX0oHB+fv4t58ydO/eW16TidDqx1taiSkxErh7feK+cspIgRRAlxhK+NPtLbo5QcCen00n1cROZc2JQqMa3t7V2/Xqavv8Slh07iPzUp9wcoX8Y967g+/fv57Of/SxLliyhoaEBgP/+7//mwIEDbgtOGKXmc3C96rZ7Sd1JqEbJ6hlxbBMN/XzepfZLGM3G2+8ldSeaMMhcCR2B34jzj3/8IwcOHKC2tpatW7fy7LPP8qlPfYrgMfTVkZL9+nUcnZ2okpPHfY0QVQjLpywXpSk/cL2hi47mnnGVpAYpo6MJufuuSV2aGldy83//938UFBQQHBzMiRMnhh7W6+zs5OWXX3ZrgMIonNsMQRGu7rMTUJSXxLkGM8bWbreEJXhGibEEnVrH4sTFE7vQ9A3Q2w497e4JzEc1NTXx2c9+lpkzZ/KNb3yDT37yk/z2t7+VOqxRs1ZVgVqDMnZi5UN9up7KtkrqzIGf0PqzquMmNCFKpsycWDlJV1hIz5GjDLS2uiky/zKu5Oall17iN7/5Da+//voNyyeXLl3KiRMn3BacMApOp+t5m5kbQTnOEsVHVk2PI0StELM3PszpdGIwGlibthaVQnXnE24nYyXIldBW5Z7gfNQzzzyD0Wikr6+P2tpaXn31VUJG2QRPak6nE2t1NZr0NGSKsa2audnyKcsJVgaL2Rsf5nQ6qS43kTkvFoVi3IUVALTr1oFcjrm01E3R+Zdx/de7ePEiK4bptRAeHk5HR8dEYxLGovEUtNe6epdMULBawZqZ8WLVlA8733aeK5YrEytJDVKHQHgytFZP/FqCRwy0tGDv7ESdnj7hawUrg8lPyRd7TfmwlnoL5pZesheMvyQ1SBkZSejixViKJ+d4jyu5SUhIoLr61l+IBw4cIHOMnUaFCTq3GUKiIX1sjb1GUpSXyIUmC9WmLrdcT3CvktoSIjWR3JUwvlUztwhPg55W6J6cU9e+zlpVhTwoGFVSkluup0/XU9VexeUO7+8fJtxZ9XETwVoVydMj3HI9nV5Pz/Hj9Dff2r070I0rufnKV77CU089xZEjR5DJZFy7do233nqLb33rWzzxxBPujlEYidMJFVth5n2gGNfCt1usnBaLVqMUpSkf5HQ6KTGWsDZtLUq5e8YbXSLINdBywT3XE9zG6XRiq65GPXUqMvnEShSDliYvJUwVJmZvfNDfSlJxyCdYkhqkXbsGlEosJZOvFDmu/4LPPfccDz/8MGvWrKGrq4sVK1bw5S9/mb/7u7/jH//xH90dozCShnLorHdLSWpQkErBuhxXacpXlsIKLmdbz3Kt+9r4GveNRK6A6AxXE0gx3j5loLkZu8WCJjvLbdfUKDSsSlmFwWgQP98+ptloxtLWR9YC9+3erggPJ2zp0km5ampcyY1MJuP555+nra2Nc+fO8eGHH9LS0sL3v/99d8cn3M65zRAaB2njbOQ2gnvzEqk2dXGx2eLW6woTYzAaiA6KZkH8AvdeODr7o9JUi3uvK0yItaoaeUiI20pSg/QZemo7a6nqCOwHyf1N9XETITo1SdkRbr2ubkMhvSdP0t84uZ6lHNPc9he/eOsuwsP5/e9/P6YgfvnLX/LjH/+YpqYm5syZw3/+53+OuHPvx/3lL3/hoYce4v7777+hidek4HC4Vknl3O/69O1Gy7Nj0QUp2Xa6kRkJOrdeWxgfh9NBibGEdWnrULh5vIlIBWWQa/YmzH2fGoXxG1olNTXLVZKy29127cWJi9GpdRhqDUyLnOa26wrj53S4SlJT58chl7t3W5Cw1auRqdWYDSVEf+Ext17bl41p5ubNN99kz549dHR00N7ePuLXWLzzzjs8/fTTvPjii5w4cYI5c+ZQUFCAyXT7B6CMRiPf+ta3WL58+ZjuFzCuHAHLNbeWpAaplXIKchP44KwoTfmK0y2nMfWY0Ge4sSQ1SK6AmGmuvcn8YLzz8/P5+te/PuL7MplsTB92ysrKkMlkPrXSc6CxEUd3l1tLUoNUChVrUtdQYiwRP98+ovFyJ90dVrIWuv/DhSIsjNAVyyddaWpMyc0TTzxBZ2cntbW1rFq1ijfeeIMtW7bc8jUW//7v/85XvvIVvvCFL5CTk8NvfvMbQkJCbjv7Y7fbeeSRR/iXf/mXO67OslqtgblrecUW0CZByj0euXzRnCRqW7upuBYg/738nKHWQFxIHPPi5nnmBnEzXQ39upo9c30vamxspLCwUOowJsRaXY08NAxlYqJHrq9P11NvqaeyrdIj1xfGprrcRGiEhsTMcI9cX1dYSN+ZM9iuXvXI9X3RmJKbX/7ylzQ2NvLMM8/w/vvvk5KSwqc+9SlKSsb3CcBms1FeXs7atWv/FpBcztq1azl8+PCI5/3rv/4rcXFxfOlLd94j5ZVXXiE8PHzoKyUlZcxx+hyHHc5vhdwHwE2rKG62ZGo0kSEq0fPGB9gddkrrSlmfth65zDPjTUQaKINdpSk/l5CQgEYzvj3W3Km/v39c5zkdDldJKmuqx3YuvyvxLiI0EWLVlA9wOJzUlJvImh+HzM0lqUHa/HxkQUFYDJNnvMf8m1Kj0fDQQw+xY8cOzp8/T25uLv/wD/9Aeno6XV1j643S2tqK3W4nPv7GhkXx8fE0NTUNe86BAwd44403eP3110d1j29/+9t0dnYOfV25cmVMMfqkukOuT9gT2EvqTlQKOfpZiWw7c01MXUvshOkErb2t7mncNxK5AmKn+01pyuFw8MwzzxAVFUVCQgLf+973ht67uSx16NAh5s6dS1BQEAsXLmTr1q3IZDJOnTp1wzXLy8tZuHAhISEhLFmyhIsXL97w/rvvvsv8+fMJCgoiMzOTf/mXf2FgYOCG+/7617/mvvvuIzQ0lB/84Afj+t76rzXi6OlBk509rvNHQylXsjZtLaXGUvHzLbHGqg56zDaPlKQGyUNDCVu5EvP2yVOamlCzDLlcjkwmw+l0YnfjA28jsVgsfO5zn+P1118nJiZmVOdoNBqf+BTnVhWbITwFpizy6G2K8hL589F6Tl/tZG5KhEfvJYysxFhCYmgic2LnePZGcTPpv3KGjspaCJvYPkZjFZEQgko9+gel//CHP/D0009z5MgRDh8+zGOPPcbSpUtZt27dDceZzWY2btzIhg0bePvtt6mrqxvxeZ3nn3+en/70p8TGxvL3f//3fPGLX+TgwYOAa6PgRx99lP/4j/9g+fLl1NTU8PjjjwPw4osvDl3je9/7Hj/84Q/52c9+hlI5vl+v1uoq5FotyviJd6m9HX26nr9e+ivnWs8xO3a2R+8ljKyq3ERYlIb4DM8u3tAVFtLw9a9jq6tDnZbm0Xv5gjH/9FmtVjZv3szvf/97Dhw4QFFREb/4xS/Q6/XIx1giiYmJQaFQ0Nx8Y52/ubmZhISEW46vqanBaDSycePGodccDofrG1EquXjxIlOnTh3rt+Rf7ANw/j2Y+xB4aMp60N0ZUcSEqdl2+ppIbiQy4BhgR90O7pt6n8dKFEMiUunoieR//sMIGD17r5t86p8XEZuqHfXxeXl5Q0lFdnY2v/jFL9i1a9ctyc3bb7+NTCbj9ddfJygoiJycHBoaGvjKV75yyzV/8IMfsHLlSsDVy+vee++lr6+PoKAg/uVf/oXnnnuOz3/+8wBkZmby/e9/n2eeeeaG5Obhhx/mC1/4wpi//0FOhwNbTQ2aGTM8Pt4L4xcSHRSNwWgQyY1EHHYHl0+amH5PosfHO2zlCmQhIZiLi4n5+7/36L18wZiSm3/4h3/gL3/5CykpKXzxi1/kz3/+86hnUIajVqtZsGABu3bt4oEHHgBcycquXbt48sknbzl+xowZnD179obXvvOd72CxWPj5z38eGM/T3Ilxv6snSa77V0ndTKmQUzgrke1nG/nnDTPdvkRRuLNjTcdo62tzb+O+kcjkRExN51NFtTD7kx5Pnj8uImFsG1nm5eXd8O+JiYnDrrC8ePEieXl5BAUFDb02UpuJj18z8aMHeU0mE6mpqZw+fZqDBw/eUGqy2+309fXR09MztBHnwoULx/R93Ky/oQFHby+aLM+VpAYp5ArWpa2jxFjCNxd+03PPcwkjarjUQa+ln2wPlqQGyYOD0a5ahbnYIJKbm/3mN78hNTWVzMxM9u7dy969e4c9bvPmzaO+5tNPP83nP/95Fi5cyF133cXPfvYzuru7hz79PProoyQnJ/PKK68QFBTErFmzbjg/IiIC4JbXA1bFZohMhyQPrZq5SVFeIv/9YR0nr7SzIC3KK/cU/qbEWMKUsCnkROd45X6q5BnEtpRDhBnCp3jlnuOhUt24I7pMJhuaxXXHNQc/RQ9es6uri3/5l39h06ZbP1R8PHEKDQ2dUAzWqioUunCUcd4pC+oz9Pzl4l843XLacyvxhBFVH29GFxM0plnLidAV6rn65D9ivXwZTYDvAzmm5ObRRx91+9TZpz/9aVpaWnjhhRdoampi7ty5GAyGoYeM6+vrx1zuClj2fqh8HxY85rVP1YvSo4jXaXj/dKNIbrys39HPzvqdfCL7E54vSQ0KTwG11rVqyoeTm9GaPn06f/rTn7BarUPP3h07dmzM15k/fz4XL14kK8v9fWcGOe12bDWXCcrN9dp4z4ubR1xwHIZag0huvMxud1BzqoXc5cleG+/Q5cuRh4Vh3l5M7JNf9co9pTKm5ObNN9/0SBBPPvnksGUocDXYuh1PxeSTLu919SLxQklqkFwuY8PsRD4408h3i3JQiNKU1xxpPEKntdMzjftGIpNB7AzXqqmsNeDnpYqHH36Y559/nscff5znnnuO+vp6fvKTnwCM6Q/KCy+8QFFREampqXziE59ALpdz+vRpzp07x0svveSWWPuvXsVh7fNI476RyGVy1qevp8RYwjOLnnF/92thRFcvtGPtHnDrXlJ3Itdo0K5Z7Xru5qv/4L0PTRLw799ck03FZojOggTvPvxXlJeIyWLlmLHNq/ed7Ay1BtJ0aUyPnO7dG8fNBFsXdPp/wy+dTsf777/PqVOnmDt3Ls8//zwvvPACcGM56U4KCgrYtm0bpaWlLFq0iHvuuYdXX32VNDeuOrFWVaOIiEAxgecYx6MgvYCW3hZOmE549b6TXfXxZiLiQ4iZEubV+2oLC7HV1GCtCuy9xSa0FFzwogErVG6Dux/36oOeAPNSIkkKD+KDM43ckxnt1XtPVja7jd31u3lo5kPe/3SlSwJNuKs0FZHq3XuPwnCzuR/va3Nz35YlS5Zw+vTpoX9/6623UKlUpKa6vrf8/Pxbzpk7d+4trxUUFFBQMHKvoYn0i3Ha7VgvXyZ4Tp7Xx3tO7BwSQxMpMZawKMGz7SUEF3u/g8unWslbNcXr4x22ZAlynQ5zcTFB0wJ3bzExc+MvanaDtdOrJalBcrmMe/MSKT7XyIB9Yg9tCqNz+NphLP0W76ySuplMBnEzoOWia4NWP/fHP/6RAwcOUFtby9atW3n22Wf51Kc+RXBwsNShDbHV1+O0WdF48JmekchkMgrSC9hRt4MBx8CdTxAmrL6yDVuvd0tSg2RqNdq1a7FsLw7oBo4iufEXFVtcz0LEe2fVzM2K8pJo7bJxpFaUprzBYDQwNXwq2ZGeXxI8rNgZ0N8NnfXS3N+Nmpqa+OxnP8vMmTP5xje+wSc/+Ul++9vfSh3WDazV1SiiolBGSzMzqk/X09bXxrGmsT9sLYxddXkzkYmhRCd7tyQ1SFdYiK2uDmul/2+3MhKR3PiD/j64sF2SWZtBeVPCSY0KYduZa5LFMFlY7Vb2XNnj2e0W7kSbCEERAbHX1DPPPIPRaKSvr4/a2lpeffXVob40vsA5MIDtcq0kszaDcqJzmBI2hRJjiWQxTBYD/XZqT7d6pbfNSELvuRtFRATm4sDda0okN/6gegfYLB7dS+pOZLLB0lQT/aI05VEHrh6gu7+bggwJkxuZzPVgcctF10atgsfY6upw9ts8upfUnQyWpnbW76TfMb4NP4XRqT/XRn+fXZKS1CCZSoV23TrMxYFbmhLJjT84txniZ0GstA9/3Ts7kY6efg5Wt0oaR6ArMZYwLXIameHeabI14i+32Jkw0AvtdV6JY7KyVlejjI5BGRk54jHe+AOkz9DTae3kSOMRj99rMqsqbyY6OYzIhIk1fJwo3YZC+q9epe/cOUnj8BSxWsrX2XrgkgGWf1PqSMhN0pERE8oHZxrJny7dp45A1jvQS9nVMr4y+9a9j9xNoVAgk8mwWCxotdpbV21oIiE4Hpovgm4SbG0iAWd/Pz0NDQTn5dHff+uMyeCmxGazGZlMNu7NOEdjeuR00nXpGGoNLEte5rH7TGb9NjvGM60sKEyXOhRCFi1CER2NeXsxwbMDb28xkdz4uqoS6O+RtCQ1SCaTUZSXyB8OGfnBg7NRK8XEn7vtu7qP3oFerzxvI5fLiYqKoq2tjdbWEWbjlElw5SLoZoFo8OZ2toYGenp70ep0dLe0jHicWq0mOjrao8uGB0tTb1e+jc1uQ61Qe+xek1Xd2esM2BySPm8zSKZUoitYj9lgIO6Zfwq4hn4iufF15zZD4hyI9o3dzovykvjP3dXsr2phzcx4qcMJOCXGEmZGzSRV553+MhqNhvj4eOz2kZ6rSYHSJyB1JmSt8kpMk8m1n/8HmsZGEh5/fMRj5HI5crncK3989Ol6XjvzGoeuHSI/Jd/j95tsqo83E5uqJTzWNx5o1+r1tL/9Z3pPnSJkXmBtvyGSG19mtUBVKeR/W+pIhkxP0JIdF8a2M40iuXGznv4e9l3dxz/M/Qev3nfwj+ewknJBFweVf4WZ670aV6BzdHfTazAQ+49P3rIRqFSyIrOYGj4Vg9Egkhs3s/UNYDx3nbuKMqQOZUjIggUoY2MxFxcHXHIj6gq+7FIJDPT5REnq4+7NS2TH+Wb6+sUqGncqu1KG1W6Vdgn4cHI3uVoR9PdJHUlAsewpw2m1otUXSh3KDQoyCthTv4e+ATHe7mQ824q93yHpKqmbyRQKtHo9FkMJzgBo2PlxIrnxZec2Q/JCiHTf/jXuUJSXRJd1gLKLIz8jIIydwWhgdsxsksOSpQ7lRrM2uVoRVO+QOpKAYi4uJmhOHuopvjXe+nQ9PQM9HGw4KHUoAaX6uIn4DB26GN/pjA2uhn4DJhO9JwJrbzGR3Piqvk7XHxMfm7UByIoLY0aClg/ONkodSsCw2CwcaDjge7M2ADHZED/blWwLbmG3WOjetw9doW/N2gBkhGcwPXI6BmPgNnjzNmvvAHUV131q1mZQ8Nw5KBMSMG8vljoUtxLJja+6sB3sNsh9QOpIhrVxThK7KpvptYnSlDuUXSmj39Hvm8kNwKwHXS0JbD1SRxIQunbvxtnfj+42G3FKSZ+hZ+/VvfT0i/F2h9rTLTgGnEyd73vJjUwuR6fXYy4txTniwgL/I5IbX1WxBVLugfApUkcyrKK8RHpsdnZfMEkdSkAwGA3Mi5tHQmiC1KEML/dBV0uCKtGe3x3M24sJnj8fVWKi1KEMqyCtgN6BXvY17JM6lIBQXW4icWo42qggqUMZlm5DIfbWVnqOBc7eYiK58UW97a5dwGdJt5fUnaRFhzI7OVzsNeUGndZODl075LuzNgBRmZA4V5Sm3MDe2UnXoUM+WZIalKJLISc6h5JakcxOVF93P1fOt5HlA71tRhI0ezaq5OSA2mtKJDe+qHIbOAZg5n1SR3Jb9+YlsvuCiS7rgNSh+LXd9buxO+ysS1sndSi3N2uTqzWB1SJ1JH7NsnMnDAygLfDtpfX6dD37G/bT3d8tdSh+7fKpFhwO3yxJDZLJZOgK9VhKS3EOBMbvc5Hc+KKKzZC2FHS+OWU96N7ZiVgHHOyqbJY6FL9WYixhQfwC4kJ895cf4CpNDfTBxcD5dCcFc7GBkIULUcX59ngXpBdgtVspu1ImdSh+rbrcRFJWBKHhGqlDuS1tYSH29na6PwyMvcVEcuNruq/D5b2uBzh9XEpUCHNTIth2RqyaGq/2vnY+bPwQfbpe6lDuLCIVpixyJd/CuAy0t9N9+DC6Db5bkhqUFJZEXmyeWDU1Ab1dNq5eaPeJ7RbuJCgnB1VaKmZDYKyaEsmNr6l8D3DCzPuljmRUivIS2XuxBXPfrZv+CXe2s34nTpysSVsjdSijk7sJqne6WhUIY2Yp3QFOJ9r1vl2SGqRP13Ow4SBmm1nqUPzS5ZMt4HSSOc/3kxtXaaoQy46dOG02qcOZMJHc+JqKzZC+HMJipY5kVO7NS8Rmd7CjQpSmxqOktoRFCYuICY6ROpTRybnf1aLgwnapI/FL5uJiQu+5G2V0tNShjMr6tPX0O/rZU79H6lD8UtVxE8nTIwnR+ccmpLrCQhydnXQfPix1KBMmkhtf0mUC4wGfXiV1s8TwYBalR4pVU+PQ2tvKseZj/lGSGhSeDKmLRWlqHAZaW+k5ehSt3n/GOz40nvlx80Vpahx6zDauXWr3ycZ9I9FMm4Y6MzMgGvqJ5MaXnH8XZHKfXyV1s3tnJ7K/qpWOHv+fyvSmnXU7kSFjbepaqUMZm9xNrlYFPW1SR+JXzKWlIJejXefjq+JuUpBewIfXPqTTKkqRY1FzwoRMJmOqH5SkBg2VpnbtwuHnpSmR3PiSii2QmQ8hUVJHMiYbZididzopqWiSOhS/YjAauCfxHiKCIqQOZWxy7genAy5skzoSv2LZXkzo4sUoIyOlDmVM1qevx4GDXfW7pA7Fr1SXm5gyM5KgMN/Y8X20dIV6HF1ddB84IHUoEyKSG19hboS6Qz65l9SdxOmCuDsjSqyaGgNTj4kTzSd8u3HfSLTxrlYFFVukjsRv9Deb6CkvR+dHJalBMcExLIxfiKFWlKZGq7vDyrXqDrIWxEsdyphpsrLQZGf7fWlKJDe+4vy7IFfCjHuljmRcivKSOFRznetdVqlD8Qs76nagkCtYnbpa6lDGJ/dBV8uC7lapI/ELlpISUCrRrvWTVXE3KUgv4GjTUdr6RClyNKrLTcjlMjLm+MlCgZvoNhTStXs3jr4+qUMZN5Hc+IqKzZC1BoL9a8p6UOEs155IBlGaGhVDrYGlSUsJ14RLHcr45HzUqqDyPWnj8BPm4mLCli5FEe6f4702zfVc2M66nRJH4h+qy02k5kQRFOpfJalBusJCHD09dO3z373FRHLjCzqvwpUjflmSGhQdpmHJ1Gi2nRalqTtp6m7iVMsp/yxJDQqNgYwVYq+pUehvbKT35Em/aNw3kqigKO5KuEusmhoFS1sfTZc7yVrofyWpQer0dDQ5MzEX+29pSiQ3vqBiCyg0MH2D1JFMyL2zEzlSex2TxX+nMr2hxFiCWq5mVcoqqUOZmFmboO4gWESPo9sxFxuQqdWErfbTEuRH9Bl6jjcdp7VXlCJvp7rchEIpJyPPP0tSg3T6QrrK9uLo6ZE6lHERyY0vqNgC2esgSCd1JBOin5WAXCaj+KwoTd1OibGEZcnLCFOHSR3KxMwocrUuOP+u1JH4NLPBQOiK5SjC/Hu816SuQSFTUGoslToUn1Z9vJnU3CjUwUqpQ5kQXaEeZ28vXWVlUocyLiK5kVq7ERrK/bokNSgiRM2y7Bg+EKumRnTVcpWzrWfRZ/jfqplbhETB1NVi1dRt2K5epe/MGXSF/luSGhSuCWdx0mJKjCVSh+KzzK29mOosZPtxSWqQOiWFoNmzMRf7ZylSJDdSq9gCymCYFgB/7HCtmjpW10ZTpyhNDafEWEKQIoiVU1ZKHYp75D4I9YfBLDpUD8dcXIwsKAhtfr7UobiFPkPPCdMJmrrF7OxwqstNKFVy0mb7x/Yad6IrLKRr3z7sXd1ShzJmIrmR2rnNMG09aPx7ynrQupx4VHI5H5wVszfDKTGWsHzKckJUIVKH4h4z7gWFCiq2Sh2JTzIXFxO2ciXy0FCpQ3GLVSmrUMlVojQ1gqrjzaTNjkEd5N8lqUE6fQFOq5WuPbulDmXMRHIjpes10HTG1c4+QIQHq1gxLUbsNTWMOnMdlW2V/rWX1J0EhUPWWrHX1DBsRiPW85UBUZIapFVrWZq8VJSmhtHR3EPrlS6/2kvqTlRJSQTPneuXDf1EciOlis2gCoXs9VJH4lZFeUmcrO/gart/PmXvKSXGEoKVwSyfslzqUNwrdxNcPQYd9VJH4lPMBgOykBDCVq6QOhS30qfrOdN6hoauBqlD8SnV5SaUGkXAlKQG6TYU0n3gAHazWepQxkQkN1I6twWm60EdICWKj6zNiUejlLNdlKZuYDAayJ+ST7AyWOpQ3Gu6HpRB4sHim5i3F6NdtQp5cGCNd35KPhqFRpSmblJd3kxGXgwqtULqUNxKW1CAc2AAyy7/Kk2J5EYqLRfBVBFQJalBYRolq6bHib2mPuZyx2Wq2qsoyPDjxn0j0Whds48iuRliranBeukSusIAKkF+JFQVyoopK0RDv49pa+zmekN3QJWkBqni4wleMB9z8XapQxkTkdxIpWILaHSu5xUCUNGcRM5c7aTuuv89Ze8JJcYSwlRhLEteJnUonpH7IFw7CW2XpY7EJ5iLDcjDwghdHmAlyI8UpBdw/vp56s2iFAmu3jbqIAWpuVFSh+IRusJCug8dZqC9XepQRk0kN1JwOl2rpKZvAFWQ1NF4xOoZcQSrFGL2BnA6nRiMBlalrEKj0EgdjmdMKwBViJi9wTXe5uJitGtWI9cE5ngvT15OsDJYPFiMa7yry01kzIlFqQqsktQg3fr14HDQtWuX1KGMmkhupGA6D60XA6Jx30hC1EpWzxSlKYCqjioud172772k7kQd6urVdE4kN9ZLVdhqatAG0Cqpm4WoQlg5ZaUoTQFt17ppb+oha2HglaQGKWNjCVm0yK9WTYnkRgrnNruW0E71771m7mRjXiKVjWZqWrqkDkVShloDWrWWJUlLpA7Fs2Ztguaz0FoldSSSMhdvR67TEbYksMdbn67nUvslLndO7lJk1fFmNCFKUmYGZklqkK6wkO4jRxhoa5M6lFERyY23OZ2uqfsZG0Gpljoaj8qfHkeoWjGpt2NwOp2U1pWyJnUNKoVK6nA8K2sdqLWTeqdwp9OJpdiAdu1aZOrA/vleNmUZoarQSV2acjqdVB83kTE3FoUysP+cagtcLUsspf6xSi6wR8MXNZ2BthqYFbglqUFBKgXrcuIndUO/C20XqDPXBVbjvpGogmDGhkn93I21shJbXV1ANe4biUahYVXKKkpqJ29y03qli86WXrL/f3t3HhXlfe8P/P3MDMMwMMO+DJujCCIguBuwriAzo1iXLklumtikN23a5NzmZ9tTc09bk5v2JOnJTZtzb26z9MTcc5utSdTECDMKiriQKKAiiAjKIgoMm8ywzfr8/phKgwKyzMwz88zndQ5/+MyzfODrA5/n+XwXHo6SupsoNBSBDzzgNWtNUXLjbjX7gYAwYC5P1ha6j4LMWFztHMDVTiPXoXBC26xFiH8IVipWch2Ke6TvALrqAH0d15FwwlBUBGFICAIfWMV1KG6hVqpxrf8aGvp8sxTZWNkJSaAf4lJDuQ7FLeQaNYbOnYO1q4vrUO6Lkht3YlnHrMQLtzrW4/EBa1IiIJOI8OVF33t7w7IsdM06R0lK4BvtjaSNgH+wT5amWJZ1TNy3aRMYP99o7+zYbMj8ZD7ZsZhlWTRU6DFvaSSEQt/4UyrLywMEAhh0nl+a8o0W8RS3qhxT1Gfwb+K+ifiLhMhPi8GX1e1gWZbrcNyqtqcWNwduQj3XB0pSd4j8gYUFjiTex9p7pKYGlps3Id/M/5LUHWKhGBsTN0LXrPO5+1vfbISxZ4SXE/dNRBgSgsDVOTAUef6oKUpu3KlmPxAYCczh6URuEyjIUuB69yAut3vX2iSzpW3SIkwShuXRy7kOxb3SdwI9jUDHJa4jcStDYRGE4eGQrljBdShupZ6rRouhBfV99VyH4laNlZ0IkPkhLjmE61DcSq7RYLiyEpbOTq5DmRQlN+5itwO1B4GF3waEIq6jcatvzY9AiNTPp0ZN2Vk7dC06bJqzCSKBb7U35q1z9CvzoZXCWbsdBq0WclU+GJFvtfcqxSqE+IdA2+Q7pSnW7pi4L2lpFAQ+UpK6Q5abC8bPD0atZ7e3b7UKl9rOAYY2nypJ3eEnFECd7lulqequanQMdvB74r6JCP0c/cpqD/hMaWr4wkVY29shU/tQCfIf/AR+yE3MhbZZ6zP3d0eTAQN9JiTzeOK+iQhlMgSuWePxE/pRcuMutQeAoBggMZvrSDhRkBmL1t4hXLrZz3UobqFr1iEyIBJLo5ZyHQo30ncAfc2O9aZ8gEFb5JjFddkyrkPhhHquGjcHbqK2p5brUNyisaIT0mAxYpJCuA6FE3KNBsMXL8Jy8ybXoUyIkht3sNuByweB9O2AgJ9rj9zPA/PCEB4o9onlGOysHUeajyBfmQ+hj7Y3lGsAaYRPlKZYux1GrQ4ytRqM0Dfbe3n0coRJwnyiNMXaWTRW6TF/aRQEAobrcDgRtGEDGH9/GLSeO8cRJTfu0FoOGNt5vZbU/YiEAqgzYnDYB0pTVZ1V0A/rfbMkdYdQBKRtc/Qz43l7D1dWwqrX+8TEfRMRCUTYNGcTdC062Fk71+G4VPu12xjqN2P+8miuQ+GMMCgQQWvXevSoKUpu3KF2PyCPA+J9ZCK3CRRkxuLm7WFUtd7mOhSX0jXrEC2NRlZkFtehcCtjJ9B/w9HfjMcMRUUQxcQgYLFvt7dKqULHYAequ6q5DsWlGir0CAr1R8xcOdehcEq+WYORmhqYW1u5DmVclNy4mt0GXP7c8dZG4Ns/7pVzwxAp8+f1qCmb3YajLUehUqogYHy7vZGY7ehnxuPlGFibDQbdEcjVajA+fn8vjVqKyIBIXq81ZbfZca1Kj6RlUWB8tCR1R9C6dWACAjx2OQbfvhvdofkUMNjlmPvDxwkFDLYsUqDwUjvsdn6WKio6K9Az0uMba0ndj0Do6GdWe9DR74yHhs6dg62nx6cm7puIUCBEvjIfR5qP8LY0davhNoaNFiQv892S1B0CqRSyDeth8NAh4ZTcuFrtfiAkEYjz0VEzdynIVKDDMIKKlj6uQ3EJbbMWcUFxyIjI4DoUz5C+AzDeAm58xXUkLmEoLIJfXBwkixZxHYpHUCvV0A/rUdVZxXUoLtFQqYc8QoIopYzrUDyCTK2Gqa4OpqYmrkO5ByU3rmSzAJe/cPyCZ3z7FeYdSxNDESOX8HKlcKvdiuKWYuQr88FQezvEr3T0N+PhWlOsxQLjkSOQa9TU3v+QGZmJaGk0L9eastnsuF7VhfnLoqi9/yFo7VoIpFKP7FhMyY0rNZUBw71UkvoGgYDBlkwFCi91wMaz0tTZ9rO4bbpNJalvEggcyf3lzx39z3hk8OuzsN2+DZkPj5K6m4ARQKVU4WjLUdh41t43r/RhZNCC+VSSGiWQSBCUmwsjJTc+pnY/EDYPUPj2KIq7FWQq0D1gwtfXe7gOxam0zVokyhKxMGwh16F4lvSdwKDe0f+MRwxFhfCbkwhJWhrXoXgUtVKN3pFeVHRWcB2KUzVW6hEcGYCIhCCuQ/Eoco0GpoZGmBoauA5lDEpuXMVqBuoOUUlqHIsTQhAfGoAvL/Fn1JTFZkFxazFUShW9sr5b3FIgZA6vRk2xZjOMR4sh12iove+SEZGBuKA4XpWmbFY7rl/owvzlVJK6W+C3VkMgk3ncqClKblzl+nFgpJ9KUuNgGEdpSlvTAauNH6MqytvLYTQbfXvivokwjCPJr/sCsFm5jsYpBs6cgd1g8OmJ+ybCMAxUShWKW4phsVu4DscpbtT1wjRkRbIPT9w3EYFYDFluLgxFRR41QatHJDdvvPEGlEolJBIJVq1ahbNnz0647zvvvIM1a9YgNDQUoaGhyMvLm3R/ztQeACJSgOh0riPxSFszY9E7aMaZa/woTemadZgbPBcpoSlch+KZ0ncAQz1A0wmuI3EKY5EW4nnz4J9C7T0etVKN26bbONvugb+bZ6CxQo/QGCnCYgO5DsUjyTdrYG5qgqm+nutQRnGe3Hz88cfYvXs39u7di6qqKmRlZUGlUkGv14+7f2lpKR5++GEcP34c5eXlSEhIQH5+Pm560gJelhHgymHHWxt6hTmu9Fg55oRLeTFqymQz4VjrMaiVNGpmQoosR/8zHqw1ZTeZYCwpoZLUJFLDUpEoS+RFacpqsaHpIo2SmkxgdjYEwcEeVZriPLl57bXX8OSTT+Lxxx9HWloa3nzzTUilUrz77rvj7v/+++/jZz/7GRYvXozU1FT89a9/hd1uR0lJiZsjn8S1EsBk8Om1pO6HYRgU/KM0ZbZ6d2nq9M3TGLAMUElqMgzjSPbrDjn6o3mxwVOnYB8YgFxDo+Imcqc0VdJaAovNu0tTrbW9MI/YfHotqfth/Pwg25TnUaUpTpMbs9mMyspK5OXljW4TCATIy8tDeXn5lM4xNDQEi8WCsLCwcT83mUwwGAxjvlyuZj8QlQZEpbr+Wl6sIDMWhhErTjd2cx3KrOiadZgfMh9JIUlch+LZMnY6+qFdP851JLNiKCyCf3Iy/OfP5zoUj6aeq4bRbER5+9R+l3uqxko9wuMCEaagktRk5BoNLK2tGKm9zHUoADhObrq7u2Gz2RAdPTYjjo6ORkdHx5TO8etf/xqxsbFjEqRveumllxAcHDz6lZCQMOu4J2UZBuqLqCPxFKTGyJAUGYhDXlyaGrGOoPRGKc1tMxVRaUDEAq8eNWUfGYHx+HFabmEKkkOSMS94HrRNnlOqmC6L2Yam6m7MXxbFdSgeL3DVKgjDwmAoKuQ6FAAeUJaajZdffhkfffQRDhw4AIlEMu4+zz33HPr7+0e/bty44dqgGo4AlkEqSU2BozQVi6O1nRixeOeEXydvnsSQdYhKUlPBMI63N1cOO/qleaGBE2Vgh4ZolNQUMAwDtVKNYzeOwWQzcR3OjLTW9MBqstHEfVPAiESQ5W+CsUjrEaUpTpObiIgICIVCdHZ2jtne2dmJmJiYSY999dVX8fLLL+PIkSPIzMyccD9/f3/I5fIxXy5Vsx+IWQRE0CvrqSjIVMBosqLsahfXocyItkmL1LBUKIOVXIfiHdJ3OPqjXfOgPnLTYCgqgn/aQoiVSq5D8QoqpQqDlkGcuumdEzg2VOgRkRCEkGgp16F4BblaA8utWxipruY6FG6TG7FYjGXLlo3pDHync3B2dvaEx/3xj3/Eiy++CK1Wi+XLl7sj1KkxDQBXdVSSmobkaBkWRMvwZbX3Teg3ZBlCWVsZvbWZjsgFQFS6V641ZR8cxEBpKeRqemszVfNC5iE5NBm6Jh3XoUybecSKlktUkpoO6YrlEEZGwFDI/XIMnJeldu/ejXfeeQf/+7//i7q6Ovz0pz/F4OAgHn/8cQDAY489hueee250/1deeQW//e1v8e6770KpVKKjowMdHR0YGBjg6lv4pwYdYB2mktQ0FWQqUFzXiWGzd5WmytrKMGIboeRmujJ2OPqlmYe4jmRaBk6cADsyQqOkpkmtVKO0rRTD1mGuQ5mWlks9sFrsVJKaBkYohDxfBYNWC9bO7ShYzpObBx98EK+++ip+97vfYfHixbhw4QK0Wu1oJ+PW1la0t//zqf4vf/kLzGYzvvvd70KhUIx+vfrqq1x9C/9Usx+IXQqEzeU6Eq9SkBWLIbMNpfXjz23kqbTNWmSEZyBB5uJO6nyTvtPRL63hCNeRTIuhqAiSRYsgdvWgBJ5RK9UYtg7jZNtJrkOZlsZKPaLmyBAcGcB1KF5FvlkDa2cnhi9c4DQOzpMbAHjmmWfQ0tICk8mEr7/+GqtWrRr9rLS0FO+9997ov5ubm8Gy7D1fzz//vPsD/6YRA9BwlN7azMDciECkx8q9qjQ1YB7AybaT9NZmJsKTHJP6edGoKdvAAAZOlEGuprc205Uodywm600T+pmHrWip6aG5bWYgYMkSiKKjOS9NeURywwv1RYDNRMnNDBVkxqLkSicGTd6x9lBpWynMdjMlNzOVvsPRP83kAeXkKRg4fhys2UwlqRlSz1XjZNtJDFm8oxTZVN0Nm9VO/W1mgBEIIFerYNBpwdq462pAyY2z1B4A4lcCIfTKeiYKMhUYsdhRcsU7SlO6Jh2yIrOgCFJwHYp3St/h6J921Tue5g2FRQhYvBh+sbFch+KV8ufkY8TmmBPKGzRWdCJmnhyysPGnGCGTk2s0sHV1Y6iikrMYKLlxhuHbQGOxYw4PMiMJYVJkxQfjy4ueP6GfwWzAqVunaOK+2QhVAnHLvKI0ZTMYMHDqFE3cNwvxsngsiljkFaUp05AFrZd7qSPxLEiysiCKVcCg5a40RcmNM1w5DNitQNo2riPxagWZsSi92gXjiGevRXOs9Rhsdhs2zdnEdSjeLX2no5/aiBuWRJkFY3EJYLVCpqIS5GyolCqcunkKA2bPLkVev9ANu51F0lIqSc0UwzCQqzUw6o6AtXLT1YCSG2eo3Q8kZgNyemU9G1syFTBb7Siu67z/zhzSNeuwJGoJogPpyW5W0rc7+qnVe8Z07RMxaIsQsGwp/KKpvWdDpVTBYrfg+A3PXlussbITiqRgBIX6cx2KV5NrNLD19mLo7FlOrk/JzWwN9QLXS6kk5QSxIQFYNicUX1703FFTt0du46tbX0E9l0pSsxYcDyQ84NGlKWtfHwbPlNNyC04QExiDJVFLPLo0NTJgQVtdH5JplNSsSTLS4ZeQAEMRN6UpSm5mq+4QwNqBhd/mOhJeKMhUoKyhC/1DnlmaKmktgR12Kkk5S/oOoLEEGO7jOpJxGYuLAbsd8vx8rkPhBZVShTO3zqDf1M91KOO6fqELLEslKWdgGAZyjQbGI0fBWtz/+5ySm9mq3Q/MWQ3IKNN3hs2LFLDaWeguT21VeHfTNmuxPHo5IgIiuA6FH9K2OfqrXTnMdSTjMhYVQbpiBUSRkVyHwgub5myCzW7DsdZjXIcyroaKTsSmhEIqF3MdCi/INWrY+vsx+NVXbr82JTezMdAFNJVRScqJouUSrFCGeeSEfr0jvTjbcZbmtnEmucLxcOCBa01Ze3sx+NXXVJJyoihpFJZFL/PI0tSQwYyb9X00t40T+aemQqxUcjKhHyU3s1H3BQAGWEijpJxpa6YCpxu70Tto5jqUMYpbisGAoZKUs2XscPRbG+zhOpIxjEeOAAwDmYpKUs6kVqrxdfvX6BvxrFLk9QtdAMMgaSm9pXMWhmEg36yBsbgYdrN7f59TcjMbtQeAeeuAwHCuI+EVdYYCLMtCV+tZpSltsxarFKsQKgnlOhR+WbgNAAtcOcR1JGMYCosQ+MADEIVSeztT3pw8sGBR3FrMdShjNFZ0Ij41FAFBVJJyJrlGA7vRiMHTp916XUpuZsrYATSfouUWXCBS5o/spHB8We05E/p1DXWhoqOCSlKuEBQJzF3rUaUpi16PoXPnaLkFFwgPCMfKmJXQNem4DmXUYL8JNxtuU0nKBfyTkyGen+T2UVOU3MzU5c8BgRBILeA6El4qyIxF+bUedBlNXIcCADjachRCRojcxFyuQ+Gn9B1A80lgwDOW3zAeOQoIhZDl5XEdCi+plWqc6zyH7uFurkMBAFyr0kPAMJi3mEpSriDXaDBQcgx2k/t+n1NyM1O1B4CkjYA0jOtIeEmVHgOGYaCt8YyOxbpmHbJjsxHsH8x1KPy08NsAI3A8NHgAQ1ERAlfnQBgSwnUovJSbmAsBBDjacpTrUAAAjZV6JKSFQRLox3UovCTXbIZ9cBADZWVuuyYlNzPRfxNoLXdMH09cIixQjNXzI3DIA0ZNdQx2oEpfRRP3uZI0DJi33iMm9LN0dGC4spJGSblQiCQEq2JXQdvE/aipgb4RtDf2Y/5yKkm5iv+8ufBPTYWxyH3tTcnNTFw+CAjFQOpmriPhtYJMBc4196LTMMJpHEeaj8BP4IcNCRs4jYP30ncCLWcAA7cJrUGrBePnB1kulSBdSa1U47z+PDoHuV1upbFSD4GIwdwsKkm5klythrG0FPbhYbdcj5KbmajZD8zPAyRUonAlVVoMRAIGhZe4/WOna9FhddxqyMQyTuPgvdQtgNCP89KUsUiLwDVrIJRRe7vSxsSNEAlEnJemGiv1SEwLh3+AiNM4+E6+WQN2aAgDJ0645XqU3ExXXwtws4JKUm4QLPXD2uRITif0uzVwC9Vd1VArqSTlcgEhQFKuY9Zvjlhu3sTwxYtUknIDuViO1bGrOZ3Qz9A9jM4mA5KpJOVy4sRESNLT3TahHyU303X5ICCSAAvoj507FGQpUNnSh1u33fMq8266Zh38hf5Yn7Cek+v7nPQdwI2vgf42Ti5v0GrB+PsjaAOVIN1BNVeFi10X0T7AzQNMY5UeQj8BlJm0nIo7yDdrMHDiBOyDgy6/FiU301WzH0jeBPjTK2t3yFsYDbFIgMMcvb3RNmuxJm4NAv0CObm+z1mgAYT+nHUsNhQWIWjtWgiDqL3dYX38eogFYuiauZnzprFCD2VGOMQSKkm5g0ylBmsywXi81OXXouRmOnquAe0XqCTlRjKJH9anRHIyod8Nww1c7rkM1VyauM9tJHLHwwMHE/qZW1sxUlsL+WYqSblLkDgIa+LXcFKauq0fQlerEUk0cZ/biOPjIMnKdMuEfpTcTMflg4CfFEihP3buVJAVi4tt/WjtGXLrdXUtOgSIArA2bq1br+vzMnYCt6qA3ia3XtZQpAUTEICgdevcel1fp1aqUdtTixvGG2697rUqPURiAZSLqCTlTnKNBoNlZbAZjS69DiU301FzAEhRA2J6Ze1OualRkPgJcNjNo6a0TVqsi18HqZ/Urdf1eSlqx0PE5YNuvayhqAiyDeshkFJ7u9Pa+LUIEAW4vTTVUKGHMjMCfv5Ct17X18nVarAWCwaOHXPpdSi5maruBqDzEq0lxYFAfxFyU6PdWppq6m9CfV89rSXFBXGg4+2oG0tTputNMF25ApmaBgq4m9RPirXxa92a3PR1DKKnbQDJy6Lddk3i4BcTg4ClS10+aoqSm6mq2Q+Igxz9AYjbFWQqUHvLgKZu1/eyBxyjpKQiKb4V9y23XI/cJX0H0FHt6OfmBgZtEQRSKYLWUgmSCyqlCld6r6C5v9kt12us1MPPX4jEdFo+hwtyjQYDZ87A1t/vsmtQcjNVtQeABZsBvwCuI/FJ6xdEQSoW4suL7nl7o2vWYUPiBkhEErdcj9wlOd/xMOGmtzfGoiIE5eZCIKH25sKauDWQiqRu61jcWKnH3KwIiMRUkuKCTJUPWK0wFhe77BqU3EyFvg7oqnN0dCScCBALkbcw2i0T+jX2NaLxdiNUc6gkxRm/AMewcDdM6GdqaICpoZEm7uOQRCTB+oT1bilN9dwaQO+tQcxfTiUprvhFRUG6YgUMLlxripKbqajZD/gHO1YBJ5wpyFSgvtOIhk7X9rLXNmsh85Nhddxql16H3Ef6TkB/GdBfcellDEVFEMhkCPwWtTeX1Eo1Gm83orGv0aXXaazQQxwgQuJCKklxSa5RY7C8HNa+Ppecn5Kb+2FZR0kqdQsg8uc6Gp+2bkEkZP4il769YVl2tCQlFopddh0yBfNzHQ8VLpzQj2VZGIq0kOXmQiCm9ubS6rjVkPnJoGtx3dsblmXRWKnHvKwICP3ozx+XZPn5AMvCeMQ1a4tR695PZw3Q00AlKQ/gLxJiU7pj1BTLsi65xtW+q2g2NNNaUp5A5O94qKjd73jIcAFTfT3MTU00cZ8HEAvF2JC4Adomrcvu756bA7jdOUQlKQ8gCg9H4AOrXDahHyU391OzH5CEAPPWcx0JAbA1MxbXugZxpcM1pSltsxZysRwPKB5wyfnJNKXvALqvAp21Ljm9obAIguBgBGZnu+T8ZHpUShWaDc242nfVJedvqNDDP1CE+IWhLjk/mR6ZRoOhs2dh7e52+rkpuZkMyzqeGhduBYR+XEdDAKyeH4HgAD+XzHnDsiy0TVrkzcmDH7W3Z5i33vFw4YKOxY6SVBFkm/LA+FF7e4JsRTbkYrlLRk2xLIvGik4kLY6EUEh/+jyBLC8PEAhgOHLE6eemFp5M+wWgr5lKUh5ELBJAle4YNeXsV9eXey+jbaCNJu7zJCKx4+GixvmlqZHay7DcuEGjpDyIn9APeXPyXFKa6mo1wtA9gvk0cZ/HEIWGIjA7G0YXTOhHyc1kavYD0ghASRN7eZKCzFi09Ayh9pbBqefVNekQ6h+KlTErnXpeMksZO4G+JqD9olNPaygqhDAsDIGrVjn1vGR2VEoV2gbacLn3slPP21ihR4DMD3ELQpx6XjI7co0GQ5WVsHTqnXpeSm4mwrJA7UEg7duAUMR1NOQbcpLCERYoxiEnlqbujJLKm5MHkYDa26Mo1zoeMpxYmmJZFsYiLWT5m8CIqL09ycqYlQiThEHX5LxRU6OjpJZEQUAlKY8iy8sFRCIYdc4dJUetPJG2CqC/ldaS8kAioQDqjBgcdmJpqrq7GrcGb9EoKU8kFDkeMmoPOK00NXLxIiy3bkGuppKUpxEJRMhLzIOuWee0+7uzyQBj7wiSl0U55XzEeYRyOYJWr3b6qClKbiZSewAIigbm0MRenqhgkQJtfcO4cOO2U86na9YhIiACy6KXOeV8xMnSdwC3W4GblU45naFIC2FkBKQrljvlfMS5VEoVbg3eQnV3tVPO11ihh1QuhiI5xCnnI84l36zB8PnzsLQ7bw4zSm7GY7c7kpu0bYCA1h7xRKvmhSMiyN8pE/rZWTt0zTpsmrMJQmpvzzRnteNhwwlrTbF2OwxaLeT5KjBCam9PtCx6GSICIqBtmv2oKdbOorFKj6SlURAIGCdER5wtaONGMGKxU5djoORmPDe+Boy3HNO/E48kFDDYvMhRmrLbZ/fq+oL+AvRDehol5ckEQsfDRu0Bx8PHLAyfPw9rZydN3OfBhAIhNs3ZhCMtR2BnZ9fe7df7MXjbhPnLqSTlqYRBQQhatxYGLSU3rlW7H5DFAgk0isKTFWTGosMwgqrW2a1Nom3WIkoahSVRS5wUGXGJ9J2Oh462s7M6jaGwCKLoaAQsofb2ZGqlGvohPS7oL8zqPI0VegSG+EMxL9g5gRGXkKnVGKmuhrmtzSnno+TmbnYbcPlzIH07IKAfjydbPicUMXLJrEpTNrsNR1uOIn9OPgQMtbdHS1jleOiYRWmKtdlgOKKDXK0CQ/e3R1sctRhR0qhZTehnt7O4VqXH/KVRYKgk5dFk69eDkUic1rGY7u67tZwBBjqpJOUFBAIGmxcpcPhSO2wzLE1V6avQPdwN9VwaJeXxBAJHx+LLBx0PITMwVFEJW1c3TdznBQSMACqlCkdbjsI2w/Zub7iNIYOZSlJeQBAYiKD16ym5cZna/UBwAhBPoyi8wZZMBbqMJpxt6p3R8domLRSBCmRGZDo5MuIS6TscDx8tZ2Z0uKGoEKJYBSRZWU4OjLiCSqlC93A3KjtnNkquoVIPWZgE0XPlTo6MuIJco4Hpch3Mzc2zPhclN99kswKXv3CUpBh6hekNliaGIC4kYEZrTVntVhS3FkOlVIGh9vYO8cuB4MQZTejHWq0wHjkKuVpD7e0lMiMyERsYO6PSlN1mx/XzesxfFkXt7SWC1q4BI5U6pWMxJTff1HwSGOqmkpQXYRgGWzIV0NZ0wGqb3qiKcx3n0DvSSxP3eROGcTx8XP7C8TAyDUNnz8LW20slKS/CMAxUShWKW4phtU+vvW/W38aw0UIlKS8iCAiAbMMGGJyw1hQlN99Uux8IVQKxNIrCmxRkKtAzaMZX16dXmtI16xAfFI+08DQXRUZcImOn4yGk+eS0DjMUFcEvIQGSjHQXBUZcQTVXhT5TH852TG+UXGNlJ+QREkQmylwUGXEF+WYNTFevwnTt2qzOQ8nNHTYLUHfI8daGXmF6lUVxwUgMk06rNGWxW6gk5a0Ui4HQudMqTbEWyz9KUmpqby+TFpaGBFkCdM1TX3vIZrPj2oUuzF8eTe3tZQK/9S0IgoJmPaEfJTd3XC8FhvtoLSkvxDAMCjIV0NZ2wDLF0tRXt75Cv6mfRkl5I4Zx3Kd1hxwPJVMwWF4OW38/TdznhRiGgVqpRnFLMSxTbO+2uj6YBq1IppKU1xH4+0OWuxGGoqJZrS1Gyc0dtQeA8PlAzCKuIyEzsCVTgdtDFpxq7J7S/rpmHZRyJRaELnBxZMQlMnY6Hkaul05pd0ORFmKlEv6pqa6Ni7iESqmCwWxAeXv5lPZvrOhESLQU4XFBLo6MuIJMo4H52jWYrjbM+ByU3ACA1QTUfUklKS+WppBjXkQgvrx4/wn9zDYzjrUeo5KUN4vOAMKTpzShn91shrG4GPLNNErKW6WEpkApV06pNGWz2HH9YjeNkvJiQTk5EAQHw6CdecdiSm4A4NoxwNTveBokXulOaerI5Q6YrJNP+HXm1hkYLUZaS8qbMYzjfr1y2PFwMonBU6dhNxohU1MJ0lsxDAP1XDWOtR6D2WaedN/Wul6Yh600SsqLMWIxZHm5MBbOvDRFyQ3gePqLTAWiFnIdCZmFgqxYGEesOHl18tKUtlmLpOAkJIcmuyky4hLpOx0PJdeOTbqboagI4vlJkKSkuCkw4gpqpRoDlgGcvnl60v0aKzoRFhuI8FgqSXkzuVoDc0sLTHV1MzqekhvLMFBfSHPb8EBKtAwp0UGTjpoasY7geOtxqObSWxuvF5UKRKVNWpqyj4xgoKSE5rbhgaSQJMwPmT/phH5Wsw1N/yhJEe8W+MAqCENCZrwcAyU3jcWAeYBKUjxRkBmLo5c7MWIZvzR1+uZpDFmHqCTFF+k7HA8nluFxPx44eRL2oSFKbnhCpVSh9EYpRqwj437eWtsLi8lGyQ0PMH5+kOXnw1CknVFpipKbmv1A9CIggkoUfLAlU4FBsw2l9fpxP9c2a5ESmoJ5wfPcHBlxifSdjoeThqPjfmwsKoL/ggXwn0ftzQdqpRpD1iGcvDn+BI4NlZ0Ijw9CaEygmyMjriDfrIGlrQ0jNTXTPta3kxvzIHBV65jOnfBCUmQQFirkOFR976ipIcsQTrSdoOUW+CTiH9M3jDOhn31oCMbjpfTWhkeUwUqkhqVC23RvacpisqG5upvmtuER6fLlEIaHz2g5Bt9ObhqOAJYhKknxTEGmAsfq9Bgyj12L5uTNkxi2DlNywzfpO4GrOsfDyjcMlJWBHR6mift4RqVUoaytDEOWoTHbmy91w2q2U0mKRxiRCHJVPgxaLVj79NYO9O3kpma/Yyr3MHplzSdbM2MxbLHh2JWxpSldsw5p4WlIkCdwFBlxifQdjoeUq2PnQDEUFkGSng5xYiJHgRFXUClVGLGNoKytbMz2a5V6RCbKEBwp5Sgy4gpyjQbW9nYMX7w4reN8N7kxGR1vbuitDe8khkuRGR88ZkK/QcsgytrKqCMxH4XNBWKXjilN2QYGMXDiBOQaekvHNwmyBGSEZ4wZNWUesaK5pofmtuGhgGXLIIqMnPaoKd9NbhqKAesIkLad60iIC2xZpMDxej0GTI7SVOmNUphsJkpu+Cp9h6NTsckIABg4fhysyQSZmkpSfKRSqnCy7SQGzAMAgObqbtgsVJLiI0YggEythlGrm1ZpyneTm7ovgbjlQOgcriMhLrAlUwGT1Y7iy50AHCWpzIhMxAXFcRwZcYn0HY6HlXrH051Bq4UkKxPieGpvPlIpVTDbzTh+4zgAoKFCj+i5csjDAziOjLiCXKOBVa/HcGXllI/x3eTm+jEqSfFYfKgUSxJD8GX1LRjNRpy6eYre2vBZSAIQvxKo2Q+b0YjBsjIaJcVjiiAFsiKzoGvWwTRsRevlHnprw2MBi7MgUihgKJp4Ase7eURy88Ybb0CpVEIikWDVqlU4e/bspPt/8sknSE1NhUQiwaJFi1BYWDj9i9otVJLiuYLMWJRd7cbha8Ww2C3IV+ZzHRJxpYydwLUSGIsOgbVYIFdRMstnaqUap2+dxuXKVtitLCU3PMYIBJCr1TDo7r9w6h2cJzcff/wxdu/ejb1796KqqgpZWVlQqVTQ68efhO3MmTN4+OGH8aMf/Qjnz5/H9u3bsX37dtRMd5KfuBVAML2y5rMtixSw2O34++VDWBK1BDGBMVyHRFwpbTtgs8Bw4EMELF0KP4WC64iIC+Ur82Gz21B5ugGKpGAEhUq4Dom4kFyjhq2nZ8r7i1wYy5S89tprePLJJ/H4448DAN58800cPnwY7777Lvbs2XPP/q+//jrUajV+9atfAQBefPFFHD16FP/93/+NN998c+oXTtvqlPhn4u6ppFncO7X0lPYZZ9vdm8bbx86O7ZQ13tTW7BT2wXjH3XU91m6/7/cy/vXZe76XuzeMd9w3vzcRgKVxZjT1VuEXSf8P1hHT+HGPN7P3FKb7vvtnNMmOk19ryteb0sXuv+9UTjTV6c5Z9v67jrvD/dty/HNN9qEf7LIc9F+6gahf/grmEetkO8/iOk475B8HTv/IGS6UPH0zvM64v5ucfC0ZQpAdtBYjzULM/z69teE7yaJF8IuPn/L+DDvT9cSdwGw2QyqV4tNPP8X27dtHt+/atQu3b9/G559/fs8xiYmJ2L17N5599tnRbXv37sXBgwdxcZxx8CaTCSaTafTf/f39SExMxO8f/hsk4unMh8BMY18HdvqHzOg6M8Zw/uKOEEJmxQ47Psv6A0bERq5DIS6286Qd/+/Nc5DJZGCYyf9Wcvrmpru7GzabDdHR0WO2R0dH48qVK+Me09HRMe7+HR0d4+7/0ksv4YUXXrhn+28+/MEMoyaEEEKIu1UDeP7DYPT390Mul0+6L+dlKVd77rnnsHv37tF/2+129Pb2Ijw8/L6ZH98YDAYkJCTgxo0b9/2PQVyH2sEzUDt4BmoHz+BN7SCTye67D6fJTUREBIRCITo7O8ds7+zsREzM+J0/Y2JiprW/v78//P39x2wLCQmZedA8IJfLPf4/ry+gdvAM1A6egdrBM/ClHTjtdCEWi7Fs2TKUlJSMbrPb7SgpKUF2dva4x2RnZ4/ZHwCOHj064f6EEEII8S2cl6V2796NXbt2Yfny5Vi5ciX+/Oc/Y3BwcHT01GOPPYa4uDi89NJLAICf//znWLduHf7zP/8TW7ZswUcffYSKigq8/fbbXH4bhBBCCPEQnCc3Dz74ILq6uvC73/0OHR0dWLx4MbRa7Win4dbWVggE/3zBlJOTgw8++AC/+c1v8O///u9ITk7GwYMHkZGRwdW34DX8/f2xd+/ee8p0xL2oHTwDtYNnoHbwDHxrB06HghNCCCGEOBtNdEIIIYQQXqHkhhBCCCG8QskNIYQQQniFkhtCCCGE8AolNzxSVlaGrVu3IjY2FgzD4ODBg5PuX1paCoZh7vmaaCkLcn8vvfQSVqxYAZlMhqioKGzfvh319fX3Pe6TTz5BamoqJBIJFi1ahMLCQjdEy18zaYf33nvvnntBIqGVpmfjL3/5CzIzM0cnhsvOzkZRUdGkx9C94HzTbQc+3AuU3PDI4OAgsrKy8MYbb0zruPr6erS3t49+RUXRCrszdeLECTz99NP46quvcPToUVgsFuTn52NwcHDCY86cOYOHH34YP/rRj3D+/Hls374d27dvR01NjRsj55eZtAPgmJ31m/dCS0uLmyLmp/j4eLz88suorKxERUUFNm7ciG3btqG2tnbc/elecI3ptgPAg3uBJbwEgD1w4MCk+xw/fpwFwPb19bklJl+k1+tZAOyJEycm3Of73/8+u2XLljHbVq1axf7kJz9xdXg+YyrtsG/fPjY4ONh9Qfmo0NBQ9q9//eu4n9G94D6TtQMf7gV6c0OwePFiKBQKbNq0CadPn+Y6HF7p7+8HAISFhU24T3l5OfLy8sZsU6lUKC8vd2lsvmQq7QAAAwMDmDNnDhISEu77ZEumx2az4aOPPsLg4OCEy+XQveB6U2kHwPvvBUpufJhCocCbb76Jzz77DJ999hkSEhKwfv16VFVVcR0aL9jtdjz77LNYvXr1pDNod3R0jM7IfUd0dDT1fXKSqbbDggUL8O677+Lzzz/H3/72N9jtduTk5KCtrc2N0fLPpUuXEBQUBH9/fzz11FM4cOAA0tLSxt2X7gXXmU478OFe4Hz5BcKdBQsWYMGCBaP/zsnJwbVr1/CnP/0J//d//8dhZPzw9NNPo6amBqdOneI6FJ821XbIzs4e8ySbk5ODhQsX4q233sKLL77o6jB5a8GCBbhw4QL6+/vx6aefYteuXThx4sSEf1iJa0ynHfhwL1ByQ8ZYuXIl/TF2gmeeeQZffvklysrKEB8fP+m+MTEx6OzsHLOts7MTMTExrgzRJ0ynHe7m5+eHJUuWoLGx0UXR+QaxWIz58+cDAJYtW4Zz587h9ddfx1tvvXXPvnQvuM502uFu3ngvUFmKjHHhwgUoFAquw/BaLMvimWeewYEDB3Ds2DHMnTv3vsdkZ2ejpKRkzLajR49OWg8nk5tJO9zNZrPh0qVLdD84md1uh8lkGvczuhfcZ7J2uJtX3gtc92gmzmM0Gtnz58+z58+fZwGwr732Gnv+/Hm2paWFZVmW3bNnD/voo4+O7v+nP/2JPXjwINvQ0MBeunSJ/fnPf84KBAK2uLiYq2/B6/30pz9lg4OD2dLSUra9vX30a2hoaHSfRx99lN2zZ8/ov0+fPs2KRCL21VdfZevq6ti9e/eyfn5+7KVLl7j4FnhhJu3wwgsvsDqdjr127RpbWVnJPvTQQ6xEImFra2u5+BZ4Yc+ePeyJEyfYpqYmtrq6mt2zZw/LMAx75MgRlmXpXnCX6bYDH+4FSm545M7Q7ru/du3axbIsy+7atYtdt27d6P6vvPIKm5SUxEokEjYsLIxdv349e+zYMW6C54nxfv4A2H379o3us27dutE2uePvf/87m5KSworFYjY9PZ09fPiwewPnmZm0w7PPPssmJiayYrGYjY6OZjdv3sxWVVW5P3geeeKJJ9g5c+awYrGYjYyMZHNzc0f/oLIs3QvuMt124MO9wLAsy7r7bREhhBBCiKtQnxtCCCGE8AolN4QQQgjhFUpuCCGEEMIrlNwQQgghhFcouSGEEEIIr1ByQwghhBBeoeSGEEIIIbxCyQ0hhBBCeIWSG0IIZ55//nksXryY6zBQWloKhmFw+/ZtrkMhhDgBzVBMCOHMwMAATCYTwsPDOY3DbDajt7cX0dHRYBgG7733Hp599llKdgjxUiKuAyCE+K6goCAEBQVxHQbEYjFiYmK4DoMQ4iRUliKEuMzbb7+N2NhY2O32Mdu3bduGJ5544p6yVGlpKVauXInAwECEhIRg9erVaGlpGf380KFDWLFiBSQSCSIiIrBjx47Rz/r6+vDYY48hNDQUUqkUGo0GDQ0No5+3tLRg69atCA0NRWBgINLT01FYWDh63TtlqdLSUjz++OPo7+8HwzBgGAbPP/88/uM//gMZGRn3fI+LFy/Gb3/7W2f9yAghTkDJDSHEZb73ve+hp6cHx48fH93W29sLrVaLRx55ZMy+VqsV27dvx7p161BdXY3y8nL8+Mc/BsMwAIDDhw9jx44d2Lx5M86fP4+SkhKsXLly9Pgf/vCHqKiowBdffIHy8nKwLIvNmzfDYrEAAJ5++mmYTCaUlZXh0qVLeOWVV8Z9a5STk4M///nPkMvlaG9vR3t7O375y1/iiSeeQF1dHc6dOze67/nz51FdXY3HH3/cqT83QsjsUFmKEOIyoaGh0Gg0+OCDD5CbmwsA+PTTTxEREYENGzbg5MmTo/saDAb09/ejoKAASUlJAICFCxeOfv6HP/wBDz30EF544YXRbVlZWQCAhoYGfPHFFzh9+jRycnIAAO+//z4SEhJw8OBBfO9730Nrayu+853vYNGiRQCAefPmjRuzWCxGcHAwGIYZU6oKCgqCSqXCvn37sGLFCgDAvn37sG7dugnPRQjhBr25IYS41COPPILPPvsMJpMJgCPpeOihhyAQjP31ExYWhh/+8IdQqVTYunUrXn/9dbS3t49+fuHChdEE6W51dXUQiURYtWrV6Lbw8HAsWLAAdXV1AIB/+7d/w+9//3usXr0ae/fuRXV19bS/lyeffBIffvghRkZGYDab8cEHH+CJJ56Y9nkIIa5FyQ0hxKW2bt0KlmVx+PBh3LhxAydPnrynJHXHvn37UF5ejpycHHz88cdISUnBV199BQAICAiYVRz/+q//iuvXr+PRRx/FpUuXsHz5cvzXf/3XtL8Xf39/HDhwAIcOHYLFYsF3v/vdWcVFCHE+Sm4IIS4lkUiwc+dOvP/++/jwww+xYMECLF26dML9lyxZgueeew5nzpxBRkYGPvjgAwBAZmYmSkpKxj1m4cKFsFqt+Prrr0e39fT0oL6+HmlpaaPbEhIS8NRTT2H//v34xS9+gXfeeWfc84nFYthstnu2i0Qi7Nq1C/v27cO+ffvw0EMPzTrpIoQ4H/W5IYS43COPPIKCggLU1tbiBz/4wbj7NDU14e2338a3v/1txMbGor6+Hg0NDXjssccAAHv37kVubi6SkpLw0EMPwWq1orCwEL/+9a+RnJyMbdu24cknn8Rbb70FmUyGPXv2IC4uDtu2bQMAPPvss9BoNEhJSUFfXx+OHz8+pk/PNymVSgwMDKCkpARZWVmQSqWQSqUAHG+A7hx3+vRpZ/+oCCFOQG9uCCEut3HjRoSFhaG+vh7/8i//Mu4+UqkUV65cwXe+8x2kpKTgxz/+MZ5++mn85Cc/AQCsX78en3zyCb744gssXrwYGzduxNmzZ0eP37dvH5YtW4aCggJkZ2eDZVkUFhbCz88PAGCz2fD0009j4cKFUKvVSElJwf/8z/+MG0tOTg6eeuopPPjgg4iMjMQf//jH0c+Sk5ORk5OD1NTUMX18CCGeg2YoJoSQaWBZFsnJyfjZz36G3bt3cx0OIWQcVJYihJAp6urqwkcffYSOjg6a24YQD0bJDSGETFFUVBQiIiLw9ttvIzQ0lOtwCCEToOSGEEKmiKr4hHgH6lBMCCGEEF6h5IYQQgghvELJDSGEEEJ4hZIbQgghhPAKJTeEEEII4RVKbgghhBDCK5TcEEIIIYRXKLkhhBBCCK/8f913V/6uF+rYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "from skfuzzy import control as ctrl\n", "import skfuzzy as fuzz\n", "\n", "temp = ctrl.Antecedent(viscosity_train[\"T\"].sort_values().unique(), \"temp\")\n", "al = ctrl.Antecedent(np.arange(0, 0.3, 0.005), \"al\")\n", "ti = ctrl.Antecedent(np.arange(0, 0.3, 0.005), \"ti\")\n", "viscosity = ctrl.Consequent(np.arange(1.18, 3.71, 0.00001), \"viscosity\")\n", "\n", "temp.automf(5, variable_type=\"quant\")\n", "temp.view()\n", "al.automf(3, variable_type=\"quant\")\n", "al.view()\n", "ti.automf(3, variable_type=\"quant\")\n", "ti.view()\n", "viscosity.automf(5, variable_type=\"quant\")\n", "viscosity.view()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "20" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[IF (temp[higher] AND ti[low]) AND al[low] THEN viscosity[lower]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[higher] AND ti[average]) AND al[low] THEN viscosity[lower]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[lower] AND ti[average]) AND al[low] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[low] AND ti[low]) AND al[low] THEN viscosity[high]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[low] AND ti[low]) AND al[average] THEN viscosity[high]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[low] AND ti[average]) AND al[low] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[lower] AND ti[low]) AND al[high] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[low] AND ti[low]) AND al[high] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF temp[lower] AND ti[high] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF temp[low] AND ti[high] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[average] AND ti[low]) AND al[average] THEN viscosity[average]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[average] AND ti[average]) AND al[low] THEN viscosity[average]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[average] AND ti[low]) AND al[high] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF temp[average] AND ti[high] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[average] AND ti[low]) AND al[low] THEN viscosity[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[average] AND ti[average]) AND al[low] THEN viscosity[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[lower] AND ti[low]) AND al[low] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[lower] AND ti[low]) AND al[average] THEN viscosity[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (temp[higher] AND ti[low]) AND al[high] THEN viscosity[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF temp[higher] AND ti[high] THEN viscosity[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import get_fuzzy_rules\n", "\n", "fuzzy_variables = {\"Al2O3\": al, \"TiO2\": ti, \"T\": temp, \"consequent\": viscosity}\n", "fuzzy_rules = get_fuzzy_rules(rules, fuzzy_variables)\n", "\n", "fuzzy_cntrl = ctrl.ControlSystem(fuzzy_rules)\n", "\n", "sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)\n", "\n", "display(len(fuzzy_rules))\n", "fuzzy_rules" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=============\n", " Antecedents \n", "=============\n", "Antecedent: temp = 20\n", " - lower : 1.0\n", " - low : 0.0\n", " - average : 0.0\n", " - high : 0.0\n", " - higher : 0.0\n", "Antecedent: ti = 0.0\n", " - low : 1.0\n", " - average : 0.0\n", " - high : 0.0\n", "Antecedent: al = 0.0\n", " - low : 1.0\n", " - average : 0.0\n", " - high : 0.0\n", "\n", "=======\n", " Rules \n", "=======\n", "RULE #0:\n", " IF (temp[higher] AND ti[low]) AND al[low] THEN viscosity[lower]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[higher] : 0.0\n", " - ti[low] : 1.0\n", " - al[low] : 1.0\n", " (temp[higher] AND ti[low]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[lower] : 0.0\n", "\n", "RULE #1:\n", " IF (temp[higher] AND ti[average]) AND al[low] THEN viscosity[lower]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[higher] : 0.0\n", " - ti[average] : 0.0\n", " - al[low] : 1.0\n", " (temp[higher] AND ti[average]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[lower] : 0.0\n", "\n", "RULE #2:\n", " IF (temp[lower] AND ti[average]) AND al[low] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[lower] : 1.0\n", " - ti[average] : 0.0\n", " - al[low] : 1.0\n", " (temp[lower] AND ti[average]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #3:\n", " IF (temp[low] AND ti[low]) AND al[low] THEN viscosity[high]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[low] : 0.0\n", " - ti[low] : 1.0\n", " - al[low] : 1.0\n", " (temp[low] AND ti[low]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[high] : 0.0\n", "\n", "RULE #4:\n", " IF (temp[low] AND ti[low]) AND al[average] THEN viscosity[high]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[low] : 0.0\n", " - ti[low] : 1.0\n", " - al[average] : 0.0\n", " (temp[low] AND ti[low]) AND al[average] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[high] : 0.0\n", "\n", "RULE #5:\n", " IF (temp[low] AND ti[average]) AND al[low] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[low] : 0.0\n", " - ti[average] : 0.0\n", " - al[low] : 1.0\n", " (temp[low] AND ti[average]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #6:\n", " IF (temp[lower] AND ti[low]) AND al[high] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[lower] : 1.0\n", " - ti[low] : 1.0\n", " - al[high] : 0.0\n", " (temp[lower] AND ti[low]) AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #7:\n", " IF (temp[low] AND ti[low]) AND al[high] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[low] : 0.0\n", " - ti[low] : 1.0\n", " - al[high] : 0.0\n", " (temp[low] AND ti[low]) AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #8:\n", " IF temp[lower] AND ti[high] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[lower] : 1.0\n", " - ti[high] : 0.0\n", " temp[lower] AND ti[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #9:\n", " IF temp[low] AND ti[high] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[low] : 0.0\n", " - ti[high] : 0.0\n", " temp[low] AND ti[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #10:\n", " IF (temp[average] AND ti[low]) AND al[average] THEN viscosity[average]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[average] : 0.0\n", " - ti[low] : 1.0\n", " - al[average] : 0.0\n", " (temp[average] AND ti[low]) AND al[average] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[average] : 0.0\n", "\n", "RULE #11:\n", " IF (temp[average] AND ti[average]) AND al[low] THEN viscosity[average]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[average] : 0.0\n", " - ti[average] : 0.0\n", " - al[low] : 1.0\n", " (temp[average] AND ti[average]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[average] : 0.0\n", "\n", "RULE #12:\n", " IF (temp[average] AND ti[low]) AND al[high] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[average] : 0.0\n", " - ti[low] : 1.0\n", " - al[high] : 0.0\n", " (temp[average] AND ti[low]) AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #13:\n", " IF temp[average] AND ti[high] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[average] : 0.0\n", " - ti[high] : 0.0\n", " temp[average] AND ti[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #14:\n", " IF (temp[average] AND ti[low]) AND al[low] THEN viscosity[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[average] : 0.0\n", " - ti[low] : 1.0\n", " - al[low] : 1.0\n", " (temp[average] AND ti[low]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[low] : 0.0\n", "\n", "RULE #15:\n", " IF (temp[average] AND ti[average]) AND al[low] THEN viscosity[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[average] : 0.0\n", " - ti[average] : 0.0\n", " - al[low] : 1.0\n", " (temp[average] AND ti[average]) AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[low] : 0.0\n", "\n", "RULE #16:\n", " IF (temp[lower] AND ti[low]) AND al[low] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[lower] : 1.0\n", " - ti[low] : 1.0\n", " - al[low] : 1.0\n", " (temp[lower] AND ti[low]) AND al[low] = 1.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 1.0\n", "\n", "RULE #17:\n", " IF (temp[lower] AND ti[low]) AND al[average] THEN viscosity[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[lower] : 1.0\n", " - ti[low] : 1.0\n", " - al[average] : 0.0\n", " (temp[lower] AND ti[low]) AND al[average] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[higher] : 0.0\n", "\n", "RULE #18:\n", " IF (temp[higher] AND ti[low]) AND al[high] THEN viscosity[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[higher] : 0.0\n", " - ti[low] : 1.0\n", " - al[high] : 0.0\n", " (temp[higher] AND ti[low]) AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[low] : 0.0\n", "\n", "RULE #19:\n", " IF temp[higher] AND ti[high] THEN viscosity[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - temp[higher] : 0.0\n", " - ti[high] : 0.0\n", " temp[higher] AND ti[high] = 0.0\n", " Activation (THEN-clause):\n", " viscosity[low] : 0.0\n", "\n", "\n", "==============================\n", " Intermediaries and Conquests \n", "==============================\n", "Consequent: viscosity = 3.499157499995422\n", " lower:\n", " Accumulate using accumulation_max : 0.0\n", " low:\n", " Accumulate using accumulation_max : 0.0\n", " average:\n", " Accumulate using accumulation_max : 0.0\n", " high:\n", " Accumulate using accumulation_max : 0.0\n", " higher:\n", " Accumulate using accumulation_max : 1.0\n", "\n" ] }, { "data": { "text/plain": [ "np.float64(3.499157499995422)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim.input[\"temp\"] = 20\n", "sim.input[\"al\"] = 0.0\n", "sim.input[\"ti\"] = 0.0\n", "sim.compute()\n", "sim.print_state()\n", "\n", "display(sim.output[\"viscosity\"])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2ViscosityRealInferredRMSE
0200.000.03.7073.7073.4991570.207843
1250.000.03.1803.1803.1885650.008565
2350.000.02.3612.3612.7324940.371494
3450.000.01.8321.8321.8124980.019502
4500.000.01.6291.6291.8124980.183498
5550.000.01.4651.4651.8124980.347498
6700.000.01.1941.1941.3908330.196833
7200.050.04.6604.6603.4810641.178936
8300.050.03.3803.3803.0905370.289463
9350.050.02.8742.8742.7034350.170565
10400.050.02.4892.4892.3656800.123320
11500.050.01.8971.8972.0544590.157459
12550.050.01.7091.7092.1287460.419746
13600.050.01.4701.4701.4657950.004205
14200.300.06.6706.6703.4991573.170843
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Viscosity Real Inferred RMSE\n", "0 20 0.00 0.0 3.707 3.707 3.499157 0.207843\n", "1 25 0.00 0.0 3.180 3.180 3.188565 0.008565\n", "2 35 0.00 0.0 2.361 2.361 2.732494 0.371494\n", "3 45 0.00 0.0 1.832 1.832 1.812498 0.019502\n", "4 50 0.00 0.0 1.629 1.629 1.812498 0.183498\n", "5 55 0.00 0.0 1.465 1.465 1.812498 0.347498\n", "6 70 0.00 0.0 1.194 1.194 1.390833 0.196833\n", "7 20 0.05 0.0 4.660 4.660 3.481064 1.178936\n", "8 30 0.05 0.0 3.380 3.380 3.090537 0.289463\n", "9 35 0.05 0.0 2.874 2.874 2.703435 0.170565\n", "10 40 0.05 0.0 2.489 2.489 2.365680 0.123320\n", "11 50 0.05 0.0 1.897 1.897 2.054459 0.157459\n", "12 55 0.05 0.0 1.709 1.709 2.128746 0.419746\n", "13 60 0.05 0.0 1.470 1.470 1.465795 0.004205\n", "14 20 0.30 0.0 6.670 6.670 3.499157 3.170843" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn import metrics\n", "import math\n", "\n", "\n", "def fuzzy_pred(row):\n", " sim.input[\"temp\"] = row[\"T\"]\n", " sim.input[\"al\"] = row[\"Al2O3\"]\n", " sim.input[\"ti\"] = row[\"TiO2\"]\n", " sim.compute()\n", " return sim.output[\"viscosity\"]\n", "\n", "def rmse(row):\n", " return math.sqrt(metrics.mean_squared_error([row[\"Real\"]], [row[\"Inferred\"]]))\n", "\n", "result_train = viscosity_train.copy()\n", "result_train[\"Real\"] = result_train[\"Viscosity\"]\n", "result_train[\"Inferred\"] = result_train.apply(fuzzy_pred, axis=1)\n", "result_train[\"RMSE\"] = result_train.apply(rmse, axis=1)\n", "result_train.head(15)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2ViscosityRealInferredRMSE
0300.000.002.7162.7163.0895400.374
1400.000.002.0732.0732.3595220.287
2600.000.001.3291.3291.4657950.137
3650.000.001.2111.2111.4149280.204
4250.050.004.1204.1203.1885650.931
5450.050.002.2172.2172.0455460.171
6650.050.001.3151.3151.4149280.100
7700.050.001.1051.1051.4089260.304
8450.300.003.1113.1113.4991570.388
9500.300.002.7352.7353.4750620.740
10650.300.001.9361.9361.8124980.124
11300.000.053.5873.5873.1116910.475
12550.000.051.9531.9532.1287460.176
13650.000.051.4431.4431.4149280.028
14400.000.303.9903.9903.4750620.515
15500.000.303.1893.1893.4750620.286
16650.000.302.2872.2871.8124980.475
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Viscosity Real Inferred RMSE\n", "0 30 0.00 0.00 2.716 2.716 3.089540 0.374\n", "1 40 0.00 0.00 2.073 2.073 2.359522 0.287\n", "2 60 0.00 0.00 1.329 1.329 1.465795 0.137\n", "3 65 0.00 0.00 1.211 1.211 1.414928 0.204\n", "4 25 0.05 0.00 4.120 4.120 3.188565 0.931\n", "5 45 0.05 0.00 2.217 2.217 2.045546 0.171\n", "6 65 0.05 0.00 1.315 1.315 1.414928 0.100\n", "7 70 0.05 0.00 1.105 1.105 1.408926 0.304\n", "8 45 0.30 0.00 3.111 3.111 3.499157 0.388\n", "9 50 0.30 0.00 2.735 2.735 3.475062 0.740\n", "10 65 0.30 0.00 1.936 1.936 1.812498 0.124\n", "11 30 0.00 0.05 3.587 3.587 3.111691 0.475\n", "12 55 0.00 0.05 1.953 1.953 2.128746 0.176\n", "13 65 0.00 0.05 1.443 1.443 1.414928 0.028\n", "14 40 0.00 0.30 3.990 3.990 3.475062 0.515\n", "15 50 0.00 0.30 3.189 3.189 3.475062 0.286\n", "16 65 0.00 0.30 2.287 2.287 1.812498 0.475" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result_test = viscosity_test.copy()\n", "result_test[\"Real\"] = result_test[\"Viscosity\"]\n", "result_test[\"Inferred\"] = result_test.apply(fuzzy_pred, axis=1)\n", "result_test[\"RMSE\"] = result_test.apply(rmse, axis=1)\n", "result_test = result_test.round({\"RMSE\": 3})\n", "result_test" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'RMSE_train': 1.0977710360150494,\n", " 'RMSE_test': 0.40761861945366024,\n", " 'RMAE_test': 0.5797504263400755,\n", " 'R2_test': 0.813200460937507}" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import math\n", "\n", "rmetrics = {}\n", "rmetrics[\"RMSE_train\"] = math.sqrt(\n", " metrics.mean_squared_error(result_train[\"Real\"], result_train[\"Inferred\"])\n", ")\n", "rmetrics[\"RMSE_test\"] = math.sqrt(\n", " metrics.mean_squared_error(result_test[\"Real\"], result_test[\"Inferred\"])\n", ")\n", "rmetrics[\"RMAE_test\"] = math.sqrt(\n", " metrics.mean_absolute_error(result_test[\"Real\"], result_test[\"Inferred\"])\n", ")\n", "rmetrics[\"R2_test\"] = metrics.r2_score(result_test[\"Real\"], result_test[\"Inferred\"])\n", "\n", "rmetrics" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.9" } }, "nbformat": 4, "nbformat_minor": 2 }