{ "cells": [ { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "|--- Density <= 1.04\n", "| |--- Density <= 1.03\n", "| | |--- value: [70.00]\n", "| |--- Density > 1.03\n", "| | |--- Density <= 1.04\n", "| | | |--- value: [65.00]\n", "| | |--- Density > 1.04\n", "| | | |--- value: [60.00]\n", "|--- Density > 1.04\n", "| |--- Density <= 1.07\n", "| | |--- TiO2 <= 0.03\n", "| | | |--- Al2O3 <= 0.03\n", "| | | | |--- Density <= 1.05\n", "| | | | | |--- Density <= 1.05\n", "| | | | | | |--- value: [50.00]\n", "| | | | | |--- Density > 1.05\n", "| | | | | | |--- value: [42.50]\n", "| | | | |--- Density > 1.05\n", "| | | | | |--- Density <= 1.06\n", "| | | | | | |--- value: [35.00]\n", "| | | | | |--- Density > 1.06\n", "| | | | | | |--- value: [22.50]\n", "| | | |--- Al2O3 > 0.03\n", "| | | | |--- Density <= 1.06\n", "| | | | | |--- Density <= 1.05\n", "| | | | | | |--- value: [70.00]\n", "| | | | | |--- Density > 1.05\n", "| | | | | | |--- value: [65.00]\n", "| | | | |--- Density > 1.06\n", "| | | | | |--- Density <= 1.07\n", "| | | | | | |--- value: [55.00]\n", "| | | | | |--- Density > 1.07\n", "| | | | | | |--- value: [50.00]\n", "| | |--- TiO2 > 0.03\n", "| | | |--- Density <= 1.06\n", "| | | | |--- value: [70.00]\n", "| | | |--- Density > 1.06\n", "| | | | |--- Density <= 1.06\n", "| | | | | |--- value: [65.00]\n", "| | | | |--- Density > 1.06\n", "| | | | | |--- value: [60.00]\n", "| |--- Density > 1.07\n", "| | |--- Density <= 1.12\n", "| | | |--- Density <= 1.08\n", "| | | | |--- Density <= 1.07\n", "| | | | | |--- value: [45.00]\n", "| | | | |--- Density > 1.07\n", "| | | | | |--- Density <= 1.08\n", "| | | | | | |--- value: [40.00]\n", "| | | | | |--- Density > 1.08\n", "| | | | | | |--- value: [35.00]\n", "| | | |--- Density > 1.08\n", "| | | | |--- Density <= 1.09\n", "| | | | | |--- value: [30.00]\n", "| | | | |--- Density > 1.09\n", "| | | | | |--- Al2O3 <= 0.03\n", "| | | | | | |--- value: [22.50]\n", "| | | | | |--- Al2O3 > 0.03\n", "| | | | | | |--- value: [20.00]\n", "| | |--- Density > 1.12\n", "| | | |--- Density <= 1.18\n", "| | | | |--- Density <= 1.15\n", "| | | | | |--- value: [70.00]\n", "| | | | |--- Density > 1.15\n", "| | | | | |--- Al2O3 <= 0.15\n", "| | | | | | |--- value: [65.00]\n", "| | | | | |--- Al2O3 > 0.15\n", "| | | | | | |--- value: [50.00]\n", "| | | |--- Density > 1.18\n", "| | | | |--- Al2O3 <= 0.15\n", "| | | | | |--- Density <= 1.20\n", "| | | | | | |--- value: [50.00]\n", "| | | | | |--- Density > 1.20\n", "| | | | | | |--- value: [30.00]\n", "| | | | |--- Al2O3 > 0.15\n", "| | | | | |--- Density <= 1.18\n", "| | | | | | |--- value: [30.00]\n", "| | | | | |--- Density > 1.18\n", "| | | | | | |--- value: [22.50]\n", "\n" ] } ], "source": [ "import pickle\n", "import pandas as pd\n", "from sklearn import tree\n", "\n", "model = pickle.load(open(\"data/temp_density_tree.model.sav\", \"rb\"))\n", "features = (\n", " pd.read_csv(\"data/density_train.csv\", sep=\";\", decimal=\",\")\n", " .drop([\"T\"], axis=1)\n", " .columns.values.tolist()\n", ")\n", "\n", "rules = tree.export_text(model, feature_names=features)\n", "print(rules)" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "27" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density > 1.083) and (Density > 1.086) and (Al2O3 > 0.025) -> 20.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density > 1.053) and (Density > 1.057) -> 22.5,\n", " if (Density <= 1.042) and (Density > 1.033) and (Density > 1.037) -> 60.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density <= 1.053) and (Density <= 1.046) -> 50.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density <= 1.053) and (Density > 1.046) -> 42.5,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density > 1.053) and (Density <= 1.057) -> 35.0,\n", " if (Density <= 1.042) and (Density > 1.033) and (Density <= 1.037) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density <= 1.061) and (Density <= 1.055) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density <= 1.061) and (Density > 1.055) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density > 1.061) and (Density <= 1.066) -> 55.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density > 1.061) and (Density > 1.066) -> 50.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) and (Density <= 1.058) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) and (Density > 1.058) and (Density <= 1.062) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) and (Density > 1.058) and (Density > 1.062) -> 60.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density <= 1.083) and (Density <= 1.074) -> 45.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density <= 1.083) and (Density > 1.074) and (Density <= 1.079) -> 40.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density <= 1.083) and (Density > 1.074) and (Density > 1.079) -> 35.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density > 1.083) and (Density <= 1.086) -> 30.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density > 1.083) and (Density > 1.086) and (Al2O3 <= 0.025) -> 22.5,\n", " if (Density <= 1.042) and (Density <= 1.033) -> 70.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density <= 1.179) and (Density <= 1.148) -> 70.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density <= 1.179) and (Density > 1.148) and (Al2O3 <= 0.15) -> 65.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density <= 1.179) and (Density > 1.148) and (Al2O3 > 0.15) -> 50.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 <= 0.15) and (Density <= 1.203) -> 50.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 <= 0.15) and (Density > 1.203) -> 30.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 > 0.15) and (Density <= 1.182) -> 30.0,\n", " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 > 0.15) and (Density > 1.182) -> 22.5]" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import get_rules\n", "\n", "\n", "rules = get_rules(model, features)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "27" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (Density > 1.042) and (Density <= 1.118) and (Al2O3 > 0.025) -> 20.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 22.5,\n", " if (Density <= 1.042) and (Density > 1.033) -> 60.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 50.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 42.5,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 35.0,\n", " if (Density <= 1.042) and (Density > 1.033) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 55.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 50.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 60.0,\n", " if (Density > 1.042) and (Density <= 1.118) -> 45.0,\n", " if (Density > 1.042) and (Density <= 1.118) -> 40.0,\n", " if (Density > 1.042) and (Density <= 1.118) -> 35.0,\n", " if (Density > 1.042) and (Density <= 1.118) -> 30.0,\n", " if (Density > 1.042) and (Density <= 1.118) and (Al2O3 <= 0.025) -> 22.5,\n", " if (Density <= 1.042) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.179) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 <= 0.15) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 > 0.15) -> 50.0,\n", " if (Density > 1.042) and (Density <= 1.203) and (Al2O3 <= 0.15) -> 50.0,\n", " if (Density > 1.042) and (Al2O3 <= 0.15) -> 30.0,\n", " if (Density > 1.042) and (Density <= 1.182) and (Al2O3 > 0.15) -> 30.0,\n", " if (Density > 1.042) and (Al2O3 > 0.15) -> 22.5]" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import normalise_rules\n", "\n", "\n", "rules = normalise_rules(rules)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "15" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (Density > 1.042) and (Density <= 1.118) and (Al2O3 > 0.025) -> 20.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 37.5,\n", " if (Density <= 1.042) and (Density > 1.033) -> 62.5,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 60.0,\n", " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.118) -> 37.5,\n", " if (Density > 1.042) and (Density <= 1.118) and (Al2O3 <= 0.025) -> 22.5,\n", " if (Density <= 1.042) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.179) -> 70.0,\n", " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 <= 0.15) -> 65.0,\n", " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 > 0.15) -> 50.0,\n", " if (Density > 1.042) and (Density <= 1.203) and (Al2O3 <= 0.15) -> 50.0,\n", " if (Density > 1.042) and (Al2O3 <= 0.15) -> 30.0,\n", " if (Density > 1.042) and (Density <= 1.182) and (Al2O3 > 0.15) -> 30.0,\n", " if (Density > 1.042) and (Al2O3 > 0.15) -> 22.5]" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import delete_same_rules\n", "\n", "\n", "rules = delete_same_rules(rules)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2Density
0200.00.01.06250
1250.00.01.05979
2350.00.01.05404
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Density\n", "0 20 0.0 0.0 1.06250\n", "1 25 0.0 0.0 1.05979\n", "2 35 0.0 0.0 1.05404" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2Density
0300.000.01.05696
1550.000.01.04158
2250.050.01.08438
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Density\n", "0 30 0.00 0.0 1.05696\n", "1 55 0.00 0.0 1.04158\n", "2 25 0.05 0.0 1.08438" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "density_train = pd.read_csv(\"data/density_train.csv\", sep=\";\", decimal=\",\")\n", "density_test = pd.read_csv(\"data/density_test.csv\", sep=\";\", decimal=\",\")\n", "\n", "display(density_train.head(3))\n", "display(density_test.head(3))" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "15" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[if (Density = 1.08) and (Al2O3 = 0.3) -> 20.0,\n", " if (Density = 1.055) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 37.5,\n", " if (Density = 1.037) -> 62.5,\n", " if (Density = 1.055) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 60.0,\n", " if (Density = 1.055) and (TiO2 = 0.3) -> 65.0,\n", " if (Density = 1.08) -> 37.5,\n", " if (Density = 1.08) and (Al2O3 = 0.0) -> 22.5,\n", " if (Density = 1.032) -> 70.0,\n", " if (Density = 1.11) -> 70.0,\n", " if (Density = 1.11) and (Al2O3 = 0.0) -> 65.0,\n", " if (Density = 1.11) and (Al2O3 = 0.3) -> 50.0,\n", " if (Density = 1.122) and (Al2O3 = 0.0) -> 50.0,\n", " if (Density = 1.219) and (Al2O3 = 0.0) -> 30.0,\n", " if (Density = 1.112) and (Al2O3 = 0.3) -> 30.0,\n", " if (Density = 1.219) and (Al2O3 = 0.3) -> 22.5]" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import simplify_rules\n", "\n", "rules = simplify_rules(density_train, rules)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/user/Projects/python/fuzzy-rules-generator/.venv/lib/python3.12/site-packages/skfuzzy/control/fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", " fig.show()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACG0ElEQVR4nOzdd1wU1/rH8c/SQamiYEGxd7ETxRpr7CZRY4rG9MTYTWyIDbsmJtHYUkwztkSssXfsDRt2FBtYARWpu78/5ne519goC2fL876vfd24zM58d2TWZ8+Zc47OYDAYEEIIIYSwEDaqAwghhBBCGJMUN0IIIYSwKFLcCCGEEMKiSHEjhBBCCIsixY0QQgghLIoUN0IIIYSwKFLcCCGEEMKiSHEjhBBCCIsixY0QQgghLIrVFTcGg4GEhARkYmYhhBDCMiktbnbs2EH79u0pUqQIOp2OsLCwF75m27Zt1KxZE0dHR8qUKcOCBQuydMz79+/j7u7O/fv3sxdaCCGEECZNaXHz8OFDAgICmDVrVqa2j4qKom3btjRt2pSjR4/Sv39/PvjgA9avX5/LSYUQQghhLnSmsnCmTqdj+fLldOrU6ZnbDBkyhDVr1nDixImM59544w3i4uJYt25dpo6TkJCAu7s78fHxuLm55TS2EEIIIfKAwWBAp9Nlaluzuudmz549NG/e/LHnWrVqxZ49e575muTkZBISEh57ANxPSs3VrEIIIYQwnhUXVmR6W7MqbmJiYvDx8XnsOR8fHxISEnj06NFTXzNx4kTc3d0zHn5+fgBMW38m1/MKIYQQIudiHsYwef/kTG9vVsVNdgwbNoz4+PiMx5UrVwD46/A1tp65qTidEEIIIZ7HYDAQEh6Ci71Lpl9jVsWNr68vsbGxjz0XGxuLm5sbzs7OT32No6Mjbm5ujz0A6pcpwNC/jhGfKN1TQgghhKlaenYpe27sYWz9sZl+jVkVN/Xq1WPz5s2PPbdx40bq1auX5X2N7VCZxJR0Rq86aax4QgghhDCiK/evMO3gNLqU60JQ0aBMv05pcfPgwQOOHj3K0aNHAW2o99GjR4mOjga0LqUePXpkbP/JJ59w8eJFvvzyS06fPs3333/PkiVLGDBgQJaP7evuzOj2lVl+5BrrTsQY5f0IIYQQwjj0Bj3Bu4LxcvJiUO1BWXqtXS5lypSDBw/StGnTjD8PHDgQgJ49e7JgwQJu3LiRUegAlCxZkjVr1jBgwAC++eYbihUrxg8//ECrVq2ydfxXaxZl3ckYRiw/Th1/Twrkd8zZGxJC5K2TYXDk9+dv4+wJrSdCPu88iSSEMI7fT/3O4ZuH+anVT+Szz5el15rMPDd55d/z3Ny6n0zLr7fzUqkCfP9WzUyPoRdCKHbrLMxtCIUqgVuRZ293aReUbARdfwW5voUwCxfjL9J1VVe6lOvCkLpDsvx6pS03pqCgqyOhnarSe+FhVkZcp2P1oqojCSFeJD0Nwj4B92Lw7hpweM4oipPLYem7cOIvqPp6nkUUQmRPmj6N4F3BFM5XmL41+2ZrH2Z1Q3FuaVutMO2qFSZkxUluJiSpjiOEeJHd38D1I9BpzvMLG4DKnaHyq7BmENyX++uEMHULTi7g5J2ThDYIxdnu6SOhX0SKm/83rmMV7G1tGPr3cVkxXAhTFnMCtk6E+n3Br07mXtN2Otg6wMq+INe3ECbrzN0zzDo6i16VexFQMCDb+5Hi5v955nNg0qtV2XL6JksPXVUdRwjxNGkpWndUgTLQdHjmX+fiBR2+hXPr4egfuZdPCJFtqempBIcH4+/mz2fVP8vRvqS4+R/NK/nwWs1ijF11imtxT1/OQQih0I6pcDMSOs8BuyyObiz/CgS8Cf8MhbgruZNPCJFtc4/N5fy984xvMB4HW4cc7UuKm38JaV8JVyc7hiw7hl4vzddCmIxrh2HndGj0BRSpnr19tJ4ITm6w8nPQ640aTwiRfSdvn+SH4z/wUbWPqFSgUo73J8XNv7g72zP5tWrsOn+bP/ZdVh1HCAGQmgTLPwHfKtAwa5N5PcbZAzp8Bxe3wcEfjZVOCJEDyenJDN81nHKe5fig2gdG2acUN0/RqFxB3goszoS1p7l856HqOEKIrePhXpQ2OsrWPmf7KtMMar8HG0Pg7kXj5BNCZNusI7O4cv8KExpMwN4mh9f3/5Pi5hmGt6mIt6sDg5dGkC7dU0KoE70Xdn+n3UDsk/PmagBajIN8BSHsM9CnG2efQogsO3rzKAtOLuDzGp9TxrOM0fYrxc0z5HO0Y9rrARy8fI+fw6NUxxHCOqU8hLBPoVhtbei3sTjmh07fa4XT3tnG268QItMSUxMZsWsE1QpWo2elnkbdtxQ3zxFYqgDvBZVkyvoznL95X3UcIazPptGQcEPrjrKxNe6+/RvAS5/C5rFw64xx9y2EeKFvDn/DzcSbhAaFYmvk61uKmxf4olV5ink6M2hJBGnpMrpCiDxzcTvsnwfNR4O38ZqrH9MsBDyKazcrp6flzjGEEE/Yd2MfC08vpH+t/vi7+xt9/1LcvICTvS3TuwRw/Fo8c3fIzYdC5ImkBFjRG/wbQt2Pcu849s7anDk3jkL417l3HCFEhgcpDwgJD6GObx26V+ieK8eQ4iYTahT35JPGpZmx6SynrieojiOE5dswAh7dg44zwSaXP6aK1Yag/rBtMsQcz91jCSGYdnAacclxjK0/Fhtd7lzfUtxkUr/mZSldMD+DlkaQkibdU0LkmrMb4PCv0DIUPP3z5phNhoJ3Oa17Ki0lb44phBXaeXUnf537i8F1BlPMtViuHUeKm0xytLNletcAzsXe57st51THEcIyJd6FlX2gdDOo9W7eHdfOETrPhlunYceUvDuuEFYkPjme0btHE1QkiNfLvp6rx5LiJgsqF3Gnb7OyfL/tAhFX4lTHEcLy/DME0h5p3VE6Xd4eu3AANPoSdn4F1w7l7bGFsAKT9k/iUdojRtcfjS6Xr28pbrLo0yalqVTYjUFLI0hKlcm/hDCaUyvh+BJ4ZQq4FVGToeFA8K0Kyz+FVFk8Vwhj2Ry9mdUXVzM0cCi++Xxz/XhS3GSRva0NX3UNIPpuIl9tPKs6jhCW4eFtWD0AKrSDat3U5bC110ZP3YuCLaHqcghhQe4m3WXsnrE09WtK+1Lt8+SYUtxkQ1kfVwa1KMf8nRc5cOmu6jhCmDeDAVb3B4Me2n2d991R/1aoIrwcDHtmweU9arMIYeYMBgOhe0PRG/SE1AvJ9e6o/5DiJps+aFiKmsU9Gbw0gsQUmfxLiGw7vgwiV2mFTf5CqtNo6n0OfnW1pR9SZPFcIbLrn6h/2Hh5I8EvBePt7J1nx5XiJptsbXRM6xJAbEISk/45rTqOEOYp4QasHQxVXoPKnVSn+S8bW+g0G+7HwMZRqtMIYZZuJt5k/L7xtPZvTSv/Vnl6bClucqCkdz6GvVKRX/dcJvz8bdVxhDAvBgOs6qsNw24zTXWaJxUoDS3GwIH5cHGb6jRCmBWDwcCYPWOwt7FnROCIPD++FDc59M5LJahXqgBfLjvG/aRU1XGEMB9HfodzG6D9t+DipTrN09X5UFsCIqw3JMWrTiOE2Qg7H8aOqzsYXX80Hk4eeX58KW5yyMZGx5TXqxH/KJXQ1ZGq4whhHuKiYd0wqP42lG+tOs2z2dhAx1mQFAfrh6tOI4RZuP7gOpMPTKZj6Y408WuiJIMUN0bg5+VCcNuKLD54hS2nY1XHEcK06fXaophO7tB6guo0L+ZZAlpN0Fqazq5XnUYIk6Y36AnZHYKrgytD6g5RlkOKGyPpVsePJuULMvSv48Qlyto0QjzTwR8haoc2C7GTu+o0mVOzB5RpoS0NkSjTPwjxLEvOLGHfjX2MqT8GVwdXZTmkuDESnU7H5NeqkZSazqiVJ1XHEcI03bkAG0Og9vtQuqnqNJmn00GHbyEtCf75UnUaIUxSdEI0Xx36im7lu1G/SH2lWaS4MSIfNyfGdqzCiqPX+ef4DdVxhDAt+nStOyp/IWgxVnWarHMrAq9MheNL4dQK1WmEMCnp+nSCw4Mp4FSAgbUGqo4jxY2xdaxehFaVfRgRdoLbD5JVxxHCdOz9HqL3avPHOOZXnSZ7qnXVlohYPQAe3FKdRgiT8Xvk7xy9eZRxQeNwsXdRHUeKG2PT6XSM71wVgBHLj2MwGBQnEsIE3DoDm8dBvd5QQm1zdY7odNBuhvbfq/trc/UIYeUuxF3g28Pf8nalt6ntW1t1HECKm1zhnd+R8Z2qsP5kLCuOXlcdRwi10tNg+SfaqKOXg1Wnybn8BaHtV3B6tdZFJYQVS9OnEbwrmKKuRelbo6/qOBmkuMklr1QtTMfqRQhZcYKY+CTVcYRQJ/xruHEUOs0Be2fVaYyjcieo8rq2dESCfIER1uunEz9x6u4pQoNCcbJzUh0ngxQ3uWhMh8o42dsy9O9j0j0lrFPMcdg2GRoMgGK1VKcxrjZTwc4JVvaV7ilhlc7cPcPsiNm8X+V9qhWspjrOY6S4yUUeLg5Meq0q287cYvGBK6rjCJG30lK07qiC5aGxusm8co2LF3T4Ds5vhMO/qk4jRJ5KTU9l+K7hlHQvyScBn6iO8wQpbnLZyxV86Fq7GONWn+LK3UTVcYTIO9snw63T2ugoO0fVaXJHuVZQ421taYZ7l1WnESLPzI6YzcW4i0xoMAEHWwfVcZ4gxU0eGNmuEh4uDny57Bh6vTRfCytw9RDs+lprsSlsWs3VRtdqIjh5aHP46PWq0wiR607cPsFPJ37i44CPqeBVQXWcp5LiJg+4Otkz5fVq7Ll4h9/2yrc7YeFSH0HYJ1pR00D9ZF65zslNW0ri0k448IPqNELkqqS0JEbsGkEFrwq8X/V91XGeSYqbPBJUxpse9Uow8Z9Iom4/VB1HiNyzJVTrouk0B2ztVKfJG6WbQp0PtKUl7lxQnUaIXDPzyEyu3r/K+AbjsbexVx3nmaS4yUNDX6mAj5sTg5dGkC7dU8ISXd4Ne2Zp89kUMs3m6lzTfAy4+kLYp9pSE0JYmMOxh/n11K/0qdGH0h6lVcd5Lilu8pCLgx3TugRwOPoeP+y8qDqOEMaV/ED7h90vUJuJ2No45tdunr6yH/bMVJ1GCKNKTE0kODyY6oWq806ld1THeSEpbvJYHX8vPmhQkukbznI29r7qOEIYz6ZR8OAmdPoebGxVp1GjRD2tsNsyHm6eVp1GCKP5+tDX3H50m9CgUGzN4PqW4kaBQS3LU7yAC4OWRJCaLqMrhAW4sFW7mbb5GChg2s3Vue7lYG2pibBPID1VdRohcmzvjb0sOrOI/jX7U9ytuOo4mSLFjQJO9rZM7xLAqRsJzN4mNx8KM5cUDys+h5KNtJtqrZ29s3Yz9Y1j2nB4IczYg5QHhISHUNe3Lm9UeEN1nEyT4kaRAD8PPmtSmm83n+PEtXjVcYTIvvXDtQKn4yywkY8UQFtqosEAbSLDG8dUpxEi26YenEpCSgJjg8ZiozOf69t8klqgPi+XpayPK4OXRpCcJqMrhBk6ux6O/A6tJ4CHeTRX55nGQ6BgBW0JirRk1WmEyLIdV3fw97m/+aL2FxTNX1R1nCyR4kYhBzsbvuoawIVbD/hm0znVcYTImsS7sLIPlG0JNUx/9ESes3OAznPg9lmtBUcIMxKfHM/o3aNpULQBr5Z9VXWcLJPiRrGKhd3o16wsc7Zf4Ej0PdVxhMi8tV9AWhK0/xZ0OtVpTJNvVa0FZ9fXcPWg6jRCZNqEfRNISk9iTP0x6Mzw+pbixgR80rg0VYu6M2hpBEmp0j0lzMDJMDixDNpMA7fCqtOYtgYDoHB1rXsq9ZHqNEK80MbLG1kbtZbhgcMp5FJIdZxskeLGBNjZ2jC9awBX7z1i6vozquMI8XwPbsGagVChHVTtojqN6bO107qn4qJh8zjVaYR4rjuP7jBuzziaF29O25JtVcfJNiluTESZQq582ao8P4VHse/iHdVxhHg6gwFW99f+u90M6Y7KrILlodlI2Ps9XApXnUaIpzIYDITuDQUg+KVgs+yO+g8pbkxIr6CS1C7hyeBlETxMTlMdR4gnHVsCp1dDu68hf0HVaczLS59pS1OEfaotVSGEiVkTtYZN0ZsIqRdCAecCquPkiBQ3JsTWRse0LgHcvp/CxH8iVccR4nEJ1+GfL6DK61Cpo+o05sfGVlua4uEtbfVwIUzIzcSbTNg3gTYl29C8RHPVcXJMihsTU6JAPoa3qcDve6PZee6W6jhCaAwGbdi3nTO0mao6jfkqUBpajIWDP8KFLarTCAFo3VGjdo/CydaJ4YHDVccxCiluTNBbgSVoUMabL5cdI/6RrE0jTMDhX+H8JujwLbh4qU5j3mq/DyUba0tWPIpTnUYIlp9fzq5ruxhdfzTuju6q4xiFFDcmyMZGx+TXq/EgKY1xq0+pjiOs3b3L2hILNd6Gcq1UpzF/NjbaUhVJCdp5FUKh6w+uM+XAFF4t+yqNijVSHcdopLgxUUU9nBnZvhLLDl1l06lY1XGEtdLrYUVvcPaEVhNVp7EcHn7QeiIc/QPO/KM6jbBSeoOekPAQ3Bzc+KL2F6rjGJUUNyasS61iNKtQiKF/H+fewxTVcYQ1OvADXNoJHWeCk5vqNJalxttQthWs7KstZSFEHlt0ehH7YvYxNmgs+R3yq45jVFLcmDCdTsfEV6uSmq4nZOVJ1XGEtblzQRvVU+dDKNVEdRrLo9Np9zClp8DawarTCCtzOeEyMw7P4I3yb/BS4ZdUxzE6KW5MXCE3J8Z2rMyqiOusOXZDdRxhLfTp2nwsrr7QYozqNJbL1RfaTocTf8HJ5arTCCuRrk8neFcw3s7eDKg1QHWcXCHFjRnoEFCENlV9CQ47zq37yarjCGuwZyZc2a8tG+CQT3Uay1blNajYAVYPhAc3VacRVuC3U78RcSuC0KBQXOxdVMfJFVLcmAGdTse4jlWw0ekYvvw4BoNBdSRhyW5GwpZQqNcbiltec7XJ0em0GZ91NrCqvzankBC55ELcBb478h09KvWgpk9N1XFyjfLiZtasWfj7++Pk5ERgYCD79+9/7vYzZsygfPnyODs74+fnx4ABA0hKSsqjtOoUyO/IhFersvFULMuPXFMdR1iq9FRt9WrPkvDySNVprEc+b2g/A86sgWOLVacRFipVn8qIXSMo5lqMPjX7qI6Tq5QWN4sXL2bgwIGMGjWKw4cPExAQQKtWrbh58+lNswsXLmTo0KGMGjWKyMhIfvzxRxYvXszw4dYxV0Sryr50rlGUUStPciP+keo4whLt+hpijkPn2WDvpDqNdanYHqp1g7VfQrx8gRHG9+PxHzl99zTjG4zH0dZRdZxcpbS4+eqrr/jwww/p1asXlSpVYs6cObi4uPDTTz89dfvdu3cTFBTEm2++ib+/Py1btqR79+4vbO2xJKPbV8bFwZYhf0n3lDCyGxGwfTI0HAhFa6lOY51emQwOLtpSF3J9CyM6ffc0cyPm8n7V96niXUV1nFynrLhJSUnh0KFDNG/+3wW6bGxsaN68OXv27Hnqa+rXr8+hQ4cyipmLFy+ydu1a2rRp88zjJCcnk5CQ8NjDnLm72DP5tWrsOHuLRQeuqI4jLEVastYdVbAiNPpSdRrr5ewJHb6DC5vh0ALVaYSFSElPYfiu4ZT2KM0n1T5RHSdPKCtubt++TXp6Oj4+Po897+PjQ0xMzFNf8+abbzJ27FgaNGiAvb09pUuXpkmTJs/tlpo4cSLu7u4ZDz8/P6O+DxWalC/EG3X8CF19iit3E1XHEZZg2yS4fU4bHWXnoDqNdSvbAmr2gA3BcO+S6jTCAsyJmENUfBTjG4zH3tZedZw8ofyG4qzYtm0bEyZM4Pvvv+fw4cP8/fffrFmzhnHjxj3zNcOGDSM+Pj7jceWKZbR2jGhbEQ8XB75YFoFeL83XIgeuHIDwGdBkCPhafnO1WWg5Hpy9IKy3tgSGENl07NYxfjzxI58GfEp5r/Kq4+QZZcWNt7c3tra2xMY+vm5SbGwsvr6+T33NyJEjeeedd/jggw+oWrUqnTt3ZsKECUycOBH9Mz4AHB0dcXNze+xhCVyd7JnapRp7L97llz2XVMcR5iolEcI+gcLVIcgyJ/MyS05u0GkWXN4F++epTiPMVFJaEiN2jaCSVyXeq/Ke6jh5Sllx4+DgQK1atdi8eXPGc3q9ns2bN1OvXr2nviYxMREbm8cj29raAljlzbX1S3vzbn1/Jq87zcVbD1THEeZoyziIu6J1R9naqU4j/lfJRlD3Y9g0Gm6fV51GmKFvj3zL9QfXGd9gPHY21nV9K+2WGjhwIPPnz+eXX34hMjKSTz/9lIcPH9KrVy8AevTowbBhwzK2b9++PbNnz2bRokVERUWxceNGRo4cSfv27TOKHGvzZevy+Lo5MXhpBOnSPSWy4tIu2DsbmoVAQetprjYrzUeBW2GtdU2frjqNMCMHYw7y+6nf6VuzL6U8SqmOk+eUlnLdunXj1q1bhISEEBMTQ/Xq1Vm3bl3GTcbR0dGPtdQEBwej0+kIDg7m2rVrFCxYkPbt2zN+/HhVb0E5Fwc7pncNoMucPczfeZFPGpdWHUmYg+QHEPYZFK8HL32mOo14Fod80GkO/Nwadn8LDaTrULxYYmoiweHB1ChUg7crvq06jhI6g5X15yQkJODu7k58fLzF3H8DMHFtJD+HX2JVnwaU93VVHUeYutUDIGIxfLoLvKzvW53Z2TAS9s2Bj7aDTyXVaYSJC90bysoLK/mr/V/4uZn/COHsMKvRUuLZBrQoR4kCLgxaepTUdBldIZ7j/CY4+JO22rcUNuah6Qjt72r5x9oSGUI8w+7ru1l8ZjEDaw202sIGpLixGE72tkzvGkDkjfvM2io3H4pneBQHK/pAqSZQ+33VaURm2TtpN33HnoSd01WnESbqfsp9QsJDeKnwS3Qt31V1HKWkuLEg1Yp50LtJaWZuOc+Ja/Gq4whTtG4YpDyADjPBRi5/s1KkBjQaDDumwvWjqtMIEzR5/2Qepj5kbP2x2Ois+/q27ndvgT5/uSzlfFwZuOQoyWkyukL8j9NrIWIhtJ4IHtbbXG3WGg6GQhW1pTLSklWnESZk25VtrLiwgi/rfEnh/IVVx1FOihsL42Bnw1fdAoi6/ZAZm86pjiNMReJdWNUPyrWG6m+pTiOyy84BOs+FO+dh6wTVaYSJiEuKY/Tu0TQu1phOZTqpjmMSpLixQBV83ejfvBxzt1/gcPQ91XGEKVgzCNJToP03oNOpTiNywqcyNB2mDQ2/sl91GmECxu8bT6o+lVH1RqGT6xuQ4sZifdyoFNWKeTBoSQSPUqR7yqqd+BtO/g1tp4Pr05c2EWamfj8oUlPrnkqRxXOt2fpL61l3aR0jAkdQ0KWg6jgmQ4obC2Vna8O0LgFcj3vElPWnVccRqtyP1VptKnWEKq+pTiOMxdZOGz2VcA02j1WdRihy+9FtQveG0qJEC14p+YrqOCZFihsLVqZQfr5oVZ6fwy+x58Id1XFEXjMYYHV/0NlA26+kO8rSeJeFZqNg32yI2qk6jchjBoOBsXu0UVHBLwVLd9S/SHFj4d4LKkndkl58sSyCB8lpquOIvBSxCM6s1e6zyeetOo3IDYGfQIkgWPEZJN9XnUbkoVUXV7H1ylZC6oXg5eSlOo7JkeLGwtnY6Jj2egB3H6Ywfk2k6jgir8Rfg3+GQLVuULGd6jQit9jYQMdZ8PAObAhWnUbkkZiHMUzaN4l2pdrRrHgz1XFMkhQ3VqB4AReGt6nIn/uj2X72luo4IrcZDLDyc3BwgVcmq04jcptXSWg5Dg4t0JbWEBbNYDAwevdonO2cGVp3qOo4JkuKGyvxVmBxGpb1ZsiyY8Q/krVpLNqhn+HCFm0WYmdP1WlEXqj9HpRqqi2t8ShOdRqRi5adW0b49XDGBI3B3dFddRyTJcWNldDpdEx+rRoPk9MYs+qk6jgit9yNgvXBULMnlG2uOo3IKzoddJypLa2xTr7NW6qr968y7cA0Xiv7Gg2KNlAdx6RJcWNFing4M6pDZf4+fI0NJ2NUxxHGptfDis/BpQC0Gq86jchr7sW0bsiIP+H0GtVphJHpDXpGho/Ew9GDL+p8oTqOyZPixsq8VrMozSsWYvjy49x9mKI6jjCm/XPh8i7oNAscXVWnESoEdIdyr2hLbTyU6R8syZ+n/+Rg7EHGBY0jn30+1XFMnhQ3Vkan0zHh1aqk6Q0Ehx3HYDCojiSM4fY52DQa6n4MJRupTiNU0em0of/6NFgzUHUaYSRR8VF8fehr3qzwJnUL11UdxyxIcWOFCrk6Ma5jFdYej2HVsRuq44ic0qdD2KfgVhSaj1adRqjm6qMttXEqDE78pTqNyKF0fTrB4cH45vOlf63+quOYDSlurFT7gCK0rVaYkBUnuJmQpDqOyInd38K1Q9Bptjb8W4gqr0HlztrSG/djVacRObDg5AJO3D5BaFAoznbOquOYDSlurNi4jlWws9Ex7G/pnjJbsadg6wSo3weKB6pOI0xJm+lgYwer+mpzHwmzc+7eOWYdnUXPSj2pXqi66jhmRYobK+aVz4GJr1Zj8+mbLDt0VXUckVXpqbD8Y/AqBU2Gq04jTE2+Atr9N2fXwdGFqtOILErVpzJi1wiKuxand43equOYHSlurFyLSj68WrMoY1ed4lrcI9VxRFbsmAaxJ7XVoe2dVKcRpqhCW20E1bqhEC9fYMzJ/GPzOXvvLOMbjsfR1lF1HLMjxY1gVPvK5HO0Y8iyY9I9ZS6uH4Gd06DRYChSQ3UaYcpaTwKH/NocSHJ9m4WTd04y/9h8Pqz2IZULVFYdxyxJcSNwd7Zn8uvV2HX+Nr/vi1YdR7xIWjIs/xQKVYKGg1WnEabO2QM6fgcXt8LBn1SnES+Qkp5C8K5gynqW5aOqH6mOY7akuBEANC5XkDcDizNxbSTRdxJVxxHPs3UC3DmvdUfZOahOI8xBmeZQ613YMFJbokOYrFlHZ3Ep4RKhDUKxt7VXHcdsSXEjMgxvUxGvfA4MXhqBXi/N1ybpyn5t6HfT4eAjzdUiC1qGajcZr+itLdUhTM7Rm0dZcHIBvav3ppxnOdVxzJoUNyJDfkc7pnUJYP+lu/wULt/uTE5KIiz/BIrUhPp9VacR5sbRFTp+D5fDYd8c1WnEvzxKe0RweDBVClTh3crvqo5j9qS4EY95qVQBegX5M3X9GS7ceqA6jvhfm8dAwjWtO8rWTnUaYY5KNoTAT7TfpdvnVKcR/+Obw98Q8zCG0Aah2NnI9Z1TUtyIJ3zZqgJFPZwZtCSCtHRpvjYJUTu0b9vNRoF3WdVphDlrNkpbqmP5J5CepjqNAPbf2M8fkX/Qr2Y/SrqXVB3HIkhxI57g7GDLtK4BHLsax9wdF1XHEcn3tfskSjTQvnULkRMOLlrr3/XDsPsb1Wms3sPUh4TsDqG2T23eqviW6jgWQ4ob8VQ1i3vycePSzNh0lsgbCarjWLcNwfDwDnScCTZyyQoj8Kur3be1daI2EaRQZtrBadxNusvYoLHY6OT6NhY5k+KZ+jcvSynv/AxaEkFKmnRPKXFuExxaAK1CwUuaq4URNR0OBcpoS3ikpahOY5XCr4Wz7OwyBtcejJ+rn+o4FkWKG/FMjna2TO8awNnY+8zcel51HOvz6B6s7AOlX4ZavVSnEZbGzlHrnroZqc12LfJUQkoCIbtDqF+kPl3KdVEdx+JIcSOeq0pRdz5/uQyztp7n2NU41XGsyz9DIeUhdPgOdDrVaYQlKlIdGn2hrVN27bDqNFZl8v7JPEp9xJj6Y9DJ9W10UtyIF+rdtAwVC7syaEkESanpquNYh8jVcGwRvDIJ3IupTiMsWcNB4FsFwj6F1CTVaazClugtrLywkiF1h+Cbz1d1HIskxY14IXtbG77qWp3LdxL5euNZ1XEs38PbsLo/lG+jregsRG6ytYdOc+DuRdg6XnUai3cv6R5j9oyhiV8TOpTuoDqOxZLiRmRKOR9XBrYsx7ydFzl0+a7qOJbLYIA1A0GfBu1mSHeUyBs+lbQbjHd/B9H7VKexaKF7Q0k3pDOq3ijpjspFUtyITPuwYSlq+HkwaEkEiSky+VeuOPEXnFoBbaeDq4/qNMKa1O8LxWpD2CfavV7C6NZFrWPD5Q0EBwbj7eytOo5Fk+JGZJqtjY5pXQKISUhiyrozquNYnvsxsGYQVO4MVV5TnUZYGxtbrXsq4QZsGqM6jcW5/eg2oftCaeXfitYlW6uOY/GkuBFZUqpgfoa0rsCC3ZfYff626jiWw2CAVf3A1gHaTFedRlgr7zLQfBTsn6st+SGMwmAwMHr3aGx1towIHKE6jlWQ4kZkWc96/rxUyosvlh3jflKq6jiW4egfcHYdtP8G8hVQnUZYs7ofa0t9hPWGJJmd3BhWXFjB9qvbGV1vNJ5OnqrjWAUpbkSW2djomPp6AHGJKYxfE6k6jvmLuwLrhkHAm1Chjeo0wtrZ2ECnWfDoLmyQVoacinkYw+T9k+lQugNNizdVHcdqSHEjssXPy4URbSux6MAVtp65qTqO+TIYYOXn4JAfWk9UnUYIjac/tAyFw7/CuY2q05gtg8FASHgILvYuDKk7RHUcqyLFjci27nX9aFSuIEOWHSM+UbqnsuXgj3Bxm7YoprOH6jRC/Fetd6F0M20JkEf3VKcxS0vPLmXPjT2MrT8WNwc31XGsihQ3Itt0Oh2TX6vKo9R0Rq+SlYWz7O5F2DBSWzeqTDPVaYR4nE6nLf2Rkgj/SKtDVl25f4VpB6fxernXCSoapDqO1ZHiRuRIYXdnxnSozPIj11h34obqOOZDn67dsJmvILQcpzqNEE/nXhTaTIFjiyFyleo0ZkNv0DMyfCReTl4Mrj1YdRyrJMWNyLHONYrSopIPI5af4M6DZNVxzMPe2RC9Gzp9D46uqtMI8WzVukH5trCqv7Y0iHihPyL/4FDsIcYFjSOffT7VcaySFDcix3Q6HRM6V0VvMDBi+QkMBoPqSKbt1lnYPBZe+gz8G6hOI8Tz6XTQfgYY9NqaZ3J9P1dUfBTfHP6Gtyu+TR3fOqrjWC0pboRRFHR1JLRTVdadjGFlxHXVcUxXepo2vb2HHzQLUZ1GiMzJXwjafaV1TR1fpjqNyUrTpxG8K5jC+QrTt2Zf1XGsmhQ3wmjaVitM+4AihKw4SWxCkuo4pil8Blw/ok1zb++sOo0QmfefZUHWDtaWaBBPWHByASfunCC0QSjOdnJ9qyTFjTCqsR0q42Bnw9C/jkn31L/FnIBtkyCoH/hJc7UwQ22mgZ0jrOor3VP/cvbeWWYdnUWvyr0IKBigOo7Vk+JGGJVnPgcmdq7K1jO3WHrwquo4piMtBZZ/At5lockw1WmEyB4XL22JkHMb4MjvqtOYjNT0VEbsGoG/mz+fVf9MdRyBFDciFzSv5MPrtYoxdvUprt5LVB3HNOyYCrciofMc7ZuvEOaq/CtQ/S1tyZC4aNVpTMK84/M4f+88ExpMwMHWQXUcgRQ3IpeEtK+Eq5MdXy47hl5v5c3X1w7BzunQ6EsoLM3VwgK0nghO7rDic9DrVadR6uTtk8w/Np+PAj6iYoGKquOI/yfFjcgVbk72TH6tGrsv3OH3fZdVx1EnNQmWfwq+VaHhQNVphDAOJ3fo+B1EbdeWELFSyenJjNg1gvJe5fmg6geq44j/IcWNyDWNyhXkrcDiTFx7mku3H6qOo8bWULgXpXVH2dqrTiOE8ZR+GWq/DxtD4M4F1WmUmHVkFtH3oxkfNB57G7m+TYkUNyJXDW9TkYKujgxeGkG6tXVPRe+F3TOh6QgoJM3VwgK1GKvNgbOit7akiBU5evMoC04u4PMan1PGs4zqOOJfpLgRuSqfox1TX6/Goeh7/LQrSnWcvJPyEMI+hWJ1oH4f1WmEyB2O+aHj91ohv/d71WnyTGJqIiN2jaBawWr0rNRTdRzxFFLciFwXWKoA7wWVZOqGM5yLva86Tt7YNFqb6KzTbLCxVZ1GiNzjHwT1esPmcXDrjOo0eeKbw99wM/Em4xuMx1aub5MkxY3IE1+0Kk8xT2cGLY0gLd3CR1dc3A7750Hz0eAtzdXCCrwcDJ4ltLmc0tNUp8lV+27sY+HphfSv1Z8SbiVUxxHPIMWNyBNO9rZM7xLAiWvxzN5mwTcfJiVo9x/4N4S6H6lOI0TesHfWlhS5cRTCv1adJtc8SHlASHgIdX3r0r1Cd9VxxHNIcSPyTI3innzapDTfbjnHqesJquPkjg0j4NE96DgLbOTyElakWC1oMAC2TYYbx1SnyRXTDk4jLjmOsUFjsdHJ9W3KlP/tzJo1C39/f5ycnAgMDGT//v3P3T4uLo7evXtTuHBhHB0dKVeuHGvXrs2jtCKn+jYrS+mC+Rm45CgpaRbWPXVuIxz+FVqGak30QlibxkOgYHntZvq0FNVpjGrn1Z38de4vvqjzBUXzF1UdR7xAtoubzZs3065dO0qXLk3p0qVp164dmzZtytI+Fi9ezMCBAxk1ahSHDx8mICCAVq1acfPmzadun5KSQosWLbh06RLLli3jzJkzzJ8/n6JF5RfNXDja2TK9awDnbz7g283nVMcxnsS72mytZZpDrXdVpxFCDTtH7Sb6W6dhxxTVaYwmPjme0btHE1Q0iNfKvqY6jsiEbBU333//Pa1bt8bV1ZV+/frRr18/3NzcaNOmDbNmzcr0fr766is+/PBDevXqRaVKlZgzZw4uLi789NNPT93+p59+4u7du4SFhREUFIS/vz+NGzcmIECmtDcnlYu407dZWWZvv8DRK3Gq4xjHP0Mg7RF0+A50OtVphFCncDVoPBR2fgVXD6lOYxST9k/iUfojxtQbg06ub7OgMxiyvm59sWLFGDp0KJ9//vljz8+aNYsJEyZw7dq1F+4jJSUFFxcXli1bRqdOnTKe79mzJ3FxcaxYseKJ17Rp0wYvLy9cXFxYsWIFBQsW5M0332TIkCHY2j59OF5ycjLJyckZf05ISMDPz4/4+Hjc3Nwy+Y6FsaWm63lt9m4eJqexpm9DnOzNeDjlqZWw5B3oPBcC3lCdRgj10tPgx+bafE8f79BuODZTmy9vpv+2/kxoMIH2pdurjiMyyS47L4qLi6N169ZPPN+yZUuGDBmSqX3cvn2b9PR0fHx8Hnvex8eH06dPP/U1Fy9eZMuWLbz11lusXbuW8+fP89lnn5GamsqoUaOe+pqJEycyZsyYTGUSecfe1obpXQJo+90upm84w4i2lVRHyp6Ht2H1AKjQDqp1U50mWwwGA2lplj1815zZ2tpiY243p9vaaaOn5jaCLaHQarzqRNlyN+kuY/eO5WW/l2lXqp3qOCILslXcdOjQgeXLl/PFF1889vyKFSto1y73fgH0ej2FChVi3rx52NraUqtWLa5du8bUqVOfWdwMGzaMgQP/u2Dhf1puhHplfVwZ3LIcE/85TcvKvtTx91IdKWsMBljdHwx6aPe1WXZHpaWlcevWLbLRgCvykIuLC+7u7ubVJVKogjb/zcYQqNAWStRXnShLDAYD4/aMw2AwMLLeSPM69yJ7xU2lSpUYP34827Zto169egDs3buX8PBwBg0axLfffpuxbd++fZ+6D29vb2xtbYmNjX3s+djYWHx9fZ/6msKFC2Nvb/9YF1TFihWJiYkhJSUFBweHJ17j6OiIo6Njlt+jyBvvNyjFhpOxDFoSwbr+DXFxyNavpBrHl0HkKujyi7a+jpkxGAzExcVhY2ODp6enfHibIIPBQEpKCgkJ2tQJHh4eagNlVb3ecHqNNnrqk3BtuQYzsTZqLZuiNzG98XS8nb1VxxFZlK17bkqWLJm5net0XLx48Zk/DwwMpG7dunz33XeA1jJTvHhxPv/8c4YOHfrE9sOHD2fhwoVcvHgxo5n2m2++YfLkyVy/fj1TmRISEnB3d5d7bkzIpdsPeeWbnXSpXYyxHauojpM5CTfg+0BtdNTrT78B3tSlp6cTGxuLp6cnzs7me0+ENXjw4AEJCQn4+vqaXxfVnQswpwFUfxPaTledJlNuJt6k84rOBBUJYkpjyxn1ZU2y9TU5Kso4CyAOHDiQnj17Urt2berWrcuMGTN4+PAhvXr1AqBHjx4ULVqUiRMnAvDpp58yc+ZM+vXrR58+fTh37hwTJkx4ZuuQMA/+3vkY1qYCIStO0qqyL0FlTPxbksEAq/qCnRO0maY6Tbbp9do8Q8+6GV+Yjv+0Sqenp5tfcVOgNDQfA/98od2bVrqp6kTPZTAYGL17NA62Dox4aYTqOCKblPYBdOvWjVu3bhESEkJMTAzVq1dn3bp1GTcZR0dHP3Yh+/n5sX79egYMGEC1atUoWrQo/fr1y/RNzMJ0vR1YgnUnYvhy2TH+6d8QNyd71ZGe7chvcG4DdF8MLmZ2n9BTSHeU6TP7v6M6H8DpVdpcUJ/tBid31YmeKex8GDuv7WTmyzNxdzTdnOL5Mt0tNXDgQMaNG0e+fPkeu0H3ab766iujhMsN0i1luq7eS6T1jJ20qerLlNdNdO6iuGj4vj5U6gidMj+nkylKTU3l1q1bFCxYEHt7Ey4mhWX8Xf3n2qncUVuexARdf3CdV1e+SosSLRgXNE51HJEDmW65OXLkCKmpqRn//Sxm/w1DKFPM04WR7Soy5K/jtK7iy8sVfF78oryk12uLYjq5Q+sJqtMIYV48imvXzco+UKE9lH9yOhGV9AY9IeEhuDq48mWdL1XHETmU6eJm69atT/1vIYypa20/1p2IYchfx9k4wBMPlydHwClz8EeI2gHvhJl0s7qla9KkCdWrV2fGjBmqo4isqvGONsJwVV/w22tS3bqLzyxmX8w+5rWYh6uDq+o4IofM7M40Yel0Oh2TXqtGSpqeUStPqo7zX3cuaPN11H7f5G+IFMJk6XTQ/ltIS4a1X7x4+zwSnRDN14e+plv5btQrUk91HGEE2SpuHj58yMiRI6lfvz5lypShVKlSjz2EyAkfNyfGdKjMiqPXWXv8huo4oE+HsM+0uWxajFWdRgjz5lYY2kyFE8vgZJjqNKTr0xkZPpICTgUYWOv595MK85Gt0VIffPAB27dv55133qFw4cJyn40wuo7Vi7DuRAzBYSeoW9IL7/wKJ2LcMwuu7INea81qEjJrcO/ePfr168eqVatITk6mcePGfPvtt5QtWxaDwUChQoWYPXs2r7/+OgDVq1cnNjaWGze0onnXrl00a9aMe/fu4eLiovKtWJeqXSByJawZCCWCIH9BZVF+j/ydIzeP8FOrn3Cxl98BS5Gt4uaff/5hzZo1BAUFGTuPEIDWPRXauQotv97B8L+PM/edWmqK6JuntbVx6vU2u+njs+NRSjoXbj3I8+OWLpgfZ4esz7fz7rvvcu7cOVauXImbmxtDhgyhTZs2nDp1Cnt7exo1asS2bdt4/fXXuXfvHpGRkTg7O3P69GkqVKjA9u3bqVOnjhQ2eU2ng7ZfaxNhru4P3X5XsnzJxbiLfHv4W96u9Da1fWvn+fFF7slWcePp6YmXl+ncCCYsk3d+RyZ0rsInvx8m7Og1OtcolrcB0tMg7BPwLKGtkWMFLtx6QLvvduX5cVf3aUCVolm7Sfs/RU14eDj162uF5x9//IGfnx9hYWF06dKFJk2aMHfuXAB27NhBjRo18PX1Zdu2bVSoUIFt27bRuHFjo78fkQn5C2prsi3pAceWQEDeLjybpk9jxK4RFMlfhL41ZCJYS5Ot4mbcuHGEhITwyy+/yDcekataVylMx+pFGLXiJPVKeePr7pR3B9/1NdyIgPc3gb11LE9QumB+VvdpoOS4WRUZGYmdnR2BgYEZzxUoUIDy5csTGRkJQOPGjenXrx+3bt1i+/btNGnSJKO4ef/999m9ezdffinDfpWp1FHrovrnCyjZENyK5NmhfzrxE6funuK3V37DyS4PP1dEnsh0cVOjRo3HugXOnz+Pj48P/v7+T0wqdfjwYeMlFFZvTIfK7LlwhyF/HWNBrzp50z114xhsnwwNBkCxWrl/PBPh7GCb5RYUU1a1alW8vLzYvn0727dvZ/z48fj6+jJ58mQOHDhAampqRquPUOSVKRC1U5v/5q1ledI9debuGWZHzOa9Ku9RrWC1XD+eyHuZLm46deqUizGEeDYPFwcmv1aNXgsOsPjAFd6oWzx3D5iWoq1iXLA8NJalPUxVxYoVSUtLY9++fRkFyp07dzhz5gyVKlUCtHu3GjZsyIoVKzh58iQNGjTAxcWF5ORk5s6dS+3atcmXL5/KtyFcvKDDt7CwKxz+FWr1zNXDpaanMnzXcEq6l+TTgE9z9VhCnUwXN6NGjcrNHEI8V9MKhehW249xq08RVMYbP69c7A7dPhlunYYPt4KdwlFa4rnKli1Lx44d+fDDD5k7dy6urq4MHTqUokWL0rFjx4ztmjRpwqBBg6hduzb582vdX40aNeKPP/7giy9MZ64Vq1auFdR4G9YPh1JNtPvccsnsiNlcjLvIn+3+xMHWhCYJFUaVrXlurly5wtWrVzP+vH//fvr378+8efOMFkyIfwtuVxEPFwe+XHYMvT5TS6Jl3dVDsOsraDwUCktztan7+eefqVWrFu3ataNevXoYDAbWrl37WFd548aNSU9Pp0mTJhnPNWnS5InnhGKtJoKzp7bEyf+vWG9sx28d56cTP/FxwMdU8KqQK8cQpiHTC2f+r4YNG/LRRx/xzjvvEBMTQ7ly5ahSpQrnzp2jT58+hISE5EZWo5CFM81b+PnbvPXDPsZ0qEzP+v7G3XnqI5jbCBzyaTcR22brfnuzYRGLMVoJq/m7urgNfu2o3YcT+LFRd52UlkTX1V1xsXPhtza/YW9jwedRZK/l5sSJE9StWxeAJUuWULVqVXbv3s0ff/zBggULjJlPiMcElfGmR70STPwnkqjbD4278y2hcO8ydJpj8YWNECapVBOo8wFsHKUteWJEM4/M5Nr9a4xvMF4KGyuQreImNTUVR0ftXoRNmzbRoUMHACpUqJAx86cQuWXoKxXwcXNi8NII0o3VPXV5tzYT8cvBUEiaq4VQpsVYcPWF5Z9oS58YwaHYQ/x66lf61OhDaY/SRtmnMG3ZKm4qV67MnDlz2LlzJxs3bqR1a23p+uvXr1OgQAGjBhTi31wc7JjeJYDD0ff4YefFnO8w+YE2OsqvrjYTsRBCHYd80Gk2XD0Ae2bmeHeJqYkE7wqmeqHqvFPpHSMEFOYgW8XN5MmTmTt3Lk2aNKF79+4EBAQAsHLlyozuKiFyU21/Lz5sWIrpG85yNvZ+zna2aRQ8uKl9oNpkfQkAIYSRlainfdHYEgo3I3O0q68OfcWdpDuEBoViK9e31cjyjQUGg4FSpUoRHR1NWloanp6eGT/76KOPZMZikWcGtijHltM3GbQkgr8/q4+9bTZq9Qtb4cAP0GYaFJDmaiFMxsvBcG6D1j31wSawzfp9Mnuu72HxmcUMqzuM4m65PD+WMClZ/tfAYDBQpkwZYmJiHitsAPz9/SlUqJDRwgnxPE72tkzvEsCpGwnM3paNmw+T4mHF51CyEdR+3/gBhRDZZ++s3dwfcxx2fpXll99PuU/I7hACfQN5o8IbuRBQmLIsFzc2NjaULVuWO3fu5EYeIbIkwM+Dz5qU5tvN5zhxLT5rL14/XCtwOs4Cm2z10AohclOxWtBwIOyYoq3zlgVTD0zlfsp9xgaNxUYn17e1ydbf+KRJk/jiiy84ceKEsfMIkWV9Xi5LWR9XBi2JIDktk6MrzqyDI79D6wngIc3VQpisRl9CwYpa91RacqZesv3KdpafX86Xdb6kSP68W4xTmI5sFTc9evRg//79BAQE4OzsjJeX12MPIfKSg50NX3UN4OLtB3yz6dyLX5B4F1b1hbItoYaMnhDCpNk5QOfZcPscbJv0ws3jkuIYvWc0DYs2pHOZznkQUJiibM1UNmPGDCPHECJnKhZ2o3/zckzfcIYWlXyoUdzz2Ruv/UL7Btj+2zxZgVgIkUO+VaHJENg6Acq3Ab86z9x0wv4JpKSnMLr+aHRyfVutbBU3PXvm7qqtQmTHx41KseFULIOWRrC2b0Oc7J8y7PNkGJxYBq/+AG6F8zyjECKbggbA6bUQ9gl8vBMcnhyZu+HSBv6J+odJDSdRyEUGt1izbN9ldeHCBYKDg+nevTs3b94E4J9//uHkyZNGCydEVtjZ2jC9SwDX7j1i6vozT27w4BasGQgV20PV1/M+oDBb6enp6HNpMUeRSbZ20HkOxF2BLeOe+PGdR3cI3RtK8+LNaVOyjYKAwpRkq7jZvn07VatWZd++ffz99988ePAAgIiICEaNGmXUgEJkRZlC+fmiVXl+Co9i38X/GdFnMMDq/oAO2n4t3VFmbt26dTRo0AAPDw8KFChAu3btuHBBmw6gfv36DBky5LHtb926hb29PTt27AAgOTmZwYMHU7RoUfLly0dgYCDbtm3L2H7BggV4eHiwcuVKKlWqhKOjI9HR0Rw4cIAWLVrg7e2Nu7s7jRs35vDhw48d6/Tp0zRo0AAnJycqVarEpk2b0Ol0hIWFZWxz5coVunbtioeHB15eXnTs2JFLly7lyrmyKAXLQ7MQ2DsbLu3KeNpgMDB2z1h0Oh3BLwVLd5TIXnEzdOhQQkND2bhxIw4ODhnPv/zyy+zdu9do4YTIjl5BJalTwovByyJ4mJymPXlsCZxeDe2+hvwF1QY0ZSmJcP1o3j9SErMU8+HDhwwcOJCDBw+yefNmbGxs6Ny5M3q9nrfeeotFixZhMPx33bHFixdTpEgRGjZsCMDnn3/Onj17WLRoEceOHaNLly60bt2ac+f+e0N6YmIikydP5ocffuDkyZMUKlSI+/fv07NnT3bt2sXevXspW7Ysbdq04f59bZbs9PR0OnXqhIuLC/v27WPevHmMGDHiseypqam0atUKV1dXdu7cSXh4OPnz56d169akpKRk6TxYpZc+heIvQdhn2tIpwOqLq9lyZQsjXxpJAWdZAkiAzvC/nwCZlD9/fo4fP07JkiVxdXUlIiKCUqVKcenSJSpUqEBSUlJuZDWKhIQE3N3diY+Px83NTXUckUsu33lI6xk7ebVmUcY3KwDfv6SNjnrtB9XRTEZqaiq3bt2iYMGC2Nv//+yv14/CvMZ5H+aj7VCkerZffvv2bQoWLMjx48fx8fGhSJEibNmyJaOYqV+/Po0aNWLSpElER0dnzLJepMh/hwk3b96cunXrMmHCBBYsWECvXr04evRoxvIyT6PX6/Hw8GDhwoW0a9eOdevW0b59e65cuYKvry+gLS7cokULli9fTqdOnfj9998JDQ0lMjIyo4UhJSUFDw8PwsLCaNmy5RPHeerflTW7exFmB0HAG8Q2HUrnlZ1pVKwRkxq+eDSVsA7ZuqHYw8ODGzduULJkyceeP3LkCEWLFjVKMCFyokSBfAxvW5GRYccZdHM4XnbO0Gaq6limz7ucVmioOG4WnDt3jpCQEPbt28ft27cz7oeJjo6mSpUqtGzZkj/++IOGDRsSFRXFnj17mDt3LgDHjx8nPT2dcuUeP2ZycvJjC/86ODhQrVq1x7aJjY0lODiYbdu2cfPmTdLT00lMTCQ6OhqAM2fO4Ofnl1HYAE+stxcREcH58+dxdXV97PmkpKSMrjXxAl6loMVYDGsHMyr9Kk62TgyrO0x1KmFCslXcvPHGGwwZMoSlS5ei0+nQ6/WEh4czePBgevToYeyMQmTL24HFSd73M143dvDw9T/J5/yc4eFC4+CSoxaUvNK+fXtKlCjB/PnzKVKkCHq9nipVqmR067z11lv07duX7777joULF1K1alWqVq0KwIMHD7C1teXQoUPY2j4+oi5//vwZ/+3s7PzEvRs9e/bkzp07fPPNN5QoUQJHR0fq1auXpe6kBw8eUKtWLf74448nflawoHSZZlrt9/k7ciHhcaeZ1XAK7o7uqhMJE5Kt4mbChAn07t0bPz8/0tPTqVSpEunp6bz55psEBwcbO6MQ2aKLi+a9B/P4y/AyeyKLMq2K6kTCGO7cucOZM2eYP39+RrfTrl27HtumY8eOfPTRR6xbt46FCxc+9qWrRo0apKenc/PmzYzXZ1Z4eDjff/89bdpoo3GuXLnC7du3M35evnx5rly5QmxsLD4+PgAcOHDgsX3UrFmTxYsXU6hQIekaz4FriTeYYvuQVxOSaRSxEkq9ojqSMCHZuqHYwcGB+fPnc+HCBVavXs3vv//O6dOn+e233574JiSEEno9rOiNjYsXutYTWHboKhtPxapOJYzA09OTAgUKMG/ePM6fP8+WLVsYOHDgY9vky5ePTp06MXLkSCIjI+nevXvGz8qVK8dbb71Fjx49+Pvvv4mKimL//v1MnDiRNWvWPPfYZcuW5bfffiMyMpJ9+/bx1ltv4ezsnPHzFi1aULp0aXr27MmxY8cIDw/P+ML3n1agt956C29vbzp27MjOnTuJiopi27Zt9O3bl6tXrxrrNFk0vUFPSHgI7k4efFF3CEQs1ObAEeL/5Wg1seLFi/PKK6/QpUsXypYta6xMQuTcgflwaSd0nEXnlyrQrEIhhv19nHsPZTSKubOxsWHRokUcOnSIKlWqMGDAAKZOffJ+qrfeeouIiAgaNmxI8eKPrx/2888/06NHDwYNGkT58uXp1KkTBw4ceGK7f/vxxx+5d+8eNWvW5J133qFv374UKvTfyeJsbW0JCwvjwYMH1KlThw8++CBjtJSTkxMALi4u7Nixg+LFi/Pqq69SsWJF3n//fZKSkqQlJ5P+PP0n+2P2My5oHPlrvQflWsOqftrSKkKQzdFSoF3kX3/9dcbQybJly9K/f38++OADowY0NhktZQVun4c5DaDG29B2GgA3E5JoOWMHDcp4M/PNmooDmgYZgZM3wsPDadCgAefPn6d06dLZ2of8Xf3XpfhLdFnVhc5lOzM8cLj25P0YmBUIpV+GLj+rDShMQrbuuQkJCeGrr76iT58+1KtXD4A9e/YwYMAAoqOjGTt2rFFDCpFp+nQI+xRcfaHFmIynC7k5MbZjFfr+eYTWVa7TrpqsFCxyx/Lly8mfPz9ly5bl/Pnz9OvXj6CgoGwXNuK/0vXpBIcHU8ilEP1r9v/vD1x9oe10+Ot9bQbyKq8qyyhMQ7aKm9mzZzN//vzH+rE7dOhAtWrV6NOnjxQ3Qp3d38HVA/DeOnDI99iP2lcrzLoTNxgZdoLAkgUo6OqoKKSwZPfv32fIkCFER0fj7e1N8+bNmT59uupYFuGXU79w7NYxfnnlF1zs/7W2VJXXIHIlrBkE/g0gv6wtZc2ydc9NamoqtWvXfuL5WrVqkZaWluNQQmTLzUjYOh7qf67NYPovOp2OcR2rYGujY9jfx8lmj6wQz9WjRw/Onj1LUlISV69eZcGCBY/NnyOy5/y988w8MpOelXtSo1CNJzfQ6aDtV6CzgVX9tSVXhNXKVnHzzjvvMHv27CeenzdvHm+99VaOQwmRZempsPxj8CwJTZ89HUGB/I6M71yVTZGx/H34Wh4GFEJkV6o+leG7huPn6sfnNT5/9ob5vKH9N3BmDRxbnHcBhcnJdLfU/w611Ol0/PDDD2zYsIGXXtK+Ie/bt4/o6GiZxE+osXM6xJyADzaCvdNzN21V2ZdXaxRl9KqT1C9TgMLuzs/dXgih1g/Hf+DsvbP80eYPHG1f0J1csR1U6wZrvwT/huAus+Zbo0wXN0eOHHnsz7Vq1QLImC7c29sbb29vTp48acR4QmTC9aOwYyo0HAhFa2XqJaPaVyb8wm2G/HWcX3rVkVWEhTBRp+6cYl7EPD6o+gGVvStn7kWvTIaoHbCyD7z9l9ZlJaxKtoeCmysZCm5h0pJhbmOwsYMPt4Cdw4tf8/+2nbnJuz8fYELnqrwZ+Pz5TSyRDC82H9b6d5WSnkK31d2ws7FjYZuF2Ntm4b2f2wR/vAbtZkDtXrmWUZimHE3iJ4Ry2ybCnfPQeU6WChuAJuUL0b2uH+PXnOLK3cRcCiiEyK7vj37PpYRLhAaFZq2wASjbHGr2hA3BcO9SruQTpitbxU1SUhJTp06lTZs21K5dm5o1az72ECJPXDkA4d9Ak6Hgm72Fo0a0rYSHiwODl0ag11tVI6YQJi3iVgQ/n/yZ3tV7U96rfPZ20mo8OHtBWG9tSRZhNbJV3Lz//vtMmTKFEiVK0K5dOzp27PjYQ4hcl5IIYZ9AkRoQ1D/bu8nvaMfULtXYF3WXX/ZcMlo8kXuaNGlC//79n/lznU5HWFhYpve3bds2dDodcXFxOc4mjONR2iOCdwVTuUBl3q38bvZ35OgKnWbB5V2wf67R8gnTl61J/FavXs3atWsJCgoydh4hMmfLOIi/Cm/8CbbZ+jXOUL+0N+/W92fyutM0LleQUgXzGymkUOHGjRt4enqqjiFy4NvD33Lj4Q2+efkb7Gxydn1TshHU/Rg2jYYyzcFb1kG0BtlquSlatCiurq7GziJE5lzaBXtnw8sjoWA5o+xySOsKFHZ3ZtDSCNKle8qs+fr64ugos0+bqwMxB/g98nf61uhLKfdSxtlp89HgVlRbmkWfbpx9CpOWreJm+vTpDBkyhMuXLxs7jxDPl/wAwj6D4vXgpU+NtltnB1umdalGxJU45u24aLT9ityh1+v58ssv8fLywtfXl9GjR2f87N/dUrt376Z69eo4OTlRu3ZtwsLC0Ol0HD169LF9Hjp0iNq1a+Pi4kL9+vU5c+ZM3rwZkSExNZGR4SOp5VOLtyu9bbwdO7hAp9lw7RDs/tZ4+xUmK1vtfbVr1yYpKYlSpUrh4uLyxNDEu3dl2XmRSzaOhIe3oUcY2Ngadde1SnjxYaNSfL3xLC9XKER5X+trnXyU9oio+Kg8P25J95I422V+MsVffvmFgQMHsm/fPvbs2cO7775LUFAQLVq0eGy7hIQE2rdvT5s2bVi4cCGXL19+5v06I0aMYPr06RQsWJBPPvmE9957j/Dw8Jy8LZFF0w9O527SXea3nI+NzsiDeYsHQv0+sHUClG0FPpWMu39hUrJV3HTv3p1r164xYcIEfHx8ZAI0kTfOb4aDP2mr/3oZqbn6XwY0L8eWyJsMXHKUsN5B2Nta12wJUfFRdFvdLc+Pu7jdYioVyPw/NtWqVWPUqFEAlC1blpkzZ7J58+YnipuFCxei0+mYP38+Tk5OVKpUiWvXrvHhhx8+sc/x48fTuHFjAIYOHUrbtm1JSkrCyen5M14L49h9bTdLzi4hODAYP1e/3DlIk+Fwdr22VMuHWyCrw8uF2chWcbN792727NlDQECAsfMI8XSP4rTZRks1hdrv59phnOxt+aprdTp9H86srefp39w49/SYi5LuJVncLu/X5CnpXjJL21erVu2xPxcuXJibN28+sd2ZM2eoVq3aYwVK3bp1X7jPwoULA3Dz5k2KF7e+CR7zWkJKAiG7Q6hXuB5dy3fNvQPZO2lzYs1vBjumQdNhuXcsoVS2ipsKFSrw6NEjY2cR4tnWD4fk+9BxZq5PpV61mDu9m5Zh5pbzNK/oQ5Wi7rl6PFPibOecpRYUVf7dFa7T6dDncB6T/93nf1qjc7pPkTmT90/mYepDxgaNzf2egCI1oNFgbcmW8q21PwuLk60290mTJjFo0CC2bdvGnTt3SEhIeOwhhFGdXgtH/4DWE8G9WJ4c8vOmZSjv68rAJUdJTpPRFeaqfPnyHD9+nOTk5IznDhw4oDCR+Let0VtZeWElQ+oOwTefb94ctOFg7Z6b5Z9AalLeHFPkqWwVN61bt2bPnj00a9aMQoUK4enpiaenJx4eHjK/hDCuxLuwqh+Uaw3V38qzwzrY2TC9awCXbify9cZzeXZcYVxvvvkmer2ejz76iMjISNavX8+0adMA5F5BE3Av6R5j9oyhcbHGdCydhxPA2jlA57lw5wJsm5B3xxV5JlvdUlu3bjV2DiGebs0g0KdC+2/yfGXfCr5u9G9Rlmnrz9Cikg+1Skjhbm7c3NxYtWoVn376KdWrV6dq1aqEhITw5ptvyo3CJmD8vvGkGdIYVW9U3hebPpW1e262hEKFduD39HuxhHmSVcGF6TrxNyzrBa/9CFVfVxIhLV1Pl7l7iEtMZW3fhjg7GHf4uUrWutL0H3/8Qa9evYiPj8fZOfPDz1WyxL+rdVHr+GLHF0xpNIVXSr6iJkR6GvzUCh7dg092afPhCIuQ7XGuO3fu5O2336Z+/fpcu3YNgN9++41du3YZLZywYg9uaq02lTpBldeUxbCztWFalwCuxz1i8rrTynKI7Pv111/ZtWsXUVFRhIWFMWTIELp27Wo2hY0luv3oNqH7QmlZoiWt/VurC2Jrp42eSrgGm8eoyyGMLlvFzV9//UWrVq1wdnbm8OHDGTfrxcfHM2GC9F+KHDIYtPtsbGyh7Vd53h31b6UL5mdI6wos2H2J3RduK80isi4mJoa3336bihUrMmDAALp06cK8efNUx7JaBoOBMXvGYKuzJfilYPX3PnmXhWajYN8ciNqhNoswmmwVN6GhocyZM4f58+c/1kQaFBTE4cOHjRZOWKmIRXBmLbSbAfkKqE4DwLv1/Qks6cUXS4/xIDlNdRyRBV9++SWXLl0iKSmJqKgovv76a1xcpPtBlZUXVrLtyjZC6oXg6WQi97EFfgIlGsCK3tqUE8LsZau4OXPmDI0aNXrieXd3d+Li4nKaSViz+GvwzxCo9gZUbKc6TQYbGx3TugQQl5jC+DWRquMIYZZiHsYwef9k2pdqT7PizVTH+S8bG20OrYd3YEOw6jTCCLJV3Pj6+nL+/Pknnt+1axelSuXOtPjCChgMsPJzcMgHr0xSneYJfl4uDG9bkT/3R7PtzJOz4ZorKxtTYJYs4e/IYDAwavconO2dGVJ3iOo4T/IqCa1C4dACOLdJdRqRQ9kaCv7hhx/Sr18/fvrpJ3Q6HdevX2fPnj0MHjyYkSNHGjujsBaHFsCFLfDWX+BsIs3V//Jm3eKsOxHD0L+Os75/I9xdzHfkiq2tLTqdjvv37+Pq6qr+3gfxBIPBQHp6OgkJCeh0OuzssvWRbRKWnl3K7uu7md18Nu6OJjrrd61eELlKW+rls90m+zkkXixbQ8ENBgMTJkxg4sSJJCYmAuDo6MjgwYMZN26c0UMakwwFN1F3o2B2EFTros1pY8JuxD+i5dc7aFHRh6+6VVcdJ0eSk5O5e/euRbQMWDIHBwc8PDzMtri5cv8Kr618jbal2jKq3ijVcZ4v/ip8Xx/KvwKvzlWdRmRTjua5SUlJ4fz58zx48IBKlSqRP39+Y2bLFVLcmCC9Hn5pD/HR8OlucHRVneiF/jp0lUFLI5j7Ti1aVc6jKeNziV6vJz1dlpgwVTY2NtjY2Jhty5reoOf99e9z4+EN/urwF/ns86mO9GJH/4SwT+CNhVChreo0Ihuy9DXgvffey9R2P/30U5ZCzJo1i6lTpxITE0NAQADffffdM1fu/V+LFi2ie/fudOzYkbCwsCwdU5iQ/XPh8i7oudosChuAV2sW5Z8TMYxYfpw6/l545XNQHSnb/vOPpxC5YWHkQg7GHuTHlj+aR2EDEPAGRK7UpqTwe8lkRm2KzMvSJ9qCBQvYunUrcXFx3Lt375mPrFi8eDEDBw5k1KhRHD58mICAAFq1asXNm8+/YfPSpUsMHjyYhg0bZul4wsTcPgebRmtDMUuaz9+lTqdjwqtVSNMbCA47Lt06QjxFVHwUMw7P4K2Kb1G3sBktb6DTaVNR6NNhzUDVaUQ2ZKlbqnfv3vz555+UKFGCXr168fbbb+Pl5ZWjAIGBgdSpU4eZM2cCWhO5n58fffr0YejQoU99TXp6Oo0aNeK9995j586dxMXFPbPlJjk5+bEVgRMSEvDz85NuKVOQngY/t9YWxzTTqc9XH7vO5wuP8G33GnQIKKI6jhAmI02fRs91PYlPjmdp+6U425nhjND/WQLm9Z+UzpQusi5LLTezZs3ixo0bfPnll6xatQo/Pz+6du3K+vXrs/XNNSUlhUOHDtG8efP/BrKxoXnz5uzZs+eZrxs7diyFChXi/ffff+ExJk6ciLu7e8bDz88vyzlFLtn9LVw7pE1/boaFDUC7akVoW60wIStOcDMhSXUcIUzGgpMLOHH7BKFBoeZZ2ABUeRUqd9aWgrkfqzqNyIIsd7Q7OjrSvXt3Nm7cyKlTp6hcuTKfffYZ/v7+PHjwIEv7un37Nunp6fj4+Dz2vI+PDzExMU99za5du/jxxx+ZP39+po4xbNgw4uPjMx5XrlzJUkaRS2JPwraJUL+v2a/GO65jFexsbBj2t3RPCQFw9t5Zvj/6PT0r96R6oeqq4+RMm+lgYw+r+mpzcQmzkKO7CP9zB/9/5mLIbffv3+edd95h/vz5eHt7Z+o1jo6OuLm5PfYQiqWnwvJPwKs0NB2uOk2OeeVzYOKrVdl8+ibLDl1VHUcIpVL1qQTvCqaEWwl6V++tOk7O5SugTU9xdh0cXag6jcikLBc3ycnJ/Pnnn7Ro0YJy5cpx/PhxZs6cSXR0dJaHgnt7e2Nra0ts7OPNfbGxsfj6Pjm89sKFC1y6dIn27dtjZ2eHnZ0dv/76KytXrsTOzo4LFy5k9e0IFXZMg5unoPNssHNUncYoWlTy4bWaxRi76hTX4h6pjiOEMvOPzefsvbOENgjF0dYyrm8qtIGAN2HdUG0eHGHyslTcfPbZZxQuXJhJkybRrl07rly5wtKlS2nTpk22hpI6ODhQq1YtNm/enPGcXq9n8+bN1KtX74ntK1SowPHjxzl69GjGo0OHDjRt2pSjR4/K/TTm4PoR2DEVGg6GIjVUpzGqkPaVyOdox5Blx6R7Slilk3dOMu/YPD6s9iGVC1RWHce4Wk8Eh/za4ppyfZu8LI2WsrGxoXjx4tSoUeO5E0r9/fffmQ6wePFievbsydy5c6lbty4zZsxgyZIlnD59Gh8fH3r06EHRokWZOHHiU1//7rvvPne01L/JJH4KpSbBvCZgaw8fbtH+38LsOHuLHj/tZ1ynKrzzUgnVcYTIM8npybyx+g3sbez5o80f2Fvg9c35TfD7a9B2OtT5QHUa8RxZmsSvR48eRp8ls1u3bty6dYuQkBBiYmKoXr0669aty7jJODo6WiYYsxTbJsDdC/DRdossbAAalSvIm4HFmbg2ksZlC1K8gHmOAhMiq2YdncWlhEssbrfYMgsbgDLNtfWnNoRA6ZfBSxaKNlU5Wn7BHEnLjSLR++CnVtB8FDQYoDpNrnqQnMYr3+ygsJsziz56CRsb85w2X4jMOnrzKD3X9aRPjT58UNXCWzSS78Ps+uBWDN5dA/Ll2yTJ34rIfSkPtXVaitXWhn5buPyOdkx9PYD9l+7yU3iU6jhC5KpHaY8IDg+mSoEqvFv5XdVxcp+jK3SaDdG7Yd9s1WnEM0hxI3LfpjGQcAM6zQEbW9Vp8sRLpQrwXlBJpq4/w/mbWZv/SQhz8s3hb4h5GENog1DsbMxz1fIs828AgZ/C5rFw66zqNOIppLgRuStqh7YwZvNR4F1GdZo89WXr8hT1cGbQ0gjS0vWq4whhdPtv7OePyD/oV7MfJd1Lqo6Tt5qFgHsxrVU6PU11GvEvUtyI3JOUAGG9oUQDqPux6jR5zsnelmldAzh+NY65Oy6qjiOEUT1MfcjI8JHU8qnFWxXfUh0n7zm4aK3R14/A7m9UpxH/IsWNyD0bguHRXeg0y2pvuqtZ3JOPG5dmxqazRN5IUB1HCKOZemAq95LvMS5oHDY667y+8asDQf1g60SIOaE6jfgfVvobKXLduU1w+BdoOQ48/VWnUap/87KU8s7PoCURpKRJ95Qwf7uu7eKvc38xuPZg/FytfPLUJsPAu6zWPZWWojqN+H9S3Ajje3QPVn6uzQNRq5fqNMo52tkyvWsAZ2PvM3PredVxhMiR+OR4RoWPon6R+nQp10V1HPXsHLXRUzcjtdnXhUmQ4kYY3z9DISUROswEI0/6aK6qFHXn85fLMGvreY5djVMdR4hsm7x/Mo/SHjGm/hijT+pqtopUh0ZfwM7pcO2w6jQCKW6EsUWuhmOL4JXJ4F5UdRqT0rtpGSoWdmXgkgiSUtNVxxEiyzZHb2bVxVUMqTsE33xPLm5s1RoOAt8qsPwTbakZoZQUN8J4Ht6G1f2hfBsIeEN1GpNjb2vDV12rE30nka83ytwYwrzcTbrL2D1jaeLXhA6lO6iOY3ps7aHzXLgXBVvHq05j9aS4EcZhMMCagaBPh3YzpDvqGcr5uDKwZTnm7bzIoct3VccRIlMMBgOhe0NJN6Qzqt4o6Y56lkIVoekI2P0dRO9VncaqSXEjjOPEX3BqhbZarquP6jQm7cOGpajh58GgJREkpsjkX8L0rbu0jo2XNxL8UjDezt6q45i2+n2gWB0I+1RbekYoIcWNyLn7MbB2MFTuDFVeVZ3G5Nna6JjWJYCYhCQm/3NadRwhnutW4i1C94bSyr8Vrf1bq45j+mxstdFTCTdg02jVaayWFDciZwwGWNUPbOyhzXTVacxGqYL5GdK6Ar/suczu87dVxxHiqQwGA2P2jMHexp4RgSNUxzEf3mWg+WjYPw8ubledxipJcSNy5uhCOLsO2n8D+QqoTmNWetbz56VSXnyx7Bj3k1JVxxHiCWHnw9h+dTuj6o3C08lTdRzzUvcj8G8IK3prS9GIPCXFjci++KuwbigEdIcKbVSnMTs2Njqmvh5AXGIK49dEqo4jxGNuPLjBlANT6FC6A02LN1Udx/zY2EDHWdqkphuk1SuvSXEjssdg0L6ROOSH1pNUpzFbfl4uBLerxKIDV9h6+qbqOEIAWndUyO4QXOxdGFJ3iOo45suzBLQaD4d/hbMbVKexKlLciOw5+CNc3AYdZ4Kzh+o0Zu2NOn40LleQIX8dIy5R1qYR6i05s4S9N/Yyrv443BzcVMcxbzV7QpnmsLIPJMr0D3lFihuRdXcvwoYQbd2oMs1UpzF7Op2Oya9VIyk1ndErT6qOI6zclYQrTD80nS7lulC/aH3VccyfTgcdvoO0R/CPtILlFSluRNbo9RDWG/J5ayt+C6PwdXdidIfKhB29zroTN1THEVYqXZ9OcHgwXk5eDKo9SHUcy+FWBF6ZAseXQOQq1WmsghQ3Imv2zYbo3dDpe3B0VZ3GonSuUZSWlXwYsfwEdx4kq44jrNDvkb9z+OZhxgWNI599PtVxLEu1blChHazqry1VI3KVFDci826dhU1j4KXPwL+B6jQWR6fTMb5zVfQGAyOWn8BgMKiOJKzIxbiLfHv4W96u+DZ1fOuojmN5dDpo9zUY9LB6gDYoQ+QaKW5E5qSnQdgn4OEHzUJUp7FYBV0dGd+5KutOxrAy4rrqOMJKpOnTGLFrBEXyF6FfzX6q41iu/IW0AidypbZkjcg1UtyIzAmfAdePQKc5YO+sOo1Fa1O1MO0DihCy4iSxCUmq4wgr8POJnzl19xShDUJxsnNSHceyVe4EVV6DNYO0JRpErpDiRrxYzHHYNgmC+oGfNFfnhbEdKuNgZ8PQv45J95TIVWfunuH7iO/pVbkXAQUDVMexDm2mgZ2jtnSNXN+5Qoob8XxpKbD8U/AuC02GqU5jNTzzOTDp1apsPXOLpQevqo4jLFRqeiojdo3A382fz6p/pjqO9XDxgvbfwrn1cOR31WkskhQ34vl2TIFbkdB5jvZNQ+SZZhV96FKrGGNXn+LqvUTVcYQFmnNsDhfiLjChwQQcbB1Ux7Eu5VtD9bdh3TCIi1adxuJIcSOe7doh2PkVNPoSCktztQoj21fCzcmOL5cdQ6+X5mthPCdun+DH4z/yUcBHVCxQUXUc69R6Aji5w4rPtTnEhNFIcSOeLjVJ647yrQoNB6pOY7XcnOyZ8noAuy/c4fd9l1XHERYiOT2ZEbtGUN6rPB9U/UB1HOvl5K4tYRO1XVvSRhiNFDfi6baGwr0orTvK1l51GqvWoKw3b79UnIlrT3Pp9kPVcYQFmHlkJlfuX2F80HjsbeT6Vqp0U6j9PmwMgTsXVKexGFLciCdd3gO7Z0LTEVBImqtNwbBXKlLQ1ZHBSyNIl+4pkQOHYw/zy8lf+LzG55TxLKM6jgBoMVabA2dFb9Cnq05jEaS4EY9LeQhhn0KxOlC/j+o04v/lc7RjWpcADkXf46ddUarjCDOVmJpIcHgw1QpWo2elnqrjiP9wzA+dZkP0Xtj7veo0FkGKG/G4jaPgfozWHWVjqzqN+B91S3rxflBJpm44w7nY+6rjCDP09aGvuZV4i/ENxmMr17dpKVEf6vWGzePg1hnVacyeFDfivy5ugwPzocUYKFBadRrxFINblcfP05nBSyNIS5fRFSLz9t7Yy6Izi+hfqz8l3EqojiOe5uVg8CwByz/RlrwR2SbFjdAkJWjDEf0bQp0PVacRz+Bkb8v0rtU5fi2eOdvl5kOROQ9SHhASHkJd37p0r9BddRzxLPbO2hI3N45C+Neq05g1KW6EZv1weHQPOs4CG/m1MGXV/Tz4tElpvtl8jlPXE1THEWZg6sGpxCfHMzZoLDY6ub5NWrFa0GAgbJusLX0jskV+ywWc3QBHfoNW47UmUWHy+jYrS+mC+Rm45CgpadI9JZ5tx9Ud/H3ub76o8wVF8xdVHUdkRuMhULC81j2VlqI6jVmS4sbaJd6FlX2gTHOoKaMnzIWjnS3TuwZw/uYDvt18TnUcYaLik+MZvXs0QUWDeK3sa6rjiMyyc9AGddw6A9snq05jlqS4sXb/DIG0R9DhO9DpVKcRWVC5iDv9mpVl9vYLHL0SpzqOMEET908kKT2JMfXGoJPr27z4VtVacHZ9DVcPqU5jdqS4sWanVsLxJfDKFHArojqNyIZPm5SmchE3Bi05SlKqTP4l/mvT5U2subiGYXWH4ZPPR3UckR0NBmjr+oV9AqmPVKcxK1LcWKsHt2D1AKjQDqp1U51GZJOdrQ3TuwRw5d4jpm+QuTGE5s6jO4zbO46X/V6mXal2quOI7LK107qn7l2GLaGq05gVKW6skcEAawYABmj3tXRHmbmyPq4MblmOH3ZFsT/qruo4QjGDwUDo3lAMBgMj642U7ihzV7A8NBsJe2bB5d2q05gNKW6s0fGlELkK2n6lrWcizN77DUpRq7gng5dG8DBZJv+yZmuj1rIpehPBLwXj7eytOo4whpc+A79AbWmc5Aeq05gFKW6sTcINWDsYqrwOlTupTiOMxNZGx7QuAdy6n8ykf06rjiMUuZl4k/H7xvNKyVdo6d9SdRxhLDa20Ol7eHATNo1SncYsSHFjTQwGbdi3nRO0mao6jTAyf+98DGtTgd/2XmbXuduq44g8ZjAYGL17NI62jowIHKE6jjC2AqW11cMP/AAXtqpOY/KkuLEmR36D8xuh/bfg4qU6jcgFbweWoH7pAny5LIKEpFTVcUQeCjsfxs5rOxldbzTuju6q44jcUPt9KNlIWyonKV51GpMmxY21iIuGdcOh+ttQvrXqNCKX2NjomNolgISkNEJXn1IdR+SR6w+uM/nAZDqV6URjv8aq44jcYmOjLZGTFK99notnkuLGGuj1sKI3OLlD6wmq04hcVtTDmZHtKrLk4FU2R8aqjiNymd6gJyQ8BFcHV76s86XqOCK3eRTXPseP/g5n1qlOY7KkuLEGB36AqB3QcaZW4AiL17W2H03LF2To38e591DWprFki88sZl/MPsbWH4urg6vqOCIv1HgHyraEVX21JXTEE6S4sXR3Lmh319f5AEo3VZ1G5BGdTsek16qRkqZn1MqTquOIXBKdEM3Xh76mW/lu1CtST3UckVd0Ou3eybRkWPuF6jQmSYobS6ZP1+ZFyF8Imo9RnUbkMR83J8Z2rMzKiOusPX5DdRxhZOn6dILDgyngVICBtQaqjiPymlthaDMNTiyDk2Gq05gcKW4s2Z5ZcGU/dJoNjvlVpxEKdAgoQuvKvgSHneDW/WTVcYQR/XbqN47ePEpog1Bc7F1UxxEqVH0dKnbQltJ5cFN1GpMixY2lunlaW4ukXm8oUV91GqGITqcjtHMVdMCI5ccxGAyqIwkjuBB3ge+OfMc7ld6hlk8t1XGEKjqdNtO8zkYrcOT6ziDFjSVKT9VWkfUsAS8Hq04jFPPO78j4zlXYcCqWsKPXVMcROZSmT2PErhEUdS1Knxp9VMcRquUvqK0ReHo1HFuiOo3JkOLGEu36Gm5EQKc5YO+sOo0wAa2rFKZT9SKErDhJTHyS6jgiB348/iORdyMZHzQeJzsn1XGEKajUAap21W4uTriuOo1JkOLG0tw4BtsnQ4OBUEyaq8V/jelQBWd7W4b8dUy6p8zU6bunmRMxh/ervE/VglVVxxGmpM0U7cvsyj7SPYUUN5YlLRmWfwIFK0DjIarTCBPj7mLP5Neqsf3sLRYduKI6jsiilPQURuwaQSmPUnwS8InqOMLUOHtCh+/g/CY4/IvqNMpJcWNJtk+G22eh8xywc1CdRpigphUK0a22H6GrT3HlbqLqOCIL5kTM4WLcRcY3GI+DrVzf4inKtdQm+Fs/Au5dVp1GKSluLMXVg9q9Nk2GgK80V4tnC25XEQ8XB75YFoFeL83X5uDYrWP8eOJHPg74mApeFVTHEaas1QStFWdFb23pHSslxY0lSH2kdUcVrg5BA1SnESbO1cmeKa9XY+/Fu/yy55LqOOIFktKSGLFrBBW9KvJB1Q9UxxGmzslNW1zz0k44MF91GmWkuLEEW0K1Vb87zwFbO9VphBkIKuNNj3olmLzuNBdvPVAdRzzHd0e+4/qD64xvMB47G7m+RSaUagx1P4KNo+D2edVplJDixtxd3q3NRNxsJBQsrzqNMCNDX6mAj5sTg5dGkC7dUybpUOwhfjv1G31r9qW0R2nVcYQ5aT5aW6Ih7FNtKR4rYxLFzaxZs/D398fJyYnAwED279//zG3nz59Pw4YN8fT0xNPTk+bNmz93e4uW/ED7xS3+Erz0meo0wsy4ONgxvUsAR67EMX/nRdVxxL8kpiYSvCuY6oWq83bFt1XHEebGIZ+29M7VA7D7O9Vp8pzy4mbx4sUMHDiQUaNGcfjwYQICAmjVqhU3bz59nYxt27bRvXt3tm7dyp49e/Dz86Nly5Zcu2aFM69uDNHWE+n0PdjYqk4jzFBtfy8+bFiKrzac5UzMfdVxxP/46tBX3Em6Q2hQKLZyfYvsKP4S1P8cto6Hm5Gq0+QpnUHxbF6BgYHUqVOHmTNnAqDX6/Hz86NPnz4MHTr0ha9PT0/H09OTmTNn0qNHjxdun5CQgLu7O/Hx8bi5ueU4vzIXtsBvnbVVYet+qDqNMGNJqem0+24XTvY2LP8sCHtb5d95rN7u67v5eOPHDA8cTvcK3VXHEeYsNQnmNQY7R/hgM9jaq06UJ5R+iqWkpHDo0CGaN2+e8ZyNjQ3Nmzdnz549mdpHYmIiqampeHl5PfXnycnJJCQkPPYwe0nxsOJzKNkYar+vOo0wc072tkzvEkDkjfvM2mqdNx+akvsp9wkJDyGwcCDdyndTHUeYO3snrXsq5gTs/Ep1mjyjtLi5ffs26enp+Pj4PPa8j48PMTExmdrHkCFDKFKkyGMF0v+aOHEi7u7uGQ8/P78c51Zu3XBIStCG+9nIt2yRcwF+HnzWpDQzt5znxLV41XGs2pQDU3iQ+oBx9cdho5PrWxhB0ZrQcBDsmALXj6pOkyfM+sqZNGkSixYtYvny5Tg5PX0BuWHDhhEfH5/xuHLFzKedP7MOjv4OrSeChwUUasJk9Hm5LGV9XBm45CjJadY3usIUbL+ynbDzYQypM4TC+QurjiMsSaMvoFBFbRBKWrLqNLlOaXHj7e2Nra0tsbGxjz0fGxuLr6/vc187bdo0Jk2axIYNG6hWrdozt3N0dMTNze2xh9lKvAur+kLZVlBDRk8I43Kws+GrrgFE3X7IjE3nVMexOnFJcYzeM5qGRRvSqUwn1XGEpbFzgE5z4PY52DZRdZpcp7S4cXBwoFatWmzevDnjOb1ez+bNm6lXr94zXzdlyhTGjRvHunXrqF27dl5ENQ1rB2sVd4dvQadTnUZYoIqF3ejfvBxzt1/gcPQ91XGsyoR9E0hJT2F0/dHo5PoWucG3CjQZCuHfwJUDqtPkKuXdUgMHDmT+/Pn88ssvREZG8umnn/Lw4UN69eoFQI8ePRg2bFjG9pMnT2bkyJH89NNP+Pv7ExMTQ0xMDA8eWPgsqyeXw4m/oO10cH1+q5YQOfFxo1JULebBoCURPEqR7qm8sP7Sev659A/DA4dTyKWQ6jjCkgX1hyI1IOwTSLHcxXOVFzfdunVj2rRphISEUL16dY4ePcq6desybjKOjo7mxo0bGdvPnj2blJQUXn/9dQoXLpzxmDZtmqq3kPse3ITVA6FiB6jymuo0wsLZ2dowvUsA1+MeMWX9adVxLN7tR7cJ3RtKixItaFOyjeo4wtLZ2mndU/FXYcs41WlyjfJ5bvKa2c1zYzDA4rchei/03gf5vFUnElbih50XCV0TyZ8fvkS90gVUx7FIBoOB/lv7c/TWUZZ3XI6X09OntBDC6PbMgvUj4N3V4N9AdRqjU95yI17g2GI4vRrafS2FjchTvYJKUtffiy+WRfAgOU11HIu0+uJqtlzZwsiXRkphI/JW4KdQvB6EfaYt5WNhpLgxZfHXYO2XULUrVOqgOo2wMrY2OqZ2qcadBylMWGtdU7fnhZiHMUzcN5G2pdrSvMTT5+kSItfY2ECnWfDwNmwcqTqN0UlxY6oMBljZBxxcoM0U1WmElSpRIB/D21Zk4b5otp+9pTqOxTAYDIzePRonOyeG1R324hcIkRu8SkHLsXDwJzi/+cXbmxEpbkzV4V/gwmbo8B04e6pOI6zY24HFaVDGmyHLjhH/KFV1HIvw17m/CL8ezuj6o3F3dFcdR1iz2u9Dqabal+lHcarTGI0UN6bo3mXtRq8a70DZFqrTCCun0+mY/Ho1HianMXbVKdVxzN7V+1eZemAqr5Z9lUbFGqmOI6ydTgcdZ0LyfVhnOa2IUtyYGr0eVvTWWmtaTVCdRggAino4M7J9Jf46fJWNp2Jf/ALxVHqDnpHhI3F3dOeL2l+ojiOExr0YtJ4EEQvh9FrVaYxCihtTs38eXNqpLYrpZAZD1YXV6FKrGM0qFGLY38e5+zBFdRyz9OfpPzkYe5BxQePI75BfdRwh/qv6m1CuNazqpy31Y+akuDElt8/DptFQ9yMo1Vh1GiEeo9PpmPhqVdL0ekauOKE6jtm5FH+JGYdm0L1CdwILB6qOI8TjdDpo/w3oU2HNINVpckyKG1OhT9dWa3UrDM1Hq04jxFMVcnNibMcqrDl2g1UR11XHMRvp+nRGhI+gkEsh+tfsrzqOEE/n6gttpsHJv+HE36rT5IgUN6Zi93dw9QB0mg0O+VSnEeKZ2lcrTNuqhRm54gQ37yepjmMWFpxcwPFbxwltEIqLvYvqOEI8W5XXoFInrfXmvvneXyfFjSmIPQVbx0P9PlD8JdVphHgunU7HuE5VsLPRMfzvE1jZCi5Zdu7eOWYdnUXPyj2pUaiG6jhCPJ9OB22/AhtbWN1fm3PNDElxo1p6qrY6q1cpaDpCdRohMsUrnwPjO1dlU2Qsfx2+pjqOyUrVpzJi1wj8XP34vMbnquMIkTn5CkC7GXBmLUQsUp0mW6S4UW3ndIg5oXVH2TupTiNEprWq7MurNYoyZtVJrsc9Uh3HJP1w7AfO3jvLhAYTcLR1VB1HiMyr2A6qvQH/DNGWAjIzUtyodP0o7JgKDQdB0Zqq0wiRZaPaVyafgx1D/jom3VP/curOKeYdm8cHVT+gsndl1XGEyLpXJmn3gK783Oy6p6S4USUtWRsdVagiNJLJvIR5cnexZ9JrVdl57jYL90erjmMyUtJTGLFrBGU8y/BxtY9VxxEie5w9tSWALmyBQz+rTpMlUtyosm0i3D4HneaAnYPqNEJkW5Pyhehetzjj10QSfSdRdRyT8P3R77mUcInQoFDsbe1VxxEi+8o2h1rvwvpguBulOk2mSXGjwpUDEP4NNB0GvlVUpxEix0a0rYhXPgcGL4tArzev5mtji7gVwc8nf+azgM8o71VedRwhcq5lqHaT8YrPtSWCzIAUN3ktJVEbHVWkBtTvpzqNEEaR39GOqa8HsD/qLj/vvqQ6jjKP0h4RvCuYygUq06tKL9VxhDAOR1fo+D1c3gX756pOkylS3OS1LeMg/qrWHWVrpzqNEEZTr3QB3q3vz5R1p7lw64HqOEp8e/hbbjy8QWiDUOxs5PoWFqRkQwj8RFsi6PY51WleSIqbvHRpF+z9HpqFQMFyqtMIYXRDWlegiIczg5ZEkJZuHs3XxnIg5gC/R/5O3xp9KeVeSnUcIYyv2ShwK6oNhklPU53muaS4ySvJ9yHsMygRBIGfqk4jRK5wdrBlWpcAjl2NY97Oi6rj5JmHqQ8ZGT6SmoVq8nalt1XHESJ3OLhA5zlw7RDs/lZ1mueS4iavbBgJD29Dx1lgI6ddWK5aJTz5qFFpvt54ltMxCarj5InpB6dzN+kuoUGh2Ojk+hYWzK+utlTQ1gkQe1J1mmeSqzAvnN+kzRHQchx4lVSdRohcN6BFWUp652PQkghS0iy7eyr8WjhLzy5lUK1B+Ln5qY4jRO5rMhwKlIHln0Baiuo0TyXFTW57FAcr+kCpplD7PdVphMgTjna2TO9SnTMx95m59bzqOLkmISWBkN0h1Ctcj67lu6qOI0TesHeCzrO1lpud01SneSopbnLbumGQ8gA6ztRWWxXCSlQt5k7vpmWYtfU8x6/Gq46TKybvn0xiaiJjg8aik+tbWJMiNbTZ9XdMg+tHVKd5ghQ3uen0WohYCK0ngXsx1WmEyHOfv1yGCr6uDFxylKTUdNVxjGpr9FZWXljJkLpD8M3nqzqOEHmv0WDwqax1T6UmqU7zGClucsvDO7CqH5R7Baq/qTqNEErY29rwVdfqXL6TyNebzqqOYzT3ku4xZs8YGhdrTMfSHVXHEUINW3tt9NTdi7Btguo0j5HiJresHQT6VGj/jXRHCatW3teVAS3KMW/HRQ5dvqs6jlGM3zeeNEMao+qNku4oYd18KkOTYRD+LUTvU50mgxQ3ueHEX3ByObSdDq4+qtMIodxHjUpR3c+DQUsiSEwx7cm/XmRd1DrWX1rPiMARFHQpqDqOEOrV7wvFamtLC6U8VJ0GkOLG+O7HwppBUKkTVHlNdRohTIKtjY7pXQKISUhiyrozquNk2+1HtwndF0rLEi1p7d9adRwhTIOtHXSaDQnXYdMY1WkAKW6My2CA1f3Bxg7afqU6jRAmpVTB/HzZqgILdl9i94XbquNkmcFgYMyeMdjqbAl+KVi6o4T4X95lteUZ9s+FqB2q00hxY1QRf8KZtdp9NvkKqE4jhMl5t74/gSW9+GLpMe4npaqOkyUrL6xk25VthNQLwdPJU3UcIUxP4CdQogGE9YYktbOTS3FjLPFX4Z+hENAdKrRVnUYIk2Rjo2NalwDiElOYsDZSdZxMi3kYw+T9k2lfqj3NijdTHUcI02Rjo83plngHNgSrjaL06JbCYICVfcAhnzanjRDimfy8XBjRthJ/7r/C1jM3Vcd5IYPBwKjdo3C2d2ZI3SGq4whh2rxKQqtQOPwLnNuoLIYUN8Zw6Ge4sAU6fgfOHqrTCGHyutf1o1G5ggz96xjxiabdPbX07FJ2X9/NmPpjcHd0Vx1HCNNXqxeUfln70v/onpIIUtzk1N0oWB8Mtd6FMs1VpxHCLOh0Oia/VpXElHRGrzLdlYWv3L/CtIPTeL3c6zQo2kB1HCHMg04HHb6DlET4R01rpxQ3OaHXw4re2s3DLUNVpxHCrBR2d2Z0+8osP3KNdSdiVMd5gt6gZ2T4SLycvBhce7DqOEKYF/di8MokOLYYIlfn+eGluMmJfXPgcjh0/B4cXVWnEcLsvFqzKC0q+TBi+XHuPEhWHecxf0T+waHYQ4wLGkc++3yq4whhfgK6Q/k22hQpD/N2+gcpbrLr9jnYPAYCP4WSDVWnEcIs6XQ6JnSuit5gIDjsBAaDQXUkAKLio/jm8De8VfEt6vjWUR1HCPOk00G7GaBPgzUDtcE3eUSKm+xIT9NWQXUrCs1CVKcRwqwVdHUktFNV/jkRw8qI66rjkKZPI3hXML75fOlXs5/qOEKYN1cfbVLbUyu0pYnyiBQ32bH7W7h+WFsN1cFFdRohzF7baoVpV60wIStOcjMhSWmWBScXcOLOCUKDQnG2c1aaRQiLUOVVqNxZW5roft7cXyfFTVbFnoStE7SFwvzqqk4jhMUY17EK9rY2DP37uLLuqbP3zjLr6Czerfwu1QtVV5JBCIvUZjrYOsCqfnnSPSXFTVakpWjdUQXKQNPhqtMIYVE88zkw6dWqbDl9k6WHrub58VPTUxmxawT+bv70rt47z48vhEXLV0BbmujsOjj6R64fToqbrNg5DW6e0rqj7BxVpxHC4jSv5MPrtYoxdtUprsU9ytNjzzs+j/P3zhPaIBQHW4c8PbYQVqFCGwh4E9YNg7gruXooKW4y6/oR2DENGg6GItVVpxHCYoW0r4Srkx1Dlh1Dr8+b7qmTt08y/9h8Pqz2IZULVM6TYwphlVpPBIf8sPLzXO2ekuImM1KTtO4on8rQSCbzEiI3uTnZM/m1auw6f5s/9l3O9eMlpyczYtcIynmW48NqH+b68YSwas4e2uKaF7fBwR9z7TBS3GTGtglw9yJ0ngu29qrTCGHxGpUryFuBxZmw9jSX7zzM1WPNOjKL6PvRjG8wHnsbub6FyHVlmkHt92BDiPZvay6Q4uZFovdB+LfaDcQ+lVSnEcJqDG9TEW9XBwYvjSA9l7qnjt48yoKTC+hdvTdlPcvmyjGEEE/RYhzk84aw3tpSRkYmxc3zpDyEsE+gWG1t6LcQIs/kc7Rj2usBHLx8j5/Do4y+/8TUREbsGkHVglV5t/K7Rt+/EOI5HPNDp+8heg/sm2303Utx8zybxkDCDeg0B2xsVacRwuoElipAr/olmbL+DOdv3jfqvr85/A03E28yPmg8tnJ9C5H3/BvAS59q/9beOmvUXUtx8ywXt8P+udB8FHiXUZ1GCKv1ZevyFPN0ZtCSCNLSjdN8ve/GPhaeXkj/Wv3xd/c3yj6FENnQLAQ8imu9JOlpRtutFDdPk5QAKz6HEg2g7seq0whh1ZzsbZneJYDj1+KZuyPnNx8+SHlASHgIdXzr0L1CdyMkFEJkm72zNnfc9SMQPsNou5Xi5mk2BEPiHeg0C2zkFAmhWo3innzSuDQzNp3l1PWEHO1r2sFpxCXHMbb+WGx0cn0LoVyx2hDUH7ZNgpgTRtmlXNn/dm4jHP4FWoWCp7/qNEKI/9eveVlKF8zPoKURpKRlr3tq59Wd/HXuLwbXGUwx12JGTiiEyLYmQ8G7nDanXFpKjncnxc3/enQPVvaB0i9DrV6q0wgh/oejnS3TugRwLvY+3205l+XXxyfHM3r3aIKKBPF62ddzIaEQItvsHKHzbLgVCTum5nh3Utz8r3+GQEoidJgJOp3qNEKIf6lS1J0+L5fl+20XiLgSl6XXTto/iUdpjxhdfzQ6ub6FMD2FA6DRl7BzOlw7lKNdSXHzH5Gr4NhieGUyuBdVnUYI8QyfNS1NpcJuDFoaQVJqeqZes/nyZlZfXM2wwGH45vPN5YRCiGxrOBB8q8LyT7Wlj7JJihuAh7dhVX8o3wYC3lCdRgjxHPa2NkzvGkD0nUS+2vjiuTHuJt1l7N6xNPVrSrtS7fIgoRAi22zttdFT96Jga2i2dyPFjcEAqweAQQ/tZkh3lBBmoJyPK4NalmP+zoscuHT3mdsZDAZC94aiN+gJqRci3VFCmINCFeHlYNg9E6L3ZmsXUtyc+AsiV0Lb6eDqozqNECKTPmhYiprFPfnw14NsOhX7xM8TUxMJDg9m4+WNBL8UjLezt4KUQohsqfc5+NXVRk+lZH3xXOsubu7HwJpBUPlVqPKq6jRCiCywtdHxQ4/a1CruyQe/HmTsqlMZQ8TP3D1Dt9Xd2Hh5I+MbjKeVfyvFaYUQWWJjC51ma/9Obxqd5ZfrDAZD7iy3a6ISEhJwd3cnPi4Ot9UfarMi9t4HLl6qowkhssFgMPBT+CUm/RNJeV9X2taP4odT3+Dv7s+0xtMo6V5SdUQhRHbtmwv/fAk9VkCpJpl+mUm03MyaNQt/f3+cnJwIDAxk//79z91+6dKlVKhQAScnJ6pWrcratWuzftBjS+Dcemj/jRQ2QpgxnU7H+w1K8usHVbnuMJfvT0ylhlcrFrZdKIWNEOauzofg31BbEikp87OTKy9uFi9ezMCBAxk1ahSHDx8mICCAVq1acfPmzaduv3v3brp3787777/PkSNH6NSpE506deLEiSxO2bxxFAS8CRXaGOFdCCFUOnbrGGMOf4ij6wUq2/Vh084gRoWd4VFK5oaKCyFMlI0NdJylTbK7fnimX6a8WyowMJA6deowc+ZMAPR6PX5+fvTp04ehQ4c+sX23bt14+PAhq1evznjupZdeonr16syZM+eFx8volhpfDrcB+8DZw2jvRQiRt/QGPb+c/IVvD39LJe9KTGk0hSL5irD4wBVGrzpJcS8XZr5Zk3I+rqqjCiFy4tAvsKovjI7P1OZ2uRznuVJSUjh06BDDhg3LeM7GxobmzZuzZ8+ep75mz549DBw48LHnWrVqRVhY2FO3T05OJjk5OePP8fHaianvYovtb41z+A6EECoZMJCmT+Odiu/wUcBH2OvtuX//Pm0qeFDOqxqDl0bQYvI67GQBXCHMXD6+s61Cg4QEXF1dXzitg9Li5vbt26Snp+Pj8/gQbB8fH06fPv3U18TExDx1+5iYmKduP3HiRMaMGfPE8ycHRGYztRDC1Az///8JISxXW4Ap7sTHx+Pm5vbcbZUWN3lh2LBhj7X0xMXFUaJECaKjo3F3d1eYzDIkJCTg5+fHlStXXvjLJl5Mzqdxyfk0PjmnxiXnM+tcXV/czay0uPH29sbW1pbY2Mcn4IqNjcXX9+nrv/j6+mZpe0dHRxwdHZ943t3dXX6RjMjNzU3OpxHJ+TQuOZ/GJ+fUuOR8GpfSjmgHBwdq1arF5s2bM57T6/Vs3ryZevXqPfU19erVe2x7gI0bNz5zeyGEEEJYF+XdUgMHDqRnz57Url2bunXrMmPGDB4+fEivXr0A6NGjB0WLFmXixIkA9OvXj8aNGzN9+nTatm3LokWLOHjwIPPmzVP5NoQQQghhIpQXN926dePWrVuEhIQQExND9erVWbduXcZNw9HR0dj8z0iH+vXrs3DhQoKDgxk+fDhly5YlLCyMKlWqZOp4jo6OjBo16qldVSLr5Hwal5xP45LzaXxyTo1LzmfuUD7PjRBCCCGEMcnkD0IIIYSwKFLcCCGEEMKiSHEjhBBCCIsixY0QQgghLIpFFDezZs3C398fJycnAgMD2b9//3O3X7p0KRUqVMDJyYmqVauydu3ax35uMBgICQmhcOHCODs707x5c86dO5ebb8GkGPt8vvvuu+h0uscerVu3zs23YFKycj5PnjzJa6+9hr+/PzqdjhkzZuR4n5bG2Odz9OjRT/x+VqhQIRffgWnJyvmcP38+DRs2xNPTE09PT5o3b/7E9vL5adzzae2fn9lmMHOLFi0yODg4GH766SfDyZMnDR9++KHBw8PDEBsb+9Ttw8PDDba2toYpU6YYTp06ZQgODjbY29sbjh8/nrHNpEmTDO7u7oawsDBDRESEoUOHDoaSJUsaHj16lFdvS5ncOJ89e/Y0tG7d2nDjxo2Mx927d/PqLSmV1fO5f/9+w+DBgw1//vmnwdfX1/D111/neJ+WJDfO56hRowyVK1d+7Pfz1q1bufxOTENWz+ebb75pmDVrluHIkSOGyMhIw7vvvmtwd3c3XL16NWMb+fw07vm05s/PnDD74qZu3bqG3r17Z/w5PT3dUKRIEcPEiROfun3Xrl0Nbdu2fey5wMBAw8cff2wwGAwGvV5v8PX1NUydOjXj53FxcQZHR0fDn3/+mQvvwLQY+3waDNrF2bFjx1zJa+qyej7/V4kSJZ76j3FO9mnucuN8jho1yhAQEGDElOYjp79LaWlpBldXV8Mvv/xiMBjk89PY59NgsO7Pz5ww626plJQUDh06RPPmzTOes7GxoXnz5uzZs+epr9mzZ89j2wO0atUqY/uoqChiYmIe28bd3Z3AwMBn7tNS5Mb5/I9t27ZRqFAhypcvz6effsqdO3eM/wZMTHbOp4p9movcfO/nzp2jSJEilCpVirfeeovo6OicxjV5xjifiYmJpKam4uXlBcjnp7HP539Y4+dnTpl1cXP79m3S09MzZjP+Dx8fH2JiYp76mpiYmOdu/5//z8o+LUVunE+A1q1b8+uvv7J582YmT57M9u3beeWVV0hPTzf+mzAh2TmfKvZpLnLrvQcGBrJgwQLWrVvH7NmziYqKomHDhty/fz+nkU2aMc7nkCFDKFKkSMY/6PL5adzzCdb7+ZlTypdfEJbvjTfeyPjvqlWrUq1aNUqXLs22bdto1qyZwmRCwCuvvJLx39WqVSMwMJASJUqwZMkS3n//fYXJTNukSZNYtGgR27Ztw8nJSXUcs/es8ymfn9lj1i033t7e2NraEhsb+9jzsbGx+Pr6PvU1vr6+z93+P/+flX1aitw4n09TqlQpvL29OX/+fM5Dm7DsnE8V+zQXefXePTw8KFeunPx+Pse0adOYNGkSGzZsoFq1ahnPy+encc/n01jL52dOmXVx4+DgQK1atdi8eXPGc3q9ns2bN1OvXr2nvqZevXqPbQ+wcePGjO1LliyJr6/vY9skJCSwb9++Z+7TUuTG+Xyaq1evcufOHQoXLmyc4CYqO+dTxT7NRV699wcPHnDhwgX5/XyGKVOmMG7cONatW0ft2rUf+5l8fhr3fD6NtXx+5pjqO5pzatGiRQZHR0fDggULDKdOnTJ89NFHBg8PD0NMTIzBYDAY3nnnHcPQoUMztg8PDzfY2dkZpk2bZoiMjDSMGjXqqUPBPTw8DCtWrDAcO3bM0LFjR6saymjM83n//n3D4MGDDXv27DFERUUZNm3aZKhZs6ahbNmyhqSkJCXvMS9l9XwmJycbjhw5Yjhy5IihcOHChsGDBxuOHDliOHfuXKb3acly43wOGjTIsG3bNkNUVJQhPDzc0Lx5c4O3t7fh5s2bef7+8lpWz+ekSZMMDg4OhmXLlj02NPn+/fuPbSOfn8Y5n9b++ZkTZl/cGAwGw3fffWcoXry4wcHBwVC3bl3D3r17M37WuHFjQ8+ePR/bfsmSJYZy5coZHBwcDJUrVzasWbPmsZ/r9XrDyJEjDT4+PgZHR0dDs2bNDGfOnMmLt2ISjHk+ExMTDS1btjQULFjQYG9vbyhRooThww8/tIp/iP8jK+czKirKADzxaNy4cab3aemMfT67detmKFy4sMHBwcFQtGhRQ7du3Qznz5/Pw3ekVlbOZ4kSJZ56PkeNGpWxjXx+Gu98yudn9ukMBoMhb9uKhBBCCCFyj1nfcyOEEEII8W9S3AghhBDCokhxI4QQQgiLIsWNEEIIISyKFDdCCCGEsChS3AghhBDCokhxI4QQQgiLIsWNEEIIISyKFDdCCIt16dIldDodR48eVR1FCJGHpLgRQgghhEWR4kYIIYQQFkWKGyGEWVu3bh0NGjTAw8ODAgUK0K5dOy5cuKA6lhBCISluhBBm7eHDhwwcOJCDBw+yefNmbGxs6Ny5M3q9XnU0IYQisiq4EMKi3L59m4IFC3L8+HHy589PyZIlOXLkCNWrV1cdTQiRR6TlRghh1s6dO0f37t0pVaoUbm5u+Pv7AxAdHa02mBBCGTvVAYQQIifat29PiRIlmD9/PkWKFEGv11OlShVSUlJURxNCKCLFjRDCbN25c4czZ84wf/58GjZsCMCuXbsUpxJCqCbFjRDCbHl6elKgQAHmzZtH4cKFiY6OZujQoapjCSEUk3tuhBBmy8bGhkWLFnHo0CGqVKnCgAEDmDp1qupYQgjFZLSUEEIIISyKtNwIIYQQwqJIcSOEEEIIiyLFjRBCCCEsihQ3QgghhLAoUtwIIYQQwqJIcSPE/7VbBzIAAAAAg/yt7/EVRQCsyA0AsCI3AMCK3AAAK3IDAKzIDQCwEvsHprSTp1b8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGsUlEQVR4nOzdd1wU1/rH8c/SQQFBFCwo9g52olhjjd0kakzRmMTExFiiJjbEhl0TTTRqTDHNxJKINfaOvWHDjmIDK6Aidff3x/wu9xobZeFsed73ta8bl9mZ747M+uw5c87RGQwGA0IIIYQQFsJGdQAhhBBCCGOS4kYIIYQQFkWKGyGEEEJYFCluhBBCCGFRpLgRQgghhEWR4kYIIYQQFkWKGyGEEEJYFCluhBBCCGFRpLgRQgghhEWxuuLGYDCQkJCATMwshBBCWCalxc2OHTto3749RYsWRafTERYW9sLXbNu2jZo1a+Lo6EjZsmVZuHBhlo55//593N3duX//fvZCCyGEEMKkKS1uHj58SEBAAHPmzMnU9lFRUbRt25amTZty9OhRBg4cyAcffMD69etzOakQQgghzIXOVBbO1Ol0LF++nE6dOj1zm6FDh7JmzRpOnDiR8dwbb7xBXFwc69aty9RxEhIScHd3Jz4+Hjc3t5zGFkIIIUQeMBgM6HS6TG1rVvfc7Nmzh+bNmz/2XKtWrdizZ88zX5OcnExCQsJjD4D7Sam5mlUIIYQQxrPiwopMb2tWxU1MTAze3t6PPeft7U1CQgKPHj166msmTZqEu7t7xsPX1xeA6evP5HpeIYQQQuRczMMYpuyfkuntzaq4yY7hw4cTHx+f8bhy5QoAfx2+xtYzNxWnE0IIIcTzGAwGQsJDcLF3yfRrzKq48fHxITY29rHnYmNjcXNzw9nZ+amvcXR0xM3N7bEHQP2yBRn21zHiE6V7SgghhDBVS88uZc+NPYyrPy7TrzGr4qZevXps3rz5sec2btxIvXr1sryvcR2qkJiSzphVJ40VTwghhBBGdOX+FaYfnE6X8l0IKhaU6dcpLW4ePHjA0aNHOXr0KKAN9T569CjR0dGA1qXUo0ePjO379OnDxYsX+eKLLzh9+jTffvstS5Ys4bPPPsvysX3cnRnTvgrLj1xj3YkYo7wfIYQQQhiH3qAneFcwnk6eDK49OEuvtculTJly8OBBmjZtmvHnQYMGAdCzZ08WLlzIjRs3MgodgFKlSrFmzRo+++wzZs2aRfHixfn+++9p1apVto7/as1irDsZw8jlx6nj50HB/I45e0NCiLx1MgyO/Pb8bZw9oPUkyOeVJ5GEEMbx26nfOHzzMD+2+pF89vmy9FqTmecmr/x7nptb95Np+dV2XipdkG/fqpnpMfRCCMVunYX5DaFwZXAr+uztLu2CUo2g6y8g17cQZuFi/EW6rupKl/JdGFp3aJZfr7TlxhQUcnUktFM1+i46zMqI63SsXkx1JCHEi6SnQVgfcC8O764Bh+eMoji5HJa+Cyf+gmqv51lEIUT2pOnTCN4VTJF8Rehfs3+29mFWNxTnlrb+RWjnX4SQFSe5mZCkOo4Q4kV2z4LrR6DTvOcXNgBVOkOVV2HNYLgv99cJYeoWnlzIyTsnCW0QirPd00dCv4gUN/9vfMeq2NvaMOzv47JiuBCmLOYEbJ0E9fuDb53MvabtDLB1gJX9Qa5vIUzWmbtnmHN0Dr2q9CKgUEC29yPFzf/zyOfA5FerseX0TZYeuqo6jhDiadJStO6ogmWh6YjMv87FEzp8DefWw9Hfcy+fECLbUtNTCQ4Pxs/Nj0+qf5KjfUlx8z+aV/bmtZrFGbfqFNfinr6cgxBCoR3T4GYkdJ4Hdlkc3VjhFQh4E/4ZBnFXciefECLb5h+bz/l755nQYAIOtg452pcUN/8S0r4yrk52DF12DL1emq+FMBnXDsPOGdDocyhaPXv7aD0JnNxg5aeg1xs1nhAi+07ePsn3x7/nQ/8PqVywco73J8XNv7g72zPlNX92nb/N7/suq44jhABITYLlfcCnKjTM2mRej3EuAB2+gYvb4OAPxkonhMiB5PRkRuwaQXmP8nzg/4FR9inFzVM0Kl+ItwJLMHHtaS7feag6jhBi6wS4F6WNjrK1z9m+yjaD2u/BxhC4e9E4+YQQ2TbnyByu3L/CxAYTsbfJ4fX9/6S4eYYRbSrh5erAkKURpEv3lBDqRO+F3d9oNxB757y5GoAW4yFfIQj7BPTpxtmnECLLjt48ysKTC/m0xqeU9ShrtP1KcfMM+RztmP56AAcv3+On8CjVcYSwTikPIexjKF5bG/ptLI75odO3WuG0d67x9iuEyLTE1ERG7hqJfyF/elbuadR9S3HzHIGlC/JeUCmmrj/D+Zv3VccRwvpsGgMJN7TuKBtb4+7brwG89DFsHge3zhh330KIF5p1eBY3E28SGhSKrZGvbyluXuDzVhUo7uHM4CURpKXL6Aoh8szF7bD/O2g+BryM11z9mGYhUKCEdrNyelruHEMI8YR9N/ax6PQiBtYaiJ+7n9H3L8XNCzjZ2zKjSwDHr8Uzf4fcfChEnkhKgBV9wa8h1P0w945j76zNmXPjKIR/lXvHEUJkeJDygJDwEOr41KF7xe65cgwpbjKhRgkP+jQuw8xNZzl1PUF1HCEs34aR8OgedJwNNrn8MVW8NgQNhG1TIOZ47h5LCMH0g9OJS45jXP1x2Ohy5/qW4iaTBjQvR5lC+Rm8NIKUNOmeEiLXnN0Ah3+BlqHg4Zc3x2wyDLzKa91TaSl5c0whrNDOqzv569xfDKkzhOKuxXPtOFLcZJKjnS0zugZwLvY+32w5pzqOEJYp8S6s7AdlmkGtd/PuuHaO0Hku3DoNO6bm3XGFsCLxyfGM2T2GoKJBvF7u9Vw9lhQ3WVClqDv9m5Xj220XiLgSpzqOEJbnn6GQ9kjrjtLp8vbYRQKg0Rew80u4dihvjy2EFZi8fzKP0h4xpv4YdLl8fUtxk0UfNylD5SJuDF4aQVKqTP4lhNGcWgnHl8ArU8GtqJoMDQeBTzVY/jGkyuK5QhjL5ujNrL64mmGBw/DJ55Prx5PiJovsbW34smsA0XcT+XLjWdVxhLAMD2/D6s+gYjvw76Yuh629NnrqXhRsCVWXQwgLcjfpLuP2jKOpb1Pal26fJ8eU4iYbynm7MrhFeRbsvMiBS3dVxxHCvBkMsHogGPTQ7qu87476t8KV4OVg2DMHLu9Rm0UIM2cwGAjdG4reoCekXkiud0f9hxQ32fRBw9LULOHBkKURJKbI5F9CZNvxZRC5Sits8hdWnUZT71Pwrast/ZAii+cKkV3/RP3DxssbCX4pGC9nrzw7rhQ32WRro2N6lwBiE5KY/M9p1XGEME8JN2DtEKj6GlTppDrNf9nYQqe5cD8GNo5WnUYIs3Qz8SYT9k2gtV9rWvm1ytNjS3GTA6W88jH8lUr8sucy4edvq44jhHkxGGBVf20YdpvpqtM8qWAZaDEWDiyAi9tUpxHCrBgMBsbuGYu9jT0jA0fm+fGluMmhd14qSb3SBfli2THuJ6WqjiOE+TjyG5zbAO2/BhdP1Wmerk5vbQmIsL6QFK86jRBmI+x8GDuu7mBM/TEUcCqQ58eX4iaHbGx0TH3dn/hHqYSujlQdRwjzEBcN64ZD9behQmvVaZ7NxgY6zoGkOFg/QnUaIczC9QfXmXJgCh3LdKSJbxMlGaS4MQJfTxeC21Zi8cErbDkdqzqOEKZNr9cWxXRyh9YTVad5MY+S0Gqi1tJ0dr3qNEKYNL1BT8juEFwdXBlad6iyHFLcGEm3Or40qVCIYX8dJy5R1qYR4pkO/gBRO7RZiJ3cVafJnJo9oGwLbWmIRJn+QYhnWXJmCftu7GNs/bG4OrgqyyHFjZHodDqmvOZPUmo6o1eeVB1HCNN05wJsDIHa70OZpqrTZJ5OBx2+hrQk+OcL1WmEMEnRCdF8eehLulXoRv2i9ZVmkeLGiLzdnBjXsSorjl7nn+M3VMcRwrTo07XuqPyFocU41Wmyzq0ovDINji+FUytUpxHCpKTr0wkOD6agU0EG1RqkOo4UN8bWsXpRWlXxZmTYCW4/SFYdRwjTsfdbiN6rzR/jmF91muzx76otEbH6M3hwS3UaIUzGb5G/cfTmUcYHjcfF3kV1HClujE2n0zGhczUARi4/jsFgUJxICBNw6wxsHg/1+kJJtc3VOaLTQbuZ2n+vHqjN1SOElbsQd4GvD3/N25XfprZPbdVxAClucoVXfkcmdKrK+pOxrDh6XXUcIdRKT4PlfbRRRy8Hq06Tc/kLQdsv4fRqrYtKCCuWpk8jeFcwxVyL0b9Gf9VxMkhxk0teqVaEjtWLErLiBDHxSarjCKFO+Fdw4yh0mgf2zqrTGEeVTlD1dW3piAT5AiOs148nfuTU3VOEBoXiZOekOk4GKW5y0dgOVXCyt2XY38eke0pYp5jjsG0KNPgMitdSnca42kwDOydY2V+6p4RVOnP3DHMj5vJ+1ffxL+SvOs5jpLjJRQVcHJj8WjW2nbnF4gNXVMcRIm+lpWjdUYUqQGN1k3nlGhdP6PANnN8Ih39RnUaIPJWansqIXSMo5V6KPgF9VMd5ghQ3uezlit50rV2c8atPceVuouo4QuSd7VPg1mltdJSdo+o0uaN8K6jxtrY0w73LqtMIkWfmRszlYtxFJjaYiIOtg+o4T5DiJg+MaleZAi4OfLHsGHq9NF8LK3D1EOz6SmuxKWJazdVG12oSOBXQ5vDR61WnESLXnbh9gh9P/MhHAR9R0bOi6jhPJcVNHnB1smfq6/7suXiHX/fKtzth4VIfQVgfrahpoH4yr1zn5KYtJXFpJxz4XnUaIXJVUloSI3eNpKJnRd6v9r7qOM8kxU0eCSrrRY96JZn0TyRRtx+qjiNE7tkSqnXRdJoHtnaq0+SNMk2hzgfa0hJ3LqhOI0SumX1kNlfvX2VCgwnY29irjvNMUtzkoWGvVMTbzYkhSyNIl+4pYYku74Y9c7T5bAqbZnN1rmk+Flx9IOxjbakJISzM4djD/HLqF/rV6EeZAmVUx3kuKW7ykIuDHdO7BHA4+h7f77yoOo4QxpX8QPuH3TdQm4nY2jjm126evrIf9sxWnUYIo0pMTSQ4PJjqhavzTuV3VMd5ISlu8lgdP08+aFCKGRvOcjb2vuo4QhjPptHw4CZ0+hZsbFWnUaNkPa2w2zIBbp5WnUYIo/nq0FfcfnSb0KBQbM3g+pbiRoHBLStQoqALg5dEkJouoyuEBbiwVbuZtvlYKGjazdW57uVgbamJsD6Qnqo6jRA5tvfGXv488ycDaw6khFsJ1XEyRYobBZzsbZnRJYBTNxKYu01uPhRmLikeVnwKpRppN9VaO3tn7WbqG8e04fBCmLEHKQ8ICQ+hrk9d3qj4huo4mSbFjSIBvgX4pEkZvt58jhPX4lXHESL71o/QCpyOc8BGPlIAbamJBp9pExneOKY6jRDZNu3gNBJSEhgXNA4bnflc3+aT1AL1e7kc5bxdGbI0guQ0GV0hzNDZ9XDkN2g9EQqYR3N1nmk8FApV1JagSEtWnUaILNtxdQd/n/ubz2t/TrH8xVTHyRIpbhRysLPhy64BXLj1gFmbzqmOI0TWJN6Flf2gXEuoYfqjJ/KcnQN0nge3z2otOEKYkfjkeMbsHkODYg14tdyrquNkmRQ3ilUq4saAZuWYt/0CR6LvqY4jROat/RzSkqD916DTqU5jmnyqaS04u76CqwdVpxEi0ybum0hSehJj649FZ4bXtxQ3JqBP4zJUK+bO4KURJKVK95QwAyfD4MQyaDMd3IqoTmPaGnwGRapr3VOpj1SnEeKFNl7eyNqotYwIHEFhl8Kq42SLFDcmwM7WhhldA7h67xHT1p9RHUeI53twC9YMgortoFoX1WlMn62d1j0VFw2bx6tOI8Rz3Xl0h/F7xtO8RHPalmqrOk62SXFjIsoWduWLVhX4MTyKfRfvqI4jxNMZDLB6oPbf7WZKd1RmFaoAzUbB3m/hUrjqNEI8lcFgIHRvKADBLwWbZXfUf0hxY0J6BZWidkkPhiyL4GFymuo4Qjzp2BI4vRrafQX5C6lOY15e+kRbmiLsY22pCiFMzJqoNWyK3kRIvRAKOhdUHSdHpLgxIbY2OqZ3CeD2/RQm/ROpOo4Qj0u4Dv98DlVfh8odVacxPza22tIUD29pq4cLYUJuJt5k4r6JtCnVhuYlm6uOk2NS3JiYkgXzMaJNRX7bG83Oc7dUxxFCYzBow77tnKHNNNVpzFfBMtBiHBz8AS5sUZ1GCEDrjhq9ezROtk6MCByhOo5RSHFjgt4KLEmDsl58sewY8Y9kbRphAg7/Auc3QYevwcVTdRrzVvt9KNVYW7LiUZzqNEKw/Pxydl3bxZj6Y3B3dFcdxyikuDFBNjY6przuz4OkNMavPqU6jrB29y5rSyzUeBvKt1KdxvzZ2GhLVSQlaOdVCIWuP7jO1ANTebXcqzQq3kh1HKOR4sZEFSvgzKj2lVl26CqbTsWqjiOslV4PK/qCswe0mqQ6jeUo4AutJ8HR3+HMP6rTCCulN+gJCQ/BzcGNz2t/rjqOUUlxY8K61CpOs4qFGfb3ce49TFEdR1ijA9/DpZ3QcTY4ualOY1lqvA3lWsHK/tpSFkLksT9P/8m+mH2MCxpHfof8quMYlRQ3Jkyn0zHp1WqkpusJWXlSdRxhbe5c0Eb11OkNpZuoTmN5dDrtHqb0FFg7RHUaYWUuJ1xm5uGZvFHhDV4q8pLqOEYnxY2JK+zmxLiOVVgVcZ01x26ojiOshT5dm4/F1QdajFWdxnK5+kDbGXDiLzi5XHUaYSXS9ekE7wrGy9mLz2p9pjpOrpDixgx0CChKm2o+BIcd59b9ZNVxhDXYMxuu7NeWDXDIpzqNZav6GlTqAKsHwYObqtMIK/DrqV+JuBVBaFAoLvYuquPkCiluzIBOp2N8x6rY6HSMWH4cg8GgOpKwZDcjYUso1OsLJSyvudrk6HTajM86G1g1UJtTSIhcciHuAt8c+YYelXtQ07um6ji5RnlxM2fOHPz8/HByciIwMJD9+/c/d/uZM2dSoUIFnJ2d8fX15bPPPiMpKSmP0qpTML8jE1+txsZTsSw/ck11HGGp0lO11as9SsHLo1SnsR75vKD9TDizBo4tVp1GWKhUfSojd42kuGtx+tXspzpOrlJa3CxevJhBgwYxevRoDh8+TEBAAK1ateLmzac3zS5atIhhw4YxevRoIiMj+eGHH1i8eDEjRljHXBGtqvjQuUYxRq88yY34R6rjCEu06yuIOQ6d54K9k+o01qVSe/DvBmu/gHj5AiOM74fjP3D67mkmNJiAo62j6ji5Smlx8+WXX9K7d2969epF5cqVmTdvHi4uLvz4449P3X737t0EBQXx5ptv4ufnR8uWLenevfsLW3ssyZj2VXBxsGXoX9I9JYzsRgRsnwINB0GxWqrTWKdXpoCDi7bUhVzfwohO3z3N/Ij5vF/tfap6VVUdJ9cpK25SUlI4dOgQzZv/d4EuGxsbmjdvzp49e576mvr163Po0KGMYubixYusXbuWNm3aPPM4ycnJJCQkPPYwZ+4u9kx5zZ8dZ2/x54ErquMIS5GWrHVHFaoEjb5QncZ6OXtAh2/gwmY4tFB1GmEhUtJTGLFrBGUKlKGPfx/VcfKEsuLm9u3bpKen4+3t/djz3t7exMTEPPU1b775JuPGjaNBgwbY29tTpkwZmjRp8txuqUmTJuHu7p7x8PX1Ner7UKFJhcK8UceX0NWnuHI3UXUcYQm2TYbb57TRUXYOqtNYt3ItoGYP2BAM9y6pTiMswLyIeUTFRzGhwQTsbe1Vx8kTym8ozopt27YxceJEvv32Ww4fPszff//NmjVrGD9+/DNfM3z4cOLj4zMeV65YRmvHyLaVKODiwOfLItDrpfla5MCVAxA+E5oMBR/Lb642Cy0ngLMnhPXVlsAQIpuO3TrGDyd+4OOAj6ngWUF1nDyjrLjx8vLC1taW2NjH102KjY3Fx8fnqa8ZNWoU77zzDh988AHVqlWjc+fOTJw4kUmTJqF/xgeAo6Mjbm5ujz0sgauTPdO6+LP34l1+3nNJdRxhrlISIawPFKkOQZY5mZdZcnKDTnPg8i7Y/53qNMJMJaUlMXLXSCp7Vua9qu+pjpOnlBU3Dg4O1KpVi82bN2c8p9fr2bx5M/Xq1XvqaxITE7GxeTyyra0tgFXeXFu/jBfv1vdjyrrTXLz1QHUcYY62jIe4K1p3lK2d6jTif5VqBHU/gk1j4PZ51WmEGfr6yNdcf3CdCQ0mYGdjXde30m6pQYMGsWDBAn7++WciIyP5+OOPefjwIb169QKgR48eDB8+PGP79u3bM3fuXP7880+ioqLYuHEjo0aNon379hlFjrX5onUFfNycGLI0gnTpnhJZcWkX7J0LzUKgkPU0V5uV5qPBrYjWuqZPV51GmJGDMQf57dRv9K/Zn9IFSquOk+eUlnLdunXj1q1bhISEEBMTQ/Xq1Vm3bl3GTcbR0dGPtdQEBwej0+kIDg7m2rVrFCpUiPbt2zNhwgRVb0E5Fwc7ZnQNoMu8PSzYeZE+jcuojiTMQfIDCPsEStSDlz5RnUY8i0M+6DQPfmoNu7+GBtJ1KF4sMTWR4PBgahSuwduV3lYdRwmdwcr6cxISEnB3dyc+Pt5i7r8BmLQ2kp/CL7GqXwMq+LiqjiNM3erPIGIxfLwLPK3vW53Z2TAK9s2DD7eDd2XVaYSJC90bysoLK/mr/V/4upn/COHsMKvRUuLZPmtRnpIFXRi89Cip6TK6QjzH+U1w8EdttW8pbMxD05Ha39Xyj7QlMoR4ht3Xd7P4zGIG1RpktYUNSHFjMZzsbZnRNYDIG/eZs1VuPhTP8CgOVvSD0k2g9vuq04jMsnfSbvqOPQk7Z6hOI0zU/ZT7hISH8FKRl+haoavqOEpJcWNB/IsXoG+TMszecp4T1+JVxxGmaN1wSHkAHWaDjVz+ZqVoDWg0BHZMg+tHVacRJmjK/ik8TH3IuPrjsNFZ9/Vt3e/eAn36cjnKe7syaMlRktNkdIX4H6fXQsQiaD0JClhvc7VZazgEClfSlspIS1adRpiQbVe2seLCCr6o8wVF8hdRHUc5KW4sjIOdDV92CyDq9kNmbjqnOo4wFYl3YdUAKN8aqr+lOo3ILjsH6Dwf7pyHrRNVpxEmIi4pjjG7x9C4eGM6le2kOo5JkOLGAlX0cWNg8/LM336Bw9H3VMcRpmDNYEhPgfazQKdTnUbkhHcVaDpcGxp+Zb/qNMIETNg3gVR9KqPrjUYn1zcgxY3F+qhRafyLF2DwkggepUj3lFU78Tec/BvazgDXpy9tIsxM/QFQtKbWPZUii+das/WX1rPu0jpGBo6kkEsh1XFMhhQ3FsrO1obpXQK4HveIqetPq44jVLkfq7XaVO4IVV9TnUYYi62dNnoq4RpsHqc6jVDk9qPbhO4NpUXJFrxS6hXVcUyKFDcWrGzh/HzeqgI/hV9iz4U7quOIvGYwwOqBoLOBtl9Kd5Sl8SoHzUbDvrkQtVN1GpHHDAYD4/Zoo6KCXwqW7qh/keLGwr0XVIq6pTz5fFkED5LTVMcReSniTzizVrvPJp+X6jQiNwT2gZJBsOITSL6vOo3IQ6surmLrla2E1AvB08lTdRyTI8WNhbOx0TH99QDuPkxhwppI1XFEXom/Bv8MBf9uUKmd6jQit9jYQMc58PAObAhWnUbkkZiHMUzeN5l2pdvRrEQz1XFMkhQ3VqBEQRdGtKnEH/uj2X72luo4IrcZDLDyU3BwgVemqE4jcptnKWg5Hg4t1JbWEBbNYDAwZvcYnO2cGVZ3mOo4JkuKGyvxVmAJGpbzYuiyY8Q/krVpLNqhn+DCFm0WYmcP1WlEXqj9HpRuqi2t8ShOdRqRi5adW0b49XDGBo3F3dFddRyTJcWNldDpdEx5zZ+HyWmMXXVSdRyRW+5GwfpgqNkTyjVXnUbkFZ0OOs7WltZYJ9/mLdXV+1eZfmA6r5V7jQbFGqiOY9KkuLEiRQs4M7pDFf4+fI0NJ2NUxxHGptfDik/BpSC0mqA6jchr7sW1bsiIP+D0GtVphJHpDXpGhY+igGMBPq/zueo4Jk+KGyvzWs1iNK9UmBHLj3P3YYrqOMKY9s+Hy7ug0xxwdFWdRqgQ0B3Kv6IttfFQpn+wJH+c/oODsQcZHzSefPb5VMcxeVLcWBmdTsfEV6uRpjcQHHYcg8GgOpIwhtvnYNMYqPsRlGqkOo1QRafThv7r02DNINVphJFExUfx1aGveLPim9QtUld1HLMgxY0VKuzqxPiOVVl7PIZVx26ojiNySp8OYR+DWzFoPkZ1GqGaq7e21MapMDjxl+o0IofS9ekEhwfjk8+HgbUGqo5jNqS4sVLtA4rS1r8IIStOcDMhSXUckRO7v4Zrh6DTXG34txBVX4MqnbWlN+7Hqk4jcmDhyYWcuH2C0KBQnO2cVccxG1LcWLHxHatiZ6Nj+N/SPWW2Yk/B1olQvx+UCFSdRpiSNjPAxg5W9dfmPhJm59y9c8w5OoeelXtSvXB11XHMihQ3VswznwOTXvVn8+mbLDt0VXUckVXpqbD8I/AsDU1GqE4jTE2+gtr9N2fXwdFFqtOILErVpzJy10hKuJagb42+quOYHSlurFyLyt68WrMY41ad4lrcI9VxRFbsmA6xJ7XVoe2dVKcRpqhiW20E1bphEC9fYMzJgmMLOHvvLBMaTsDR1lF1HLMjxY1gdPsq5HO0Y+iyY9I9ZS6uH4Gd06HREChaQ3UaYcpaTwaH/NocSHJ9m4WTd06y4NgCevv3pkrBKqrjmCUpbgTuzvZMed2fXedv89u+aNVxxIukJcPyj6FwZWg4RHUaYeqcC0DHb+DiVjj4o+o04gVS0lMI3hVMOY9yfFjtQ9VxzJYUNwKAxuUL8WZgCSatjST6TqLqOOJ5tk6EO+e17ig7B9VphDko2xxqvQsbRmlLdAiTNefoHC4lXCK0QSj2tvaq45gtKW5EhhFtKuGZz4EhSyPQ66X52iRd2a8N/W46AryluVpkQctQ7SbjFX21pTqEyTl68ygLTy6kb/W+lPcorzqOWZPiRmTI72jH9C4B7L90lx/D5dudyUlJhOV9oGhNqN9fdRphbhxdoeO3cDkc9s1TnUb8y6O0RwSHB1O1YFXerfKu6jhmT4ob8ZiXShekV5Af09af4cKtB6rjiP+1eSwkXNO6o2ztVKcR5qhUQwjso/0u3T6nOo34H7MOzyLmYQyhDUKxs5HrO6ekuBFP+KJVRYoVcGbwkgjS0qX52iRE7dC+bTcbDV7lVKcR5qzZaG2pjuV9ID1NdRoB7L+xn98jf2dAzQGUci+lOo5FkOJGPMHZwZbpXQM4djWO+Tsuqo4jku9r90mUbKB96xYiJxxctNa/64dh9yzVaazew9SHhOwOobZ3bd6q9JbqOBZDihvxVDVLePBR4zLM3HSWyBsJquNYtw3B8PAOdJwNNnLJCiPwravdt7V1kjYRpFBm+sHp3E26y7igcdjo5Po2FjmT4pkGNi9Haa/8DF4SQUqadE8pcW4THFoIrULBU5qrhRE1HQEFy2pLeKSlqE5jlcKvhbPs7DKG1B6Cr6uv6jgWRYob8UyOdrbM6BrA2dj7zN56XnUc6/PoHqzsB2Vehlq9VKcRlsbOUeueuhmpzXYt8lRCSgIhu0OoX7Q+Xcp3UR3H4khxI56rajF3Pn25LHO2nufY1TjVcazLP8Mg5SF0+AZ0OtVphCUqWh0afa6tU3btsOo0VmXK/ik8Sn3E2Ppj0cn1bXRS3IgX6tu0LJWKuDJ4SQRJqemq41iHyNVw7E94ZTK4F1edRliyhoPBpyqEfQypSarTWIUt0VtYeWElQ+sOxSefj+o4FkmKG/FC9rY2fNm1OpfvJPLVxrOq41i+h7dh9UCo0EZb0VmI3GRrD53mwd2LsHWC6jQW717SPcbuGUsT3yZ0KNNBdRyLJcWNyJTy3q4Malme73Ze5NDlu6rjWC6DAdYMAn0atJsp3VEib3hX1m4w3v0NRO9Tncaihe4NJd2Qzuh6o6U7KhdJcSMyrXfD0tTwLcDgJREkpsjkX7nixF9wagW0nQGu3qrTCGtSvz8Urw1hfbR7vYTRrYtax4bLGwgODMbL2Ut1HIsmxY3INFsbHdO7BBCTkMTUdWdUx7E892NgzWCo0hmqvqY6jbA2NrZa91TCDdg0VnUai3P70W1C94XSyq8VrUu1Vh3H4klxI7KkdKH8DG1dkYW7L7H7/G3VcSyHwQCrBoCtA7SZoTqNsFZeZaH5aNg/X1vyQxiFwWBgzO4x2OpsGRk4UnUcqyDFjciynvX8eKm0J58vO8b9pFTVcSzD0d/h7DpoPwvyFVSdRlizuh9pS32E9YUkmZ3cGFZcWMH2q9sZU28MHk4equNYBSluRJbZ2OiY9noAcYkpTFgTqTqO+Yu7AuuGQ8CbULGN6jTC2tnYQKc58OgubJBWhpyKeRjDlP1T6FCmA01LNFUdx2pIcSOyxdfThZFtK/PngStsPXNTdRzzZTDAyk/BIT+0nqQ6jRAaDz9oGQqHf4FzG1WnMVsGg4GQ8BBc7F0YWneo6jhWRYobkW3d6/rSqHwhhi47RnyidE9ly8Ef4OI2bVFM5wKq0wjxX7XehTLNtCVAHt1TncYsLT27lD039jCu/jjcHNxUx7EqUtyIbNPpdEx5rRqPUtMZs0pWFs6yuxdhwyht3aiyzVSnEeJxOp229EdKIvwjrQ5ZdeX+FaYfnM7r5V8nqFiQ6jhWR4obkSNF3J0Z26EKy49cY92JG6rjmA99unbDZr5C0HK86jRCPJ17MWgzFY4thshVqtOYDb1Bz6jwUXg6eTKk9hDVcaySFDcixzrXKEaLyt6MXH6COw+SVccxD3vnQvRu6PQtOLqqTiPEs/l3gwptYdVAbWkQ8UK/R/7OodhDjA8aTz77fKrjWCUpbkSO6XQ6Jnauht5gYOTyExgMBtWRTNuts7B5HLz0Cfg1UJ1GiOfT6aD9TDDotTXP5Pp+rqj4KGYdnsXbld6mjk8d1XGslhQ3wigKuToS2qka607GsDLiuuo4pis9TZvevoAvNAtRnUaIzMlfGNp9qXVNHV+mOo3JStOnEbwrmCL5itC/Zn/VcayaFDfCaNr6F6F9QFFCVpwkNiFJdRzTFD4Trh/Rprm3d1adRojM+8+yIGuHaEs0iCcsPLmQE3dOENogFGc7ub5VkuJGGNW4DlVwsLNh2F/HpHvq32JOwLbJEDQAfKW5WpihNtPBzhFW9ZfuqX85e+8sc47OoVeVXgQUClAdx+pJcSOMyiOfA5M6V2PrmVssPXhVdRzTkZYCy/uAVzloMlx1GiGyx8VTWyLk3AY48pvqNCYjNT2VkbtG4ufmxyfVP1EdRyDFjcgFzSt783qt4oxbfYqr9xJVxzENO6bBrUjoPE/75iuEuarwClR/S1syJC5adRqT8N3x7zh/7zwTG0zEwdZBdRyBFDcil4S0r4yrkx1fLDuGXm/lzdfXDsHOGdDoCygizdXCArSeBE7usOJT0OtVp1Hq5O2TLDi2gA8DPqRSwUqq44j/J8WNyBVuTvZMec2f3Rfu8Nu+y6rjqJOaBMs/Bp9q0HCQ6jRCGIeTO3T8BqK2a0uIWKnk9GRG7hpJBc8KfFDtA9VxxP+Q4kbkmkblC/FWYAkmrT3NpdsPVcdRY2so3IvSuqNs7VWnEcJ4yrwMtd+HjSFw54LqNErMOTKH6PvRTAiagL2NXN+mRIobkatGtKlEIVdHhiyNIN3auqei98Lu2dB0JBSW5mphgVqM0+bAWdFXW1LEihy9eZSFJxfyaY1PKetRVnUc8S9S3Ihclc/Rjmmv+3Mo+h4/7opSHSfvpDyEsI+heB2o3091GiFyh2N+6PitVsjv/VZ1mjyTmJrIyF0j8S/kT8/KPVXHEU8hxY3IdYGlC/JeUCmmbTjDudj7quPkjU1jtInOOs0FG1vVaYTIPX5BUK8vbB4Pt86oTpMnZh2exc3Em0xoMAFbub5NkhQ3Ik983qoCxT2cGbw0grR0Cx9dcXE77P8Omo8BL2muFlbg5WDwKKnN5ZSepjpNrtp3Yx+LTi9iYK2BlHQrqTqOeAYpbkSecLK3ZUaXAE5ci2fuNgu++TApQbv/wK8h1P1QdRoh8oa9s7akyI2jEP6V6jS55kHKA0LCQ6jrU5fuFburjiOeQ4obkWdqlPDg4yZl+HrLOU5dT1AdJ3dsGAmP7kHHOWAjl5ewIsVrQYPPYNsUuHFMdZpcMf3gdOKS4xgXNA4bnVzfpkz5386cOXPw8/PDycmJwMBA9u/f/9zt4+Li6Nu3L0WKFMHR0ZHy5cuzdu3aPEorcqp/s3KUKZSfQUuOkpJmYd1T5zbC4V+gZajWRC+EtWk8FApV0G6mT0tRncaodl7dyV/n/uLzOp9TLH8x1XHEC2S7uNm8eTPt2rWjTJkylClThnbt2rFp06Ys7WPx4sUMGjSI0aNHc/jwYQICAmjVqhU3b9586vYpKSm0aNGCS5cusWzZMs6cOcOCBQsoVkx+0cyFo50tM7oGcP7mA77efE51HONJvKvN1lq2OdR6V3UaIdSwc9Ruor91GnZMVZ3GaOKT4xmzewxBxYJ4rdxrquOITMhWcfPtt9/SunVrXF1dGTBgAAMGDMDNzY02bdowZ86cTO/nyy+/pHfv3vTq1YvKlSszb948XFxc+PHHH5+6/Y8//sjdu3cJCwsjKCgIPz8/GjduTECATGlvTqoUdad/s3LM3X6Bo1fiVMcxjn+GQtoj6PAN6HSq0wihThF/aDwMdn4JVw+pTmMUk/dP5lH6I8bWG4tOrm+zoDMYsr5uffHixRk2bBiffvrpY8/PmTOHiRMncu3atRfuIyUlBRcXF5YtW0anTp0ynu/ZsydxcXGsWLHiide0adMGT09PXFxcWLFiBYUKFeLNN99k6NCh2No+fThecnIyycnJGX9OSEjA19eX+Ph43NzcMvmOhbGlput5be5uHiansaZ/Q5zszXg45amVsOQd6DwfAt5QnUYI9dLT4Ifm2nxPH+3Qbjg2U5svb2bgtoFMbDCR9mXaq44jMskuOy+Ki4ujdevWTzzfsmVLhg4dmql93L59m/T0dLy9vR973tvbm9OnTz/1NRcvXmTLli289dZbrF27lvPnz/PJJ5+QmprK6NGjn/qaSZMmMXbs2ExlEnnH3taGGV0CaPvNLmZsOMPItpVVR8qeh7dh9WdQsR34d1OdJlsMBgNpaZY9fNec2draYmNuN6fb2mmjp+Y3gi2h0GqC6kTZcjfpLuP2juNl35dpV7qd6jgiC7JV3HTo0IHly5fz+eefP/b8ihUraNcu934B9Ho9hQsX5rvvvsPW1pZatWpx7do1pk2b9sziZvjw4Qwa9N8FC//TciPUK+ftypCW5Zn0z2laVvGhjp+n6khZYzDA6oFg0EO7r8yyOyotLY1bt26RjQZckYdcXFxwd3c3ry6RwhW1+W82hkDFtlCyvupEWWIwGBi/ZzwGg4FR9UaZ17kX2StuKleuzIQJE9i2bRv16tUDYO/evYSHhzN48GC+/vrrjG379+//1H14eXlha2tLbGzsY8/Hxsbi4+Pz1NcUKVIEe3v7x7qgKlWqRExMDCkpKTg4ODzxGkdHRxwdHbP8HkXeeL9BaTacjGXwkgjWDWyIi0O2fiXVOL4MIldBl5+19XXMjMFgIC4uDhsbGzw8POTD2wQZDAZSUlJISNCmTihQoIDaQFlVry+cXqONnuoTri3XYCbWRq1lU/QmZjSegZezl+o4Iouydc9NqVKlMrdznY6LFy8+8+eBgYHUrVuXb775BtBaZkqUKMGnn37KsGHDnth+xIgRLFq0iIsXL2Y0086aNYspU6Zw/fr1TGVKSEjA3d1d7rkxIZduP+SVWTvpUrs44zpWVR0ncxJuwLeB2uio159+A7ypS09PJzY2Fg8PD5ydzfeeCGvw4MEDEhIS8PHxMb8uqjsXYF4DqP4mtJ2hOk2m3Ey8SecVnQkqGsTUxpYz6suaZOtrclSUcRZAHDRoED179qR27drUrVuXmTNn8vDhQ3r16gVAjx49KFasGJMmTQLg448/Zvbs2QwYMIB+/fpx7tw5Jk6c+MzWIWEe/LzyMbxNRUJWnKRVFR+Cypr4tySDAVb1BzsnaDNddZps0+u1eYaedTO+MB3/aZVOT083v+KmYBloPhb++Vy7N61MU9WJnstgMDBm9xgcbB0Y+dJI1XFENintA+jWrRu3bt0iJCSEmJgYqlevzrp16zJuMo6Ojn7sQvb19WX9+vV89tln+Pv7U6xYMQYMGJDpm5iF6Xo7sCTrTsTwxbJj/DOwIW5O9qojPduRX+HcBui+GFzM7D6hp5DuKNNn9n9HdT6A06u0uaA+2Q1O7qoTPVPY+TB2XtvJ7Jdn4+5oujnF82W6W2rQoEGMHz+efPnyPXaD7tN8+eWXRgmXG6RbynRdvZdI65k7aVPNh6mvm+jcRXHR8G19qNwROmV+TidTlJqayq1btyhUqBD29iZcTArL+Lv6z7VTpaO2PIkJuv7gOq+ufJUWJVswPmi86jgiBzLdcnPkyBFSU1Mz/vtZzP4bhlCmuIcLo9pVYuhfx2ld1YeXK3q/+EV5Sa/XFsV0cofWE1WnEcK8FCihXTcr+0HF9lDhyelEVNIb9ISEh+Dq4MoXdb5QHUfkUKaLm61btz71v4Uwpq61fVl3Ioahfx1n42ceFHB5cgScMgd/gKgd8E6YSTerW7omTZpQvXp1Zs6cqTqKyKoa72gjDFf1B9+9JtWtu/jMYvbF7OO7Ft/h6uCqOo7IITO7M01YOp1Ox+TX/ElJ0zN65UnVcf7rzgVtvo7a75v8DZFCmCydDtp/DWnJsPbzF2+fR6ITovnq0Fd0q9CNekXrqY4jjCBbxc3Dhw8ZNWoU9evXp2zZspQuXfqxhxA54e3mxNgOVVhx9Dprj99QHQf06RD2iTaXTYtxqtMIYd7cikCbaXBiGZwMU52GdH06o8JHUdCpIINqPf9+UmE+sjVa6oMPPmD79u288847FClSRO6zEUbXsXpR1p2IITjsBHVLeeKVX+FEjHvmwJV90GutWU1CZg3u3bvHgAEDWLVqFcnJyTRu3Jivv/6acuXKYTAYKFy4MHPnzuX1118HoHr16sTGxnLjhlY079q1i2bNmnHv3j1cXFxUvhXrUq0LRK6ENYOgZBDkL6Qsym+Rv3Hk5hF+bPUjLvbyO2ApslXc/PPPP6xZs4agoCBj5xEC0LqnQjtXpeVXOxjx93Hmv1NLTRF987S2Nk69vmY3fXx2PEpJ58KtB3l+3DKF8uPskPX5dt59913OnTvHypUrcXNzY+jQobRp04ZTp05hb29Po0aN2LZtG6+//jr37t0jMjISZ2dnTp8+TcWKFdm+fTt16tSRwiav6XTQ9ittIszVA6Hbb0qWL7kYd5GvD3/N25XfprZP7Tw/vsg92SpuPDw88PQ0nRvBhGXyyu/IxM5V6fPbYcKOXqNzjeJ5GyA9DcL6gEdJbY0cK3Dh1gPafbMrz4+7ul8DqhbL2k3a/ylqwsPDqV9fKzx///13fH19CQsLo0uXLjRp0oT58+cDsGPHDmrUqIGPjw/btm2jYsWKbNu2jcaNGxv9/YhMyF9IW5NtSQ84tgQC8nbh2TR9GiN3jaRo/qL0ryETwVqabBU348ePJyQkhJ9//lm+8Yhc1bpqETpWL8roFSepV9oLH3envDv4rq/gRgS8vwnsrWN5gjKF8rO6XwMlx82qyMhI7OzsCAwMzHiuYMGCVKhQgcjISAAaN27MgAEDuHXrFtu3b6dJkyYZxc3777/P7t27+eILGfarTOWOWhfVP59DqYbgVjTPDv3jiR85dfcUv77yK052efi5IvJEpoubGjVqPNYtcP78eby9vfHz83tiUqnDhw8bL6GwemM7VGHPhTsM/esYC3vVyZvuqRvHYPsUaPAZFK+V+8czEc4OtlluQTFl1apVw9PTk+3bt7N9+3YmTJiAj48PU6ZM4cCBA6Smpma0+ghFXpkKUTu1+W/eWpYn3VNn7p5hbsRc3qv6Hv6F/HP9eCLvZbq46dSpUy7GEOLZCrg4MOU1f3otPMDiA1d4o26J3D1gWoq2inGhCtBYlvYwVZUqVSItLY19+/ZlFCh37tzhzJkzVK5cGdDu3WrYsCErVqzg5MmTNGjQABcXF5KTk5k/fz61a9cmX758Kt+GcPGEDl/Doq5w+Beo1TNXD5eansqIXSMo5V6KjwM+ztVjCXUyXdyMHj06N3MI8VxNKxamW21fxq8+RVBZL3w9c7E7dPsUuHUaem8FO4WjtMRzlStXjo4dO9K7d2/mz5+Pq6srw4YNo1ixYnTs2DFjuyZNmjB48GBq165N/vxa91ejRo34/fff+fxz05lrxaqVbwU13ob1I6B0E+0+t1wyN2IuF+Mu8ke7P3CwNaFJQoVRZWuemytXrnD16tWMP+/fv5+BAwfy3XffGS2YEP8W3K4SBVwc+GLZMfT6TC2JlnVXD8GuL6HxMCgizdWm7qeffqJWrVq0a9eOevXqYTAYWLt27WNd5Y0bNyY9PZ0mTZpkPNekSZMnnhOKtZoEzh7aEif/v2K9sR2/dZwfT/zIRwEfUdGzYq4cQ5iGTC+c+b8aNmzIhx9+yDvvvENMTAzly5enatWqnDt3jn79+hESEpIbWY1CFs40b+Hnb/PW9/sY26EKPev7GXfnqY9gfiNwyKfdRGybrfvtzYZFLMZoJazm7+riNvilo3YfTuBHRt11UloSXVd3xcXOhV/b/Iq9jQWfR5G9lpsTJ05Qt25dAJYsWUK1atXYvXs3v//+OwsXLjRmPiEeE1TWix71SjLpn0iibj807s63hMK9y9BpnsUXNkKYpNJNoM4HsHG0tuSJEc0+Mptr968xocEEKWysQLaKm9TUVBwdtXsRNm3aRIcOHQCoWLFixsyfQuSWYa9UxNvNiSFLI0g3VvfU5d3aTMQvB0Nhaa4WQpkW48DVB5b30ZY+MYJDsYf45dQv9KvRjzIFyhhln8K0Zau4qVKlCvPmzWPnzp1s3LiR1q21peuvX79OwYIFjRpQiH9zcbBjRpcADkff4/udF3O+w+QH2ugo37raTMRCCHUc8kGnuXD1AOyZnePdJaYmErwrmOqFq/NO5XeMEFCYg2wVN1OmTGH+/Pk0adKE7t27ExAQAMDKlSszuquEyE21/Tzp3bA0Mzac5Wzs/ZztbNNoeHBT+0C1yfoSAEIIIytZT/uisSUUbkbmaFdfHvqSO0l3CA0KxVaub6uR5RsLDAYDpUuXJjo6mrS0NDw8PDJ+9uGHH8qMxSLPDGpRni2nbzJ4SQR/f1Ife9ts1OoXtsKB76HNdCgozdVCmIyXg+HcBq176oNNYJv1+2T2XN/D4jOLGV53OCXccnl+LGFSsvyvgcFgoGzZssTExDxW2AD4+flRuHBho4UT4nmc7G2Z0SWAUzcSmLstGzcfJsXDik+hVCOo/b7xAwohss/eWbu5P+Y47Pwyyy+/n3KfkN0hBPoE8kbFN3IhoDBlWS5ubGxsKFeuHHfu3MmNPEJkSYBvAT5pUoavN5/jxLX4rL14/QitwOk4B2yy1UMrhMhNxWtBw0GwY6q2zlsWTDswjfsp9xkXNA4bnVzf1iZbf+OTJ0/m888/58SJE8bOI0SW9Xu5HOW8XRm8JILktEyOrjizDo78Bq0nQgFprhbCZDX6AgpV0rqn0pIz9ZLtV7az/PxyvqjzBUXz591inMJ0ZKu46dGjB/v37ycgIABnZ2c8PT0fewiRlxzsbPiyawAXbz9g1qZzL35B4l1Y1R/KtYQaMnpCCJNm5wCd58Ltc7Bt8gs3j0uKY8yeMTQs1pDOZTvnQUBhirI1U9nMmTONHEOInKlUxI2BzcszY8MZWlT2pkYJj2dvvPZz7Rtg+6/zZAViIUQO+VSDJkNh60So0AZ86zxz04n7J5KSnsKY+mPQyfVttbJV3PTsmburtgqRHR81Ks2GU7EMXhrB2v4NcbJ/yrDPk2FwYhm8+j24FcnzjEKIbAr6DE6vhbA+8NFOcHhyZO6GSxv4J+ofJjecTGEXGdxizbJ9l9WFCxcIDg6me/fu3Lx5E4B//vmHkydPGi2cEFlhZ2vDjC4BXLv3iGnrzzy5wYNbsGYQVGoP1V7P+4DCbKWnp6PPpcUcRSbZ2kHneRB3BbaMf+LHdx7dIXRvKM1LNKdNqTYKAgpTkq3iZvv27VSrVo19+/bx999/8+DBAwAiIiIYPXq0UQMKkRVlC+fn81YV+DE8in0X/2dEn8EAqwcCOmj7lXRHmbl169bRoEEDChQoQMGCBWnXrh0XLmjTAdSvX5+hQ4c+tv2tW7ewt7dnx44dACQnJzNkyBCKFStGvnz5CAwMZNu2bRnbL1y4kAIFCrBy5UoqV66Mo6Mj0dHRHDhwgBYtWuDl5YW7uzuNGzfm8OHDjx3r9OnTNGjQACcnJypXrsymTZvQ6XSEhYVlbHPlyhW6du1KgQIF8PT0pGPHjly6dClXzpVFKVQBmoXA3rlwaVfG0waDgXF7xqHT6Qh+KVi6o0T2ipthw4YRGhrKxo0bcXBwyHj+5ZdfZu/evUYLJ0R29AoqRZ2SngxZFsHD5DTtyWNL4PRqaPcV5C+kNqApS0mE60fz/pGSmKWYDx8+ZNCgQRw8eJDNmzdjY2ND586d0ev1vPXWW/z5558YDP9dd2zx4sUULVqUhg0bAvDpp5+yZ88e/vzzT44dO0aXLl1o3bo1587994b0xMREpkyZwvfff8/JkycpXLgw9+/fp2fPnuzatYu9e/dSrlw52rRpw/372izZ6enpdOrUCRcXF/bt28d3333HyJEjH8uemppKq1atcHV1ZefOnYSHh5M/f35at25NSkpKls6DVXrpYyjxEoR9oi2dAqy+uJotV7Yw6qVRFHSWJYAE6Az/+wmQSfnz5+f48eOUKlUKV1dXIiIiKF26NJcuXaJixYokJSXlRlajSEhIwN3dnfj4eNzc3FTHEbnk8p2HtJ65k1drFmNCs4Lw7Uva6KjXvlcdzWSkpqZy69YtChUqhL39/8/+ev0ofNc478N8uB2KVs/2y2/fvk2hQoU4fvw43t7eFC1alC1btmQUM/Xr16dRo0ZMnjyZ6OjojFnWixb97zDh5s2bU7duXSZOnMjChQvp1asXR48ezVhe5mn0ej0FChRg0aJFtGvXjnXr1tG+fXuuXLmCj48PoC0u3KJFC5YvX06nTp347bffCA0NJTIyMqOFISUlhQIFChAWFkbLli2fOM5T/66s2d2LMDcIAt4gtukwOq/sTKPijZjc8MWjqYR1yNYNxQUKFODGjRuUKlXqseePHDlCsWLFjBJMiJwoWTAfI9pWYlTYcQbfHIGnnTO0maY6lunzKq8VGiqOmwXnzp0jJCSEffv2cfv27Yz7YaKjo6latSotW7bk999/p2HDhkRFRbFnzx7mz58PwPHjx0lPT6d8+cePmZyc/NjCvw4ODvj7+z+2TWxsLMHBwWzbto2bN2+Snp5OYmIi0dHRAJw5cwZfX9+MwgZ4Yr29iIgIzp8/j6ur62PPJyUlZXStiRfwLA0txmFYO4TR6VdxsnVieN3hqlMJE5Kt4uaNN95g6NChLF26FJ1Oh16vJzw8nCFDhtCjRw9jZxQiW94OLEHyvp/wvLGDh6//QT7n5wwPFxoHlxy1oOSV9u3bU7JkSRYsWEDRokXR6/VUrVo1o1vnrbfeon///nzzzTcsWrSIatWqUa1aNQAePHiAra0thw4dwtb28RF1+fPnz/hvZ2fnJ+7d6NmzJ3fu3GHWrFmULFkSR0dH6tWrl6XupAcPHlCrVi1+//33J35WqJB0mWZa7ff5O3IR4XGnmdNwKu6O7qoTCROSreJm4sSJ9O3bF19fX9LT06lcuTLp6em8+eabBAcHGzujENmii4vmvQff8ZfhZfZEFmN6VdWJhDHcuXOHM2fOsGDBgoxup127dj22TceOHfnwww9Zt24dixYteuxLV40aNUhPT+fmzZsZr8+s8PBwvv32W9q00UbjXLlyhdu3b2f8vEKFCly5coXY2Fi8vb0BOHDgwGP7qFmzJosXL6Zw4cLSNZ4D1xJvMNX2Ia8mJNMoYiWUfkV1JGFCsnVDsYODAwsWLODChQusXr2a3377jdOnT/Prr78+8U1ICCX0eljRFxsXT3StJ7Ls0FU2nopVnUoYgYeHBwULFuS7777j/PnzbNmyhUGDBj22Tb58+ejUqROjRo0iMjKS7t27Z/ysfPnyvPXWW/To0YO///6bqKgo9u/fz6RJk1izZs1zj12uXDl+/fVXIiMj2bdvH2+99RbOzs4ZP2/RogVlypShZ8+eHDt2jPDw8IwvfP9pBXrrrbfw8vKiY8eO7Ny5k6ioKLZt20b//v25evWqsU6TRdMb9ISEh+DuVIDP6w6FiEXaHDhC/L8crSZWokQJXnnlFbp06UK5cuWMlUmInDuwAC7thI5z6PxSRZpVLMzwv49z76GMRjF3NjY2/Pnnnxw6dIiqVavy2WefMW3ak/dTvfXWW0RERNCwYUNKlHh8/bCffvqJHj16MHjwYCpUqECnTp04cODAE9v92w8//MC9e/eoWbMm77zzDv3796dw4f9OFmdra0tYWBgPHjygTp06fPDBBxmjpZycnABwcXFhx44dlChRgldffZVKlSrx/vvvk5SUJC05mfTH6T/YH7Of8UHjyV/rPSjfGlYN0JZWEYJsjpYC7SL/6quvMoZOlitXjoEDB/LBBx8YNaCxyWgpK3D7PMxrADXehrbTAbiZkETLmTtoUNaL2W/WVBzQNMgInLwRHh5OgwYNOH/+PGXKlMnWPuTv6r8uxV+iy6oudC7XmRGBI7Qn78fAnEAo8zJ0+UltQGESsnXPTUhICF9++SX9+vWjXr16AOzZs4fPPvuM6Ohoxo0bZ9SQQmSaPh3CPgZXH2gxNuPpwm5OjOtYlf5/HKF11eu085eVgkXuWL58Ofnz56dcuXKcP3+eAQMGEBQUlO3CRvxXuj6d4PBgCrsUZmDNgf/9gasPtJ0Bf72vzUBe9VVlGYVpyFZxM3fuXBYsWPBYP3aHDh3w9/enX79+UtwIdXZ/A1cPwHvrwCHfYz9q71+EdSduMCrsBIGlClLI1VFRSGHJ7t+/z9ChQ4mOjsbLy4vmzZszY8YM1bEsws+nfubYrWP8/MrPuNj/a22pqq9B5EpYMxj8GkB+WVvKmmXrnpvU1FRq1679xPO1atUiLS0tx6GEyJabkbB1AtT/VJvB9F90Oh3jO1bF1kbH8L+Pk80eWSGeq0ePHpw9e5akpCSuXr3KwoULH5s/R2TP+XvnmX1kNj2r9KRG4RpPbqDTQdsvQWcDqwZqS64Iq5Wt4uadd95h7ty5Tzz/3Xff8dZbb+U4lBBZlp4Kyz8Cj1LQ9NnTERTM78iEztXYFBnL34ev5WFAIUR2pepTGbFrBL6uvnxa49Nnb5jPC9rPgjNr4NjivAsoTE6mu6X+d6ilTqfj+++/Z8OGDbz0kvYNed++fURHR8skfkKNnTMg5gR8sBHsnZ67aasqPrxaoxhjVp2kftmCFHF3fu72Qgi1vj/+PWfvneX3Nr/jaPuC7uRK7cC/G6z9AvwagrvMmm+NMl3cHDly5LE/16pVCyBjunAvLy+8vLw4efKkEeMJkQnXj8KOadBwEBSrlamXjG5fhfALtxn613F+7lVHVhEWwkSdunOK7yK+44NqH1DFq0rmXvTKFIjaASv7wdt/aV1Wwqpkeyi4uZKh4BYmLRnmNwYbO+i9BewcXvya/7ftzE3e/ekAEztX483A589vYolkeLH5sNa/q5T0FLqt7oadjR2L2izC3jYL7/3cJvj9NWg3E2r3yrWMwjTlaBI/IZTbNgnunIfO87JU2AA0qVCY7nV9mbDmFFfuJuZSQCFEdn179FsuJVwiNCg0a4UNQLnmULMnbAiGe5dyJZ8wXdkqbpKSkpg2bRpt2rShdu3a1KxZ87GHEHniygEInwVNhoFP9haOGtm2MgVcHBiyNAK93qoaMYUwaRG3Ivjp5E/0rd6XCp4VsreTVhPA2RPC+mpLsgirka3i5v3332fq1KmULFmSdu3a0bFjx8ceQuS6lEQI6wNFa0DQwGzvJr+jHdO6+LMv6i4/77lktHgi9zRp0oSBAwc+8+c6nY6wsLBM72/btm3odDri4uJynE0Yx6O0RwTvCqZKwSq8W+Xd7O/I0RU6zYHLu2D/fKPlE6YvW5P4rV69mrVr1xIUFGTsPEJkzpbxEH8V3vgDbLP1a5yhfhkv3q3vx5R1p2lcvhClC+U3Ukihwo0bN/Dw8FAdQ+TA14e/5sbDG8x6eRZ2Njm7vinVCOp+BJvGQNnm4CXrIFqDbLXcFCtWDFdXV2NnESJzLu2CvXPh5VFQqLxRdjm0dUWKuDszeGkE6dI9ZdZ8fHxwdJTZp83VgZgD/Bb5G/1r9Ke0e2nj7LT5GHArpi3Nok83zj6FSctWcTNjxgyGDh3K5cuXjZ1HiOdLfgBhn0CJevDSx0bbrbODLdO7+BNxJY7vdlw02n5F7tDr9XzxxRd4enri4+PDmDFjMn72726p3bt3U716dZycnKhduzZhYWHodDqOHj362D4PHTpE7dq1cXFxoX79+pw5cyZv3ozIkJiayKjwUdTyrsXbld823o4dXKDTXLh2CHZ/bbz9CpOVrfa+2rVrk5SUROnSpXFxcXliaOLdu7LsvMglG0fBw9vQIwxsbI2661olPendqDRfbTzLyxULU8HH+lonH6U9Iio+Ks+PW8q9FM52mZ9M8eeff2bQoEHs27ePPXv28O677xIUFESLFi0e2y4hIYH27dvTpk0bFi1axOXLl595v87IkSOZMWMGhQoVok+fPrz33nuEh4fn5G2JLJpxcAZ3k+6yoOUCbHRGHsxbIhDq94OtE6FcK/CubNz9C5OSreKme/fuXLt2jYkTJ+Lt7S0ToIm8cX4zHPxRW/3X00jN1f/yWfPybIm8yaAlRwnrG4S9rXXNlhAVH0W31d3y/LiL2y2mcsHM/2Pj7+/P6NGjAShXrhyzZ89m8+bNTxQ3ixYtQqfTsWDBApycnKhcuTLXrl2jd+/eT+xzwoQJNG7cGIBhw4bRtm1bkpKScHJ6/ozXwjh2X9vNkrNLCA4MxtfVN3cO0mQEnF2vLdXSewtkdXi5MBvZKm52797Nnj17CAgIMHYeIZ7uUZw222jpplD7/Vw7jJO9LV92rU6nb8OZs/U8A5sb554ec1HKvRSL2+X9mjyl3EtlaXt/f//H/lykSBFu3rz5xHZnzpzB39//sQKlbt26L9xnkSJFALh58yYlSljfBI95LSElgZDdIdQrUo+uFbrm3oHsnbQ5sRY0gx3Toenw3DuWUCpbxU3FihV59OiRsbMI8WzrR0Dyfeg4O9enUq9W3J2+Tcsye8t5mlfypmox91w9nilxtnPOUguKKv/uCtfpdOhzOI/J/+7zP63ROd2nyJwp+6fwMPUh44LG5X5PQNEa0GiItmRLhdban4XFyVab++TJkxk8eDDbtm3jzp07JCQkPPYQwqhOr4Wjv0PrSeBePE8O+WnTslTwcWXQkqMkp8noCnNVoUIFjh8/TnJycsZzBw4cUJhI/NvW6K2svLCSoXWH4pPPJ28O2nCIds/N8j6QmpQ3xxR5KlvFTevWrdmzZw/NmjWjcOHCeHh44OHhQYECBWR+CWFciXdh1QAo3xqqv5Vnh3Wws2FG1wAu3U7kq43n8uy4wrjefPNN9Ho9H374IZGRkaxfv57p06cDyL2CJuBe0j3G7hlL4+KN6VgmDyeAtXOAzvPhzgXYNjHvjivyTLa6pbZu3WrsHEI83ZrBoE+F9rPyfGXfij5uDGxRjunrz9Cisje1Skrhbm7c3NxYtWoVH3/8MdWrV6datWqEhITw5ptvyo3CJmDCvgmkGdIYXW903heb3lW0e262hELFduD79HuxhHmSVcGF6TrxNyzrBa/9ANVeVxIhLV1Pl/l7iEtMZW3/hjg7GHf4uUrWutL077//Tq9evYiPj8fZOfPDz1WyxL+rdVHr+HzH50xtNJVXSr2iJkR6GvzYCh7dgz67tPlwhEXI9jjXnTt38vbbb1O/fn2uXbsGwK+//squXbuMFk5YsQc3tVabyp2g6mvKYtjZ2jC9SwDX4x4xZd1pZTlE9v3yyy/s2rWLqKgowsLCGDp0KF27djWbwsYS3X50m9B9obQs2ZLWfq3VBbG100ZPJVyDzWPV5RBGl63i5q+//qJVq1Y4Oztz+PDhjJv14uPjmThR+i9FDhkM2n02NrbQ9ss87476tzKF8jO0dUUW7r7E7gu3lWYRWRcTE8Pbb79NpUqV+Oyzz+jSpQvfffed6lhWy2AwMHbPWGx1tgS/FKz+3ievctBsNOybB1E71GYRRpOt4iY0NJR58+axYMGCx5pIg4KCOHz4sNHCCSsV8SecWQvtZkK+gqrTAPBufT8CS3ny+dJjPEhOUx1HZMEXX3zBpUuXSEpKIioqiq+++goXF+l+UGXlhZVsu7KNkHoheDiZyH1sgX2gZANY0VebckKYvWwVN2fOnKFRo0ZPPO/u7k5cXFxOMwlrFn8N/hkK/m9ApXaq02SwsdExvUsAcYkpTFgTqTqOEGYp5mEMU/ZPoX3p9jQr0Ux1nP+ysdHm0Hp4BzYEq04jjCBbxY2Pjw/nz59/4vldu3ZRunTuTIsvrIDBACs/BYd88Mpk1Wme4Ovpwoi2lfhjfzTbzjw5G665srIxBWbJEv6ODAYDo3ePxtnemaF1h6qO8yTPUtAqFA4thHObVKcROZStoeC9e/dmwIAB/Pjjj+h0Oq5fv86ePXsYMmQIo0aNMnZGYS0OLYQLW+Ctv8DZRJqr/+XNuiVYdyKGYX8dZ/3ARri7mO/IFVtbW3Q6Hffv38fV1VX9vQ/iCQaDgfT0dBISEtDpdNjZZesj2yQsPbuU3dd3M7f5XNwdTXTW71q9IHKVttTLJ7tN9nNIvFi2hoIbDAYmTpzIpEmTSExMBMDR0ZEhQ4Ywfvx4o4c0JhkKbqLuRsHcIPDvos1pY8JuxD+i5Vc7aFHJmy+7VVcdJ0eSk5O5e/euRbQMWDIHBwcKFChgtsXNlftXeG3la7Qt3ZbR9UarjvN88Vfh2/pQ4RV4db7qNCKbcjTPTUpKCufPn+fBgwdUrlyZ/PnzGzNbrpDixgTp9fBze4iPho93g6Or6kQv9NehqwxeGsH8d2rRqkoeTRmfS/R6PenpssSEqbKxscHGxsZsW9b0Bj3vr3+fGw9v8FeHv8hnn091pBc7+geE9YE3FkHFtqrTiGzI0teA9957L1Pb/fjjj1kKMWfOHKZNm0ZMTAwBAQF88803z1y593/9+eefdO/enY4dOxIWFpalYwoTsn8+XN4FPVebRWED8GrNYvxzIoaRy49Tx88Tz3wOqiNl23/+8RQiNyyKXMTB2IP80PIH8yhsAALegMiV2pQUvi+ZzKhNkXlZ+kRbuHAhW7duJS4ujnv37j3zkRWLFy9m0KBBjB49msOHDxMQEECrVq24efP5N2xeunSJIUOG0LBhwywdT5iY2+dg0xhtKGYp8/m71Ol0THy1Kml6A8Fhx6VbR4iniIqPYubhmbxV6S3qFjGj5Q10Om0qCn06rBmkOo3Ihix1S/Xt25c//viDkiVL0qtXL95++208PT1zFCAwMJA6deowe/ZsQGsi9/X1pV+/fgwbNuypr0lPT6dRo0a899577Ny5k7i4uGe23CQnJz+2InBCQgK+vr7SLWUK0tPgp9ba4phmOvX56mPX+XTREb7uXoMOAUVVxxHCZKTp0+i5rifxyfEsbb8UZzsznBH6P0vAvP6j0pnSRdZlqeVmzpw53Lhxgy+++IJVq1bh6+tL165dWb9+fba+uaakpHDo0CGaN2/+30A2NjRv3pw9e/Y883Xjxo2jcOHCvP/++y88xqRJk3B3d894+Pr6ZjmnyCW7v4Zrh7Tpz82wsAFo51+Utv5FCFlxgpsJSarjCGEyFp5cyInbJwgNCjXPwgag6qtQpbO2FMz9WNVpRBZkuaPd0dGR7t27s3HjRk6dOkWVKlX45JNP8PPz48GDB1na1+3bt0lPT8fb2/ux5729vYmJiXnqa3bt2sUPP/zAggULMnWM4cOHEx8fn/G4cuVKljKKXBJ7ErZNgvr9zX413vEdq2JnY8Pwv6V7SgiAs/fO8u3Rb+lZpSfVC1dXHSdn2swAG3tY1V+bi0uYhRzdRfifO/j/MxdDbrt//z7vvPMOCxYswMvLK1OvcXR0xM3N7bGHUCw9FZb3Ac8y0HSE6jQ55pnPgUmvVmPz6ZssO3RVdRwhlErVpxK8K5iSbiXpW72v6jg5l6+gNj3F2XVwdJHqNCKTslzcJCcn88cff9CiRQvKly/P8ePHmT17NtHR0VkeCu7l5YWtrS2xsY8398XGxuLj8+Tw2gsXLnDp0iXat2+PnZ0ddnZ2/PLLL6xcuRI7OzsuXLiQ1bcjVNgxHW6egs5zwc5RdRqjaFHZm9dqFmfcqlNci3ukOo4Qyiw4toCz984S2iAUR1vLuL6p2AYC3oR1w7R5cITJy1Jx88knn1CkSBEmT55Mu3btuHLlCkuXLqVNmzbZGkrq4OBArVq12Lx5c8Zzer2ezZs3U69evSe2r1ixIsePH+fo0aMZjw4dOtC0aVOOHj0q99OYg+tHYMc0aDgEitZQncaoQtpXJp+jHUOXHZPuKWGVTt45yXfHvqO3f2+qFKyiOo5xtZ4EDvm1xTXl+jZ5WRotZWNjQ4kSJahRo8ZzJ5T6+++/Mx1g8eLF9OzZk/nz51O3bl1mzpzJkiVLOH36NN7e3vTo0YNixYoxadKkp77+3Xfffe5oqX+TSfwUSk2C75qArT303qL9v4XZcfYWPX7cz/hOVXnnpZKq4wiRZ5LTk3lj9RvY29jze5vfsbfA65vzm+C316DtDKjzgeo04jmyNIlfjx49jD5LZrdu3bh16xYhISHExMRQvXp11q1bl3GTcXR0tEwwZim2TYS7F+DD7RZZ2AA0Kl+INwNLMGltJI3LFaJEQfMcBSZEVs05OodLCZdY3G6xZRY2AGWba+tPbQiBMi+DpywUbapytPyCOZKWG0Wi98GPraD5aGjwmeo0uepBchqvzNpBETdn/vzwJWxszHPafCEy6+jNo/Rc15N+NfrxQTULb9FIvg9z64NbcXh3DciXb5Mkfysi96U81NZpKV5bG/pt4fI72jHt9QD2X7rLj+FRquMIkasepT0iODyYqgWr8m6Vd1XHyX2OrtBpLkTvhn1zVacRzyDFjch9m8ZCwg3oNA9sbFWnyRMvlS7Ie0GlmLb+DOdvZm3+JyHMyazDs4h5GENog1DsbMxz1fIs82sAgR/D5nFw66zqNOIppLgRuStqh7YwZvPR4FVWdZo89UXrChQr4MzgpRGkpetVxxHC6Pbf2M/vkb8zoOYASrmXUh0nbzULAffiWqt0eprqNOJfpLgRuScpAcL6QskGUPcj1WnynJO9LdO7BnD8ahzzd1xUHUcIo3qY+pBR4aOo5V2Ltyq9pTpO3nNw0Vqjrx+B3bNUpxH/IsWNyD0bguHRXeg0x2pvuqtZwoOPGpdh5qazRN5IUB1HCKOZdmAa95LvMT5oPDY667y+8a0DQQNg6ySIOaE6jfgfVvobKXLduU1w+GdoOR48/FSnUWpg83KU9srP4CURpKRJ95Qwf7uu7eKvc38xpPYQfF2tfPLUJsPBq5zWPZWWojqN+H9S3Ajje3QPVn6qzQNRq5fqNMo52tkyo2sAZ2PvM3vredVxhMiR+OR4RoePpn7R+nQp30V1HPXsHLXRUzcjtdnXhUmQ4kYY3z/DICUROswGI0/6aK6qFnPn05fLMmfreY5djVMdR4hsm7J/Co/SHjG2/lijT+pqtopWh0afw84ZcO2w6jQCKW6EsUWuhmN/witTwL2Y6jQmpW/TslQq4sqgJREkpaarjiNElm2O3syqi6sYWncoPvmeXNzYqjUcDD5VYXkfbakZoZQUN8J4Ht6G1QOhQhsIeEN1GpNjb2vDl12rE30nka82ytwYwrzcTbrLuD3jaOLbhA5lOqiOY3ps7aHzfLgXBVsnqE5j9aS4EcZhMMCaQaBPh3YzpTvqGcp7uzKoZXm+23mRQ5fvqo4jRKYYDAZC94aSbkhndL3R0h31LIUrQdORsPsbiN6rOo1Vk+JGGMeJv+DUCm21XFdv1WlMWu+GpanhW4DBSyJITJHJv4TpW3dpHRsvbyT4pWC8nL1UxzFt9ftB8ToQ9rG29IxQQoobkXP3Y2DtEKjSGaq+qjqNybO10TG9SwAxCUlM+ee06jhCPNetxFuE7g2llV8rWvu1Vh3H9NnYaqOnEm7ApjGq01gtKW5EzhgMsGoA2NhDmxmq05iN0oXyM7R1RX7ec5nd52+rjiPEUxkMBsbuGYu9jT0jA0eqjmM+vMpC8zGw/zu4uF11GqskxY3ImaOL4Ow6aD8L8hVUncas9Kznx0ulPfl82THuJ6WqjiPEE8LOh7H96nZG1xuNh5OH6jjmpe6H4NcQVvTVlqIReUqKG5F98Vdh3TAI6A4V26hOY3ZsbHRMez2AuMQUJqyJVB1HiMfceHCDqQem0qFMB5qWaKo6jvmxsYGOc7RJTTdIq1dek+JGZI/BoH0jccgPrSerTmO2fD1dCG5XmT8PXGHr6Zuq4wgBaN1RIbtDcLF3YWjdoarjmC+PktBqAhz+Bc5uUJ3GqkhxI7Ln4A9wcRt0nA3OBVSnMWtv1PGlcflCDP3rGHGJsjaNUG/JmSXsvbGX8fXH4+bgpjqOeavZE8o2h5X9IFGmf8grUtyIrLt7ETaEaOtGlW2mOo3Z0+l0THnNn6TUdMasPKk6jrByVxKuMOPQDLqU70L9YvVVxzF/Oh10+AbSHsE/0gqWV6S4EVmj10NYX8jnpa34LYzCx92JMR2qEHb0OutO3FAdR1ipdH06weHBeDp5Mrj2YNVxLIdbUXhlKhxfApGrVKexClLciKzZNxeid0Onb8HRVXUai9K5RjFaVvZm5PIT3HmQrDqOsEK/Rf7G4ZuHGR80nnz2+VTHsSz+3aBiO1g1UFuqRuQqKW5E5t06C5vGwkufgF8D1Wksjk6nY0LnaugNBkYuP4HBYFAdSViRi3EX+frw17xd6W3q+NRRHcfy6HTQ7isw6GH1Z9qgDJFrpLgRmZOeBmF9oIAvNAtRncZiFXJ1ZELnaqw7GcPKiOuq4wgrkaZPY+SukRTNX5QBNQeojmO58hfWCpzIldqSNSLXSHEjMid8Jlw/Ap3mgb2z6jQWrU21IrQPKErIipPEJiSpjiOswE8nfuLU3VOENgjFyc5JdRzLVqUTVH0N1gzWlmgQuUKKG/FiMcdh22QIGgC+0lydF8Z1qIKDnQ3D/jom3VMiV525e4ZvI76lV5VeBBQKUB3HOrSZDnaO2tI1cn3nCiluxPOlpcDyj8GrHDQZrjqN1fDI58DkV6ux9cwtlh68qjqOsFCp6amM3DUSPzc/Pqn+ieo41sPFE9p/DefWw5HfVKexSFLciOfbMRVuRULnedo3DZFnmlXypkut4oxbfYqr9xJVxxEWaN6xeVyIu8DEBhNxsHVQHce6VGgN1d+GdcMhLlp1GosjxY14tmuHYOeX0OgLKCLN1SqMal8ZNyc7vlh2DL1emq+F8Zy4fYIfjv/AhwEfUqlgJdVxrFPrieDkDis+1eYQE0YjxY14utQkrTvKpxo0HKQ6jdVyc7Jn6usB7L5wh9/2XVYdR1iI5PRkRu4aSQXPCnxQ7QPVcayXk7u2hE3Udm1JG2E0UtyIp9saCveitO4oW3vVaaxag3JevP1SCSatPc2l2w9VxxEWYPaR2Vy5f4UJQROwt5HrW6kyTaH2+7AxBO5cUJ3GYkhxI550eQ/sng1NR0Jhaa42BcNfqUQhV0eGLI0gXbqnRA4cjj3Mzyd/5tMan1LWo6zqOAKgxThtDpwVfUGfrjqNRZDiRjwu5SGEfQzF60D9fqrTiP+Xz9GO6V0COBR9jx93RamOI8xUYmoiweHB+Bfyp2flnqrjiP9wzA+d5kL0Xtj7reo0FkGKG/G4jaPhfozWHWVjqzqN+B91S3nyflAppm04w7nY+6rjCDP01aGvuJV4iwkNJmAr17dpKVkf6vWFzePh1hnVacyeFDfivy5ugwMLoMVYKFhGdRrxFENaVcDXw5khSyNIS5fRFSLz9t7Yy59n/mRgrYGUdCupOo54mpeDwaMkLO+jLXkjsk2KG6FJStCGI/o1hDq9VacRz+Bkb8uMrtU5fi2eedvl5kOROQ9SHhASHkJdn7p0r9hddRzxLPbO2hI3N45C+Feq05g1KW6EZv0IeHQPOs4BG/m1MGXVfQvwcZMyzNp8jlPXE1THEWZg2sFpxCfHMy5oHDY6ub5NWvFa0GAQbJuiLX0jskV+ywWc3QBHfoVWE7QmUWHy+jcrR5lC+Rm05CgpadI9JZ5tx9Ud/H3ubz6v8znF8hdTHUdkRuOhUKiC1j2VlqI6jVmS4sbaJd6Flf2gbHOoKaMnzIWjnS0zugZw/uYDvt58TnUcYaLik+MZs3sMQcWCeK3ca6rjiMyyc9AGddw6A9unqE5jlqS4sXb/DIW0R9DhG9DpVKcRWVClqDsDmpVj7vYLHL0SpzqOMEGT9k8iKT2JsfXGopPr27z4VNNacHZ9BVcPqU5jdqS4sWanVsLxJfDKVHArqjqNyIaPm5ShSlE3Bi85SlKqTP4l/mvT5U2subiG4XWH453PW3UckR0NPtPW9QvrA6mPVKcxK1LcWKsHt2D1Z1CxHfh3U51GZJOdrQ0zugRw5d4jZmyQuTGE5s6jO4zfO56XfV+mXel2quOI7LK107qn7l2GLaGq05gVKW6skcEAaz4DDNDuK+mOMnPlvF0Z0rI83++KYn/UXdVxhGIGg4HQvaEYDAZG1Rsl3VHmrlAFaDYK9syBy7tVpzEbUtxYo+NLIXIVtP1SW89EmL33G5SmVgkPhiyN4GGyTP5lzdZGrWVT9CaCXwrGy9lLdRxhDC99Ar6B2tI4yQ9UpzELUtxYm4QbsHYIVH0dqnRSnUYYia2NjuldArh1P5nJ/5xWHUcocjPxJhP2TeCVUq/Q0q+l6jjCWGxsodO38OAmbBqtOo1ZkOLGmhgM2rBvOydoM011GmFkfl75GN6mIr/uvcyuc7dVxxF5zGAwMGb3GBxtHRkZOFJ1HGFsBctoq4cf+B4ubFWdxuRJcWNNjvwK5zdC+6/BxVN1GpEL3g4sSf0yBfliWQQJSamq44g8FHY+jJ3XdjKm3hjcHd1VxxG5ofb7UKqRtlROUrzqNCZNihtrERcN60ZA9behQmvVaUQusbHRMa1LAAlJaYSuPqU6jsgj1x9cZ8qBKXQq24nGvo1VxxG5xcZGWyInKV77PBfPJMWNNdDrYUVfcHKH1hNVpxG5rFgBZ0a1q8SSg1fZHBmrOo7IZXqDnpDwEFwdXPmizheq44jcVqCE9jl+9Dc4s051GpMlxY01OPA9RO2AjrO1AkdYvK61fWlaoRDD/j7OvYeyNo0lW3xmMfti9jGu/jhcHVxVxxF5ocY7UK4lrOqvLaEjniDFjaW7c0G7u77OB1Cmqeo0Io/odDomv+ZPSpqe0StPqo4jckl0QjRfHfqKbhW6Ua9oPdVxRF7R6bR7J9OSYe3nqtOYJCluLJk+XZsXIX9haD5WdRqRx7zdnBjXsQorI66z9vgN1XGEkaXr0wkOD6agU0EG1RqkOo7Ia25FoM10OLEMToapTmNypLixZHvmwJX90GkuOOZXnUYo0CGgKK2r+BAcdoJb95NVxxFG9OupXzl68yihDUJxsXdRHUeoUO11qNRBW0rnwU3VaUyKFDeW6uZpbS2Sen2hZH3VaYQiOp2O0M5V0QEjlx/HYDCojiSM4ELcBb458g3vVH6HWt61VMcRquh02kzzOhutwJHrO4MUN5YoPVVbRdajJLwcrDqNUMwrvyMTOldlw6lYwo5eUx1H5FCaPo2Ru0ZSzLUY/Wr0Ux1HqJa/kLZG4OnVcGyJ6jQmQ4obS7TrK7gRAZ3mgb2z6jTCBLSuWoRO1YsSsuIkMfFJquOIHPjh+A9E3o1kQtAEnOycVMcRpqByB6jWVbu5OOG66jQmQYobS3PjGGyfAg0GQXFprhb/NbZDVZztbRn61zHpnjJTp++eZl7EPN6v+j7VClVTHUeYkjZTtS+zK/tJ9xRS3FiWtGRY3gcKVYTGQ1WnESbG3cWeKa/5s/3sLf48cEV1HJFFKekpjNw1ktIFStMnoI/qOMLUOHtAh2/g/CY4/LPqNMpJcWNJtk+B22eh8zywc1CdRpigphUL0622L6GrT3HlbqLqOCIL5kXM42LcRSY0mICDrVzf4inKt9Qm+Fs/Eu5dVp1GKSluLMXVg9q9Nk2Ggo80V4tnC25XiQIuDny+LAK9XpqvzcGxW8f44cQPfBTwERU9K6qOI0xZq4laK86KvtrSO1ZKihtLkPpI644qUh2CPlOdRpg4Vyd7pr7uz96Ld/l5zyXVccQLJKUlMXLXSCp5VuKDah+ojiNMnZObtrjmpZ1wYIHqNMpIcWMJtoRqq353nge2dqrTCDMQVNaLHvVKMmXdaS7eeqA6jniOb458w/UH15nQYAJ2NnJ9i0wo3RjqfggbR8Pt86rTKCHFjbm7vFubibjZKChUQXUaYUaGvVIRbzcnhiyNIF26p0zSodhD/HrqV/rX7E+ZAmVUxxHmpPkYbYmGsI+1pXisjEkUN3PmzMHPzw8nJycCAwPZv3//M7ddsGABDRs2xMPDAw8PD5o3b/7c7S1a8gPtF7fES/DSJ6rTCDPj4mDHjC4BHLkSx4KdF1XHEf+SmJpI8K5gqheuztuV3lYdR5gbh3za0jtXD8Dub1SnyXPKi5vFixczaNAgRo8ezeHDhwkICKBVq1bcvPn0dTK2bdtG9+7d2bp1K3v27MHX15eWLVty7ZoVzry6MURbT6TTt2BjqzqNMEO1/Tzp3bA0X244y5mY+6rjiP/x5aEvuZN0h9CgUGzl+hbZUeIlqP8pbJ0ANyNVp8lTOoPi2bwCAwOpU6cOs2fPBkCv1+Pr60u/fv0YNmzYC1+fnp6Oh4cHs2fPpkePHi/cPiEhAXd3d+Lj43Fzc8txfmUubIFfO2urwtbtrTqNMGNJqem0+2YXTvY2LP8kCHtb5d95rN7u67v5aONHjAgcQfeK3VXHEeYsNQm+awx2jvDBZrC1V50oTyj9FEtJSeHQoUM0b9484zkbGxuaN2/Onj17MrWPxMREUlNT8fT0fOrPk5OTSUhIeOxh9pLiYcWnUKox1H5fdRph5pzsbZnRJYDIG/eZs9U6bz40JfdT7hMSHkJgkUC6VeimOo4wd/ZOWvdUzAnY+aXqNHlGaXFz+/Zt0tPT8fb2fux5b29vYmJiMrWPoUOHUrRo0ccKpP81adIk3N3dMx6+vr45zq3cuhGQlKAN97ORb9ki5wJ8C/BJkzLM3nKeE9fiVcexalMPTOVB6gPG1x+PjU6ub2EExWpCw8GwYypcP6o6TZ4w6ytn8uTJ/Pnnnyxfvhwnp6cvIDd8+HDi4+MzHleumPm082fWwdHfoPUkKGABhZowGf1eLkc5b1cGLTlKcpr1ja4wBduvbCfsfBhD6wylSP4iquMIS9LocyhcSRuEkpasOk2uU1rceHl5YWtrS2xs7GPPx8bG4uPj89zXTp8+ncmTJ7Nhwwb8/f2fuZ2joyNubm6PPcxW4l1Y1R/KtYIaMnpCGJeDnQ1fdg0g6vZDZm46pzqO1YlLimPMnjE0LNaQTmU7qY4jLI2dA3SaB7fPwbZJqtPkOqXFjYODA7Vq1WLz5s0Zz+n1ejZv3ky9evWe+bqpU6cyfvx41q1bR+3atfMiqmlYO0SruDt8DTqd6jTCAlUq4sbA5uWZv/0Ch6PvqY5jVSbum0hKegpj6o9BJ9e3yA0+VaHJMAifBVcOqE6Tq5R3Sw0aNIgFCxbw888/ExkZyccff8zDhw/p1asXAD169GD48OEZ20+ZMoVRo0bx448/4ufnR0xMDDExMTx4YOGzrJ5cDif+grYzwPX5rVpC5MRHjUpTrXgBBi+J4FGKdE/lhfWX1vPPpX8YETiCwi6FVccRlixoIBStAWF9IMVyF89VXtx069aN6dOnExISQvXq1Tl69Cjr1q3LuMk4OjqaGzduZGw/d+5cUlJSeP311ylSpEjGY/r06areQu57cBNWD4JKHaDqa6rTCAtnZ2vDjC4BXI97xNT1p1XHsXi3H90mdG8oLUq2oE2pNqrjCEtna6d1T8VfhS3jVafJNcrnuclrZjfPjcEAi9+G6L3Qdx/k81KdSFiJ73deJHRNJH/0fol6ZQqqjmORDAYDA7cO5OitoyzvuBxPp6dPaSGE0e2ZA+tHwrurwa+B6jRGp7zlRrzAscVwejW0+0oKG5GnegWVoq6fJ58vi+BBcprqOBZp9cXVbLmyhVEvjZLCRuStwI+hRD0I+0RbysfCSHFjyuKvwdovoFpXqNxBdRphZWxtdEzr4s+dBylMXGtdU7fnhZiHMUzaN4m2pdvSvOTT5+kSItfY2ECnOfDwNmwcpTqN0UlxY6oMBljZDxxcoM1U1WmElSpZMB8j2lZi0b5otp+9pTqOxTAYDIzZPQYnOyeG1x3+4hcIkRs8S0PLcXDwRzi/+cXbmxEpbkzV4Z/hwmbo8A04e6hOI6zY24ElaFDWi6HLjhH/KFV1HIvw17m/CL8ezpj6Y3B3dFcdR1iz2u9D6abal+lHcarTGI0UN6bo3mXtRq8a70C5FqrTCCun0+mY8ro/D5PTGLfqlOo4Zu/q/atMOzCNV8u9SqPijVTHEdZOp4OOsyH5PqyznFZEKW5MjV4PK/pqrTWtJqpOIwQAxQo4M6p9Zf46fJWNp2Jf/ALxVHqDnlHho3B3dOfz2p+rjiOExr04tJ4MEYvg9FrVaYxCihtTs/87uLRTWxTTyQyGqgur0aVWcZpVLMzwv49z92GK6jhm6Y/Tf3Aw9iDjg8aT3yG/6jhC/Ff1N6F8a1g1QFvqx8xJcWNKbp+HTWOg7odQurHqNEI8RqfTMenVaqTp9YxacUJ1HLNzKf4SMw/NpHvF7gQWCVQdR4jH6XTQfhboU2HNYNVpckyKG1OhT9dWa3UrAs3HqE4jxFMVdnNiXMeqrDl2g1UR11XHMRvp+nRGho+ksEthBtYcqDqOEE/n6gNtpsPJv+HE36rT5IgUN6Zi9zdw9QB0mgsO+VSnEeKZ2vsXoW21IoxacYKb95NUxzELC08u5Pit44Q2CMXF3kV1HCGereprULmT1npz33zvr5PixhTEnoKtE6B+Pyjxkuo0QjyXTqdjfKeq2NnoGPH3CaxsBZcsO3fvHHOOzqFnlZ7UKFxDdRwhnk+ng7Zfgo0trB6ozblmhqS4US09VVud1bM0NB2pOo0QmeKZz4EJnauxKTKWvw5fUx3HZKXqUxm5ayS+rr58WuNT1XGEyJx8BaHdTDizFiL+VJ0mW6S4UW3nDIg5oXVH2TupTiNEprWq4sOrNYoxdtVJrsc9Uh3HJH1/7HvO3jvLxAYTcbR1VB1HiMyr1A7834B/hmpLAZkZKW5Uun4UdkyDhoOhWE3VaYTIstHtq5DPwY6hfx2T7ql/OXXnFN8d+44Pqn1AFa8qquMIkXWvTNbuAV35qdl1T0lxo0pasjY6qnAlaCSTeQnz5O5iz+TXqrHz3G0W7Y9WHcdkpKSnMHLXSMp6lOUj/49UxxEie5w9tCWALmyBQz+pTpMlUtyosm0S3D4HneaBnYPqNEJkW5MKheletwQT1kQSfSdRdRyT8O3Rb7mUcInQoFDsbe1VxxEi+8o1h1rvwvpguBulOk2mSXGjwpUDED4Lmg4Hn6qq0wiRYyPbVsIznwNDlkWg15tX87WxRdyK4KeTP/FJwCdU8KygOo4QOdcyVLvJeMWn2hJBZkCKm7yWkqiNjipaA+oPUJ1GCKPI72jHtNcD2B91l592X1IdR5lHaY8I3hVMlYJV6FW1l+o4QhiHoyt0/BYu74L981WnyRQpbvLalvEQf1XrjrK1U51GCKOpV6Yg79b3Y+q601y49UB1HCW+Pvw1Nx7eILRBKHY2cn0LC1KqIQT20ZYIun1OdZoXkuImL13aBXu/hWYhUKi86jRCGN3Q1hUpWsCZwUsiSEs3j+ZrYzkQc4DfIn+jf43+lHYvrTqOEMbXbDS4FdMGw6SnqU7zXFLc5JXk+xD2CZQMgsCPVacRIlc4O9gyvUsAx67G8d3Oi6rj5JmHqQ8ZFT6KmoVr8nblt1XHESJ3OLhA53lw7RDs/lp1mueS4iavbBgFD29DxzlgI6ddWK5aJT34sFEZvtp4ltMxCarj5IkZB2dwN+kuoUGh2Ojk+hYWzLeutlTQ1okQe1J1mmeSqzAvnN+kzRHQcjx4llKdRohc91mLcpTyysfgJRGkpFl291T4tXCWnl3K4FqD8XXzVR1HiNzXZAQULAvL+0Baiuo0TyXFTW57FAcr+kHpplD7PdVphMgTjna2zOhSnTMx95m99bzqOLkmISWBkN0h1CtSj64VuqqOI0TesHeCznO1lpud01WneSopbnLbuuGQ8gA6ztZWWxXCSlQr7k7fpmWZs/U8x6/Gq46TK6bsn0JiaiLjgsahk+tbWJOiNbTZ9XdMh+tHVKd5ghQ3uen0WohYBK0ng3tx1WmEyHOfvlyWij6uDFpylKTUdNVxjGpr9FZWXljJ0LpD8cnnozqOEHmv0RDwrqJ1T6UmqU7zGClucsvDO7BqAJR/Baq/qTqNEErY29rwZdfqXL6TyFebzqqOYzT3ku4xds9YGhdvTMcyHVXHEUINW3tt9NTdi7Btouo0j5HiJresHQz6VGg/S7qjhFWr4OPKZy3K892Oixy6fFd1HKOYsG8CaYY0RtcbLd1Rwrp5V4EmwyH8a4jepzpNBilucsOJv+Dkcmg7A1y9VacRQrkPG5Wmum8BBi+JIDHFtCf/epF1UetYf2k9IwNHUsilkOo4QqhXvz8Ur60tLZTyUHUaQIob47sfC2sGQ+VOUPU11WmEMAm2NjpmdAkgJiGJqevOqI6Tbbcf3SZ0XygtS7aktV9r1XGEMA22dtBpLiRch01jVacBpLgxLoMBVg8EGzto+6XqNEKYlNKF8vNFq4os3H2J3Rduq46TZQaDgbF7xmKrsyX4pWDpjhLif3mV05Zn2D8fonaoTiPFjVFF/AFn1mr32eQrqDqNECbn3fp+BJby5POlx7iflKo6TpasvLCSbVe2EVIvBA8nD9VxhDA9gX2gZAMI6wtJamcnl+LGWOKvwj/DIKA7VGyrOo0QJsnGRsf0LgHEJaYwcW2k6jiZFvMwhin7p9C+dHualWimOo4QpsnGRpvTLfEObAhWG0Xp0S2FwQAr+4FDPm1OGyHEM/l6ujCybWX+2H+FrWduqo7zQgaDgdG7R+Ns78zQukNVxxHCtHmWglahcPhnOLdRWQwpbozh0E9wYQt0/AacC6hOI4TJ617Xl0blCzHsr2PEJ5p299TSs0vZfX03Y+uPxd3RXXUcIUxfrV5Q5mXtS/+je0oiSHGTU3ejYH0w1HoXyjZXnUYIs6DT6ZjyWjUSU9IZs8p0Vxa+cv8K0w9O5/Xyr9OgWAPVcYQwDzoddPgGUhLhHzWtnVLc5IReDyv6ajcPtwxVnUYIs1LE3Zkx7auw/Mg11p2IUR3nCXqDnlHho/B08mRI7SGq4whhXtyLwyuT4dhiiFyd54eX4iYn9s2Dy+HQ8VtwdFWdRgiz82rNYrSo7M3I5ce58yBZdZzH/B75O4diDzE+aDz57POpjiOE+QnoDhXaaFOkPMzb6R+kuMmu2+dg81gI/BhKNVSdRgizpNPpmNi5GnqDgeCwExgMBtWRAIiKj2LW4Vm8Vekt6vjUUR1HCPOk00G7maBPgzWDtME3eUSKm+xIT9NWQXUrBs1CVKcRwqwVcnUktFM1/jkRw8qI66rjkKZPI3hXMD75fBhQc4DqOEKYN1dvbVLbUyu0pYnyiBQ32bH7a7h+WFsN1cFFdRohzF5b/yK08y9CyIqT3ExIUppl4cmFnLhzgtCgUJztnJVmEcIiVH0VqnTWlia6nzf310lxk1WxJ2HrRG2hMN+6qtMIYTHGd6yKva0Nw/4+rqx76uy9s8w5Ood3q7xL9cLVlWQQwiK1mQG2DrBqQJ50T0lxkxVpKVp3VMGy0HSE6jRCWBSPfA5MfrUaW07fZOmhq3l+/NT0VEbuGomfmx99q/fN8+MLYdHyFdSWJjq7Do7+nuuHk+ImK3ZOh5untO4oO0fVaYSwOM0re/N6reKMW3WKa3GP8vTY3x3/jvP3zhPaIBQHW4c8PbYQVqFiGwh4E9YNh7gruXooKW4y6/oR2DEdGg6BotVVpxHCYoW0r4yrkx1Dlx1Dr8+b7qmTt0+y4NgCevv3pkrBKnlyTCGsUutJ4JAfVn6aq91TUtxkRmqS1h3lXQUayWReQuQmNyd7przmz67zt/l93+VcP15yejIjd42kvEd5evv3zvXjCWHVnAtoi2te3AYHf8i1w0hxkxnbJsLdi9B5Ptjaq04jhMVrVL4QbwWWYOLa01y+8zBXjzXnyByi70czocEE7G3k+hYi15VtBrXfgw0h2r+tuUCKmxeJ3gfhX2s3EHtXVp1GCKsxok0lvFwdGLI0gvRc6p46evMoC08upG/1vpTzKJcrxxBCPEWL8ZDPC8L6aksZGZkUN8+T8hDC+kDx2trQbyFEnsnnaMf01wM4ePkeP4VHGX3/iamJjNw1kmqFqvFulXeNvn8hxHM45odO30L0Htg31+i7l+LmeTaNhYQb0Gke2NiqTiOE1QksXZBe9Usxdf0Zzt+8b9R9zzo8i5uJN5kQNAFbub6FyHt+DeClj7V/a2+dNequpbh5lovbYf98aD4avMqqTiOE1fqidQWKezgzeEkEaenGab7ed2Mfi04vYmCtgfi5+xlln0KIbGgWAgVKaL0k6WlG260UN0+TlAArPoWSDaDuR6rTCGHVnOxtmdElgOPX4pm/I+c3Hz5IeUBIeAh1fOrQvWJ3IyQUQmSbvbM2d9z1IxA+02i7leLmaTYEQ+Id6DQHbOQUCaFajRIe9GlchpmbznLqekKO9jX94HTikuMYV38cNjq5voVQrnhtCBoI2yZDzAmj7FKu7H87txEO/wytQsHDT3UaIcT/G9C8HGUK5Wfw0ghS0rLXPbXz6k7+OvcXQ+oMobhrcSMnFEJkW5Nh4FVem1MuLSXHu5Pi5n89ugcr+0GZl6FWL9VphBD/w9HOluldAjgXe59vtpzL8uvjk+MZs3sMQUWDeL3c67mQUAiRbXaO0Hku3IqEHdNyvDspbv7XP0MhJRE6zAadTnUaIcS/VC3mTr+Xy/HttgtEXInL0msn75/Mo7RHjKk/Bp1c30KYniIB0OgL2DkDrh3K0a6kuPmPyFVwbDG8MgXci6lOI4R4hk+alqFyETcGL40gKTU9U6/ZfHkzqy+uZnjgcHzy+eRyQiFEtjUcBD7VYPnH2tJH2STFDcDD27BqIFRoAwFvqE4jhHgOe1sbZnQNIPpOIl9ufPHcGHeT7jJu7zia+jalXel2eZBQCJFttvba6Kl7UbA1NNu7keLGYIDVn4FBD+1mSneUEGagvLcrg1uWZ8HOixy4dPeZ2xkMBkL3hqI36AmpFyLdUUKYg8KV4OVg2D0bovdmaxdS3Jz4CyJXQtsZ4OqtOo0QIpM+aFiamiU86P3LQTadin3i54mpiQSHB7Px8kaCXwrGy9lLQUohRLbU+xR862qjp1KyvniudRc392NgzWCo8ipUfVV1GiFEFtja6Pi+R21qlfDgg18OMm7VqYwh4mfunqHb6m5svLyRCQ0m0MqvleK0QogssbGFTnO1f6c3jcnyy3UGgyF3lts1UQkJCbi7uxMfF4fb6t7arIh994GLp+poQohsMBgM/Bh+icn/RFLBx5W29aP4/tQs/Nz9mN54OqXcS6mOKITIrn3z4Z8voMcKKN0k0y8ziZabOXPm4Ofnh5OTE4GBgezfv/+52y9dupSKFSvi5OREtWrVWLt2bdYPemwJnFsP7WdJYSOEGdPpdLzfoBS/fFCN6w7z+fbENGp4tmJR20VS2Ahh7ur0Br+G2pJISZmfnVx5cbN48WIGDRrE6NGjOXz4MAEBAbRq1YqbN28+dfvdu3fTvXt33n//fY4cOUKnTp3o1KkTJ05kccrmjaMh4E2o2MYI70IIodKxW8cYe7g3jq4XqGLXj007gxgddoZHKZkbKi6EMFE2NtBxjjbJ7voRmX6Z8m6pwMBA6tSpw+zZswHQ6/X4+vrSr18/hg0b9sT23bp14+HDh6xevTrjuZdeeonq1aszb968Fx4vo1tqQnncPtsHzgWM9l6EEHlLb9Dz88mf+frw11T2qszURlMpmq8oiw9cYcyqk5TwdGH2mzUp7+2qOqoQIicO/Qyr+sOY+ExtbpfLcZ4rJSWFQ4cOMXz48IznbGxsaN68OXv27Hnqa/bs2cOgQYMee65Vq1aEhYU9dfvk5GSSk5Mz/hwfr52Y+i622P7aOIfvQAihkgEDafo03qn0Dh8GfIi93p779+/TpmIBynv6M2RpBC2mrMNOFsAVwszl4xvbqjRISMDV1fWF0zooLW5u375Neno63t6PD8H29vbm9OnTT31NTEzMU7ePiYl56vaTJk1i7NixTzx/8rPIbKYWQpiaEf//PyGE5WoLMNWd+Ph43Nzcnrut0uImLwwfPvyxlp64uDhKlixJdHQ07u7uCpNZhoSEBHx9fbly5coLf9nEi8n5NC45n8Yn59S45Hxmnavri7uZlRY3Xl5e2NraEhv7+ARcsbGx+Pg8ff0XHx+fLG3v6OiIo6PjE8+7u7vLL5IRubm5yfk0IjmfxiXn0/jknBqXnE/jUtoR7eDgQK1atdi8eXPGc3q9ns2bN1OvXr2nvqZevXqPbQ+wcePGZ24vhBBCCOuivFtq0KBB9OzZk9q1a1O3bl1mzpzJw4cP6dWrFwA9evSgWLFiTJo0CYABAwbQuHFjZsyYQdu2bfnzzz85ePAg3333ncq3IYQQQggToby46datG7du3SIkJISYmBiqV6/OunXrMm4ajo6OxuZ/RjrUr1+fRYsWERwczIgRIyhXrhxhYWFUrVo1U8dzdHRk9OjRT+2qElkn59O45Hwal5xP45NzalxyPnOH8nluhBBCCCGMSSZ/EEIIIYRFkeJGCCGEEBZFihshhBBCWBQpboQQQghhUSyiuJkzZw5+fn44OTkRGBjI/v37n7v90qVLqVixIk5OTlSrVo21a9c+9nODwUBISAhFihTB2dmZ5s2bc+7cudx8CybF2Ofz3XffRafTPfZo3bp1br4Fk5KV83ny5Elee+01/Pz80Ol0zJw5M8f7tDTGPp9jxox54vezYsWKufgOTEtWzueCBQto2LAhHh4eeHh40Lx58ye2l89P455Pa//8zDaDmfvzzz8NDg4Ohh9//NFw8uRJQ+/evQ0FChQwxMbGPnX78PBwg62trWHq1KmGU6dOGYKDgw329vaG48ePZ2wzefJkg7u7uyEsLMwQERFh6NChg6FUqVKGR48e5dXbUiY3zmfPnj0NrVu3Nty4cSPjcffu3bx6S0pl9Xzu37/fMGTIEMMff/xh8PHxMXz11Vc53qclyY3zOXr0aEOVKlUe+/28detWLr8T05DV8/nmm28a5syZYzhy5IghMjLS8O677xrc3d0NV69ezdhGPj+Nez6t+fMzJ8y+uKlbt66hb9++GX9OT083FC1a1DBp0qSnbt+1a1dD27ZtH3suMDDQ8NFHHxkMBoNBr9cbfHx8DNOmTcv4eVxcnMHR0dHwxx9/5MI7MC3GPp8Gg3ZxduzYMVfymrqsns//VbJkyaf+Y5yTfZq73Difo0ePNgQEBBgxpfnI6e9SWlqawdXV1fDzzz8bDAb5/DT2+TQYrPvzMyfMulsqJSWFQ4cO0bx584znbGxsaN68OXv27Hnqa/bs2fPY9gCtWrXK2D4qKoqYmJjHtnF3dycwMPCZ+7QUuXE+/2Pbtm0ULlyYChUq8PHHH3Pnzh3jvwETk53zqWKf5iI33/u5c+coWrQopUuX5q233iI6OjqncU2eMc5nYmIiqampeHp6AvL5aezz+R/W+PmZU2Zd3Ny+fZv09PSM2Yz/w9vbm5iYmKe+JiYm5rnb/+f/s7JPS5Eb5xOgdevW/PLLL2zevJkpU6awfft2XnnlFdLT043/JkxIds6nin2ai9x674GBgSxcuJB169Yxd+5coqKiaNiwIffv389pZJNmjPM5dOhQihYtmvEPunx+Gvd8gvV+fuaU8uUXhOV74403Mv67WrVq+Pv7U6ZMGbZt20azZs0UJhMCXnnllYz/9vf3JzAwkJIlS7JkyRLef/99hclM2+TJk/nzzz/Ztm0bTk5OquOYvWedT/n8zB6zbrnx8vLC1taW2NjYx56PjY3Fx8fnqa/x8fF57vb/+f+s7NNS5Mb5fJrSpUvj5eXF+fPncx7ahGXnfKrYp7nIq/deoEABypcvL7+fzzF9+nQmT57Mhg0b8Pf3z3hePj+Nez6fxlo+P3PKrIsbBwcHatWqxebNmzOe0+v1bN68mXr16j31NfXq1Xtse4CNGzdmbF+qVCl8fHwe2yYhIYF9+/Y9c5+WIjfO59NcvXqVO3fuUKRIEeMEN1HZOZ8q9mku8uq9P3jwgAsXLsjv5zNMnTqV8ePHs27dOmrXrv3Yz+Tz07jn82ms5fMzx1Tf0ZxTf/75p8HR0dGwcOFCw6lTpwwffvihoUCBAoaYmBiDwWAwvPPOO4Zhw4ZlbB8eHm6ws7MzTJ8+3RAZGWkYPXr0U4eCFyhQwLBixQrDsWPHDB07drSqoYzGPJ/37983DBkyxLBnzx5DVFSUYdOmTYaaNWsaypUrZ0hKSlLyHvNSVs9ncnKy4ciRI4YjR44YihQpYhgyZIjhyJEjhnPnzmV6n5YsN87n4MGDDdu2bTNERUUZwsPDDc2bNzd4eXkZbt68mefvL69l9XxOnjzZ4ODgYFi2bNljQ5Pv37//2Dby+Wmc82ntn585YfbFjcFgMHzzzTeGEiVKGBwcHAx169Y17N27N+NnjRs3NvTs2fOx7ZcsWWIoX768wcHBwVClShXDmjVrHvu5Xq83jBo1yuDt7W1wdHQ0NGvWzHDmzJm8eCsmwZjnMzEx0dCyZUtDoUKFDPb29oaSJUsaevfubRX/EP9HVs5nVFSUAXji0bhx40zv09IZ+3x269bNUKRIEYODg4OhWLFihm7duhnOnz+fh+9Iraycz5IlSz71fI4ePTpjG/n8NN75lM/P7NMZDAZD3rYVCSGEEELkHrO+50YIIYQQ4t+kuBFCCCGERZHiRgghhBAWRYobIYQQQlgUKW6EEEIIYVGkuBFCCCGERZHiRgghhBAWRYobIYQQQlgUKW6EEBZn27Zt6HQ64uLiVEcRQiggMxQLIcxekyZNqF69OjNnzgQgJSWFu3fv4u3tjU6nUxtOCJHn7FQHEEIIY3NwcMDHx0d1DCGEItItJYQwa++++y7bt29n1qxZ6HQ6dDodCxculG4pIayYFDdCCLM2a9Ys6tWrR+/evblx4wY3btzA19dXdSwhhEJS3AghzJq7uzsODg64uLjg4+ODj48Ptra2qmMJIRSS4kYIIYQQFkWKGyGEEEJYFCluhBBmz8HBgfT0dNUxhBAmQoaCCyHMnp+fH/v27ePSpUvkz58fvV6vOpIQQiFpuRFCmL0hQ4Zga2tL5cqVKVSoENHR0aojCSEUkhmKhRBCCGFRpOVGCCGEEBZFihshhBBCWBQpboQQQghhUaS4EUIIIYRFkeJGCCGEEBZFihshhBBCWBQpboQQQghhUaS4EUIIIYRFkeJGCCGEEBZFihshhBBCWBQpboQQQoj/2ygYVgAAmTeOT0Wen9sAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOw0lEQVR4nOzdd1hU19bH8e/QQQFBFCwo9orYUbEl9q5JNDEmGlM1auwdsWGNxhRbYoq5N01NFLvGXhBLLNh7wQZiAUSkz/vHecMNsVEG9pT1eR6emOHMOb8ZZmDN3uesrdPr9XqEEEIIIcyEleoAQgghhBCGJMWNEEIIIcyKFDdCCCGEMCtS3AghhBDCrEhxI4QQQgizIsWNEEIIIcyKFDdCCCGEMCtS3AghhBDCrEhxI4QQQgizYnHFjV6vJy4uDmnMLIQQQpgnpcXN7t276dSpE8WLF0en0xESEvLC++zcuZPatWtjb29P+fLlWbp0abaO+fDhQ1xdXXn48GHOQgshhBDCqCktbh49eoSfnx8LFizI0vZXrlyhQ4cOvPTSSxw7dowhQ4bw/vvvs3nz5jxOKoQQQghToTOWhTN1Oh2rVq2ia9euz9xm9OjRrF+/npMnT2bc9sYbbxATE8OmTZuydJy4uDhcXV2JjY3FxcUlt7GFEEIIkQ/0ej06nS5L25rUOTdhYWG0bNky021t2rQhLCzsmfdJSkoiLi4u0xdAfFJqnmYVQihwdj382BkS41QnEUIY2OpLq7O8rUkVN5GRkXh6ema6zdPTk7i4OB4/fvzU+8yYMQNXV9eML29vbwDmbD6b53mFEPko7jYsewuu7II/x6tOI4QwoMhHkcw6OCvL25tUcZMTY8eOJTY2NuPr+vXrAPx++CY7zt1RnE4IYRB6PawdDE4e0CIIjvwHLmxRnUoIYQB6vZ6g0CCcbJ2yfB+TKm68vLyIiorKdFtUVBQuLi44Ojo+9T729va4uLhk+gJoVL4wY/44TmxCSp7nFkLksaM/wYXN0OkLaDwMyrWANYPg8QPVyYQQubTi/ArCbocxpdGULN/HpIqbhg0bsm3btky3bdmyhYYNG2Z7X1M6VyMhOY1Ja08ZKp4QQoWYCNg0FvzehMrtQaeDzl9BcgJsHK06nRAiF64/vM6cv+bwWsXXCCgRkOX7KS1u4uPjOXbsGMeOHQO0S72PHTtGREQEoE0p9e7dO2P7fv36cfnyZUaNGsXZs2dZuHAhy5cvZ+jQodk+tperI5M7V2PV0ZtsOhlpkMcjhMhn6emweiA4uEDbGf+73bUEtJ8Nx5fBmbXq8gkhcixdn07g3kDcHdwZUXdEtu6rtLj566+/qFWrFrVq1QJg2LBh1KpVi6CgIABu376dUegAlClThvXr17Nlyxb8/PyYO3cu3377LW3atMnR8bvVKkGrqp6MX3WCe/FJuX9AQoj89dd32gnEnb8Cx0KZv1fjdajUAdYOgUd3VaQTQuTCT6d/4sidI0wNmEoB2wLZuq/R9LnJL//ucxP9MInW83bRoGxhFvaqneVr6IUQit27BIsbg98b0HHe07eJvwML/MGnMfT4jzZlJYQwepdjL9NjbQ+6V+zO6PrZn142qXNu8kIRZ3uCu/qy8WQka8JvqY4jhMiK9DRYPQAKFIFWU5+9XcGi0PEzOLMGTv6Rf/mEEDmWmp5K4N5AvAp48UntT3K0D4svbgA61ChGJ7/iBK0+RVRcouo4QogX2b8QIvZD14VgX/D521brBtVegfXDtV44QgijtvTUUk7dO0VwQDCONk+/EvpFpLj5f1M6V8POxoqxK0/IiuFCGLPoc7BtKjTor003ZUWHuWBtp/XCkfe3EEbr3P1zLDi2gHeqvUPNojVzvB8pbv6fWwE7ZnTzZfvZO6z464bqOEKIp0lLhVX9oFAprVlfVjm5Q+cvtV44R3/Ku3xCiBxLSUshMDQQHxcfBtQckKt9SXHzDy2retK9TkmmrDvNjQcJquMIIf4tdB7cPgbdFoNtNoerK7WDmr20njgxES/eXgiRr74+/jUXH1xkWuNp2Fnb5WpfUtz8y4ROVXFxsGH0H8dJT5fhayGMRuQJ2DkLAoZAybo520fbGVpPnNUDtR45QgijcOruKb498S0f1viQqoWr5np/Utz8i4uDLbNf8yP04j1+PnBNdRwhBEBqsjYd5VERmo/J+X4cXLWeOFd2aT1yhBDKJaUlMW7vOCq6VeT9Gu8bZJ9S3DxF4woevNWgFNM3nOXq3Ueq4wghds2C6LPQbRHY2OduX+VbQN13YUuQ1itHCKHUgqMLuP7wOtMaT8PWytYg+5Ti5hnGtqtCEWd7RqwIJ02mp4RQ58Zh2DsPmo6CYn6G2WerqVqPnNUDtJ45Qggljt45ytJTSxlQcwAV3CoYbL9S3DxDAXsb5nT343DEA77fe0V1HCEsU8pjCOkHXr7QZJjh9mtfELou0nrl7F9ouP0KIbIsISWBwL2B+Bbx5Z1q7xh031LcPEf9Mu68F1CGT/88x4Woh6rjCGF5tgfDg6va1VHWhhmuzuATAA0+1nrmRJ8z7L6FEC/0xZEvuJNwh2kB07C2sjbovqW4eYERbSrh7ebI8BXhpKbJ1RVC5Jtr+yBsAbwcCEWr5M0xWkzQeuas6qf10BFC5IsDtw/wy9lfGFJnCD6uPgbfvxQ3L+Bga83cHjU5eTOWRTvl5EMh8kVSPIT0B+/60HBg3h3H1lEbFbp9TOuhI4TIc/HJ8QSFBlHPqx49K/fMk2NIcZMFNb0L8XHz8ny5/QKnbsWqjiOE+ds6ER5GaefFGHi4+gkl62q9c3bO0nrpCCHy1Jy/5hCTFMOURlOw0uVNGSLFTRZ90qIC5YoUZPjycJJS5eoKIfLMpR1w6FtoNQUKl8ufYzYfo/XQWdVP66kjhMgTe27s4Y8LfzCi3ghKOpfMs+NIcZNFdjZWfNajJpei4/ly2wXVcYQwT4mxWvdgnyZQzzDNvLLExl6bnoo+q/XUEUIYXGxSLJP2TSKgeACvVXgtT48lxU02VC3uwuAWFVi08xJHIx6ojiOE+dk0TitwuiwAq3z+9VSsBjQbrfXUuXE4f48thAWYeXAmj1MfM6nRJHQ6XZ4eS4qbbOrXrBy+JVwZviKcxBSZnhLCYM5tgmM/QZtp4FZaTYbGQ7WeOiH9tB47QgiD2HZtG+sur2Os/1i8Cnjl+fGkuMkmG2sr5vbw48aDx8zZLL0xhDCIhPuw9hMo3wpq91aXw9pWm556cE3rsSOEyLX7ifeZsn8KL3m/RMeyHfPlmFLc5ED5os6MbF2J70KvcPDKfdVxhDB9G0ZCaqK2qGUeD1e/UNEq8PJ4rcfOtX1qswhh4vR6PcH7g0nXpxPUMCjPp6P+JsVNDr3buAx1S7sxYkU4j5Kk+ZcQOXYqBE7+Du3ngEsx1Wk0DQdqPXZC+ms9d4QQObLxyka2XNtCYINAPBw98u24UtzkkLWVjjnd/Yh+mMSMjWdUxxHCNMXfgfXDoHJH8O2uOs3/WFlrPXYeRmk9d4QQ2XYn4Q7TDkyjnU872vi0yddjS3GTC6ULF2Bc+8r8tD+CPReiVccRwrTo9bBuqPbvjp+rn476t8LltF47h77Veu8IIbJMr9czOWwydtZ2jPMfl+/Hl+Iml3r5l6ZxeQ9G/X6cuMQU1XGEMB3Hl8PZddBxHhQsojrN09V7X+u5s3qgdom6ECJLQi6GsPvGbiY2nEghh0L5fnwpbnLJykrHrNdqEJ+YypS1p1XHEcI0xN3STiL27Q5Vu6hO82xWVlrPncRY2Jz/nz6FMEW34m8x69AsupTrQnPv5koySHFjACUKOTKhU1V+P3yDraejVMcRwrjp9bBmkLZoZbvZqtO8mFtprffO0Z+0XjxCiGdK16cTtC8IZztnRtcfrSyHFDcG0r1OSVpULsqYlSd48EjWphHimY78CBe3QucvwclddZqsqd1b68Gz9hOtJ48Q4qmWn1vOgdsHmNxoMs52zspySHFjIDqdjhmv+JKSlk7QmlOq4whhnB5cg83jodZbUDF/r57IFZ1O68GTmqhNpwkhnhARF8Fnhz/j9Uqv06h4I6VZpLgxoKIuDkzpUo214bdYd/yW6jhCGJf0dFg9ABzdoM0M1Wmyz6WY1ovn5O9abx4hRIa09DQmhE6gsENhhtUZpjqOFDeG1tmvOO19vZgQcpLoh0mq4whhPA4tgat7oMt8cHBRnSZnfLtrPXnWD4N4af8gxN9+OvMTR+8cZWrAVJxsnVTHkeLG0HQ6HVO7VMfaSsfYlSfQ6/WqIwmh3t2LsGUi1PsAyjZXnSbndDqtJw/AuiHaydFCWLjLMZf58siXvFX1Lep61VUdB5DiJk8ULmjPtG6+bD0TxcojN1XHEUKt9DRtGQNnL2g1WXWa3CtYROvNc3ad1qtHCAuWmp7K+L3jKV6wOJ/U+kR1nAxS3OSRNtW8eKVWCSatPcXt2Meq4wihzr6v4MYhbTkDuwKq0xhG1S7aFNXGkVrPHiEs1Pcnv+f0/dNMazwNBxsH1XEySHGThyZ2qoaTnTWjfj8u01PCMt05AzumQcMBULqh6jSG1W422DhqPXvk/S0s0Ln751gUvoj3qr9HjSI1VMfJRIqbPOTqZMusV2uw58JdfjkYoTqOEPkrLQVWfQRuZeDlCarTGJ6Tu9ar5+JWOPIf1WmEyFcpaSmM2zuOMq5l6OfXT3WcJ0hxk8eaVypKz/reTFt/hoh7CarjCJF/9nwGkSeh2yKwNZ7haoOq2Ebr2bN5nNbDRwgLsSh8EZdjLjO98XTsrO1Ux3mCFDf5YHyHqrgXsGPk7+Gkp8vwtbAAt47B7tnQZBiUqKM6Td5qM0Pr3bN6gNbLRwgzdyL6BN+f/J6P/D6isntl1XGeSoqbfFDQ3oZPX/PjwJX7LN13VXUcIfJWapJ2dVSRKtB0lOo0ec/BRevdc3WP1stHCDOWmJrI+NDxVHavzHu+76mO80xS3OSThuUK804jH2ZtOsul6HjVcYTIOztnwN0L2nSUjfENV+eJss21Hj5bJsK9S6rTCJFn5h+dz82HN5nWeBq2Vraq4zyTFDf5aHTbyhQv5MiIFeGkpsnwtTBD1w9B6BfQfDR4+apOk79aTdZ6+azqp/X2EcLMHI46zH9O/4dBtQZRrlA51XGeS4qbfORoZ82c7n6EX4/hmz2XVccRwrCSEyCkHxSrCQFDVafJf3YFtF4+Nw5B2HzVaYQwqISUBAL3BlKzaE3ervq26jgvJMVNPqtT2o0Pm5Zj3pbznI2MUx1HCMPZPhVirkO3xWBtozqNGqUbaj19tgdrPX6EMBOfHf6Me4n3CA4IxtrKWnWcF5LiRoGhrSpQxqMAw5eHk5wq01PCDFzdC/sXQosgKFJJdRq1Xp6g9fZZ1U/r9SOEiQu7Fcayc8sYUnsIpVxKqY6TJVLcKGBvY81nPWpyLvIh83dcVB1HiNxJegghH0OphtCgv+o06tk6aCdTR56AvfNUpxEiVx4mPyRoXxD+Xv68UfkN1XGyTIobRaqXcGXgy+VZsOMiJ27Eqo4jRM79OQEeRUPXhWACw9X5okQdrcfPrllwO1x1GiFy7NNDn/Iw+SFTAqZgpTOdksF0kpqhAS+Vp0oxZ4YtP0ZiilxdIUzQxa1w+AdoNQXcy6pOY1yajtJ6/azqr/X+EcLE7Lq+i1UXVzGq3iiKFyyuOk62SHGjkK21FXO71+TavQTmbT2vOo4Q2fM4BlYP0nq81DXeZl7K2Nhp01N3z8POmarTCJEtMYkxTAqbRJMSTehWvpvqONkmxY1ilbycGdqqIt/svszha/dVxxEi6zaNheR46DwfrORXyVN5+Wo9f0I/hxt/qU4jRJZNPzid5LRkJjWahE6nUx0n2+Q3khH4sGlZanoXYvjycBKSU1XHEeLFzm6A8F+g7Qwo5K06jXELGKr1/lnVD1Ieq04jxAv9efVPNl7ZyFj/sRR1Kqo6To5IcWMErK10zO3uR2RcIrM3nVMdR4jne3QP1g6Gim2hZi/VaYyftY3W+ycmArZNVZ1GiOe69/gewfuDaVGqBR3KdFAdJ8ekuDESZYsUZHTbyizdd5V9F++qjiPEs20YDmnJ0OkLMMHhaiWKVNJ6AO1fCFdDVacR4qn0ej1TwqYAMKHBBJOcjvqbFDdGpE9DHxqUdWfk78d5mCjNv4QROvkHnFoFHeZq6yiJrGvQH0o10FZMT5LFc4XxWXd5Hduvb2dCwwkUdiysOk6uSHFjRKysdHz6mh8xCclMWy+t24WReRgF64dD1S5Q/VXVaUyPlbXWC+hRNGyZoDqNEJlEPYpixsEZtC/TnlalW6mOk2tS3BgZb3cnAjtW5bdD19lx7o7qOEJo9HpYNwR01tDhM5mOyin3slpPoL++h4vbVKcRAtCmoyaGTcTB2oFx/uNUxzEIKW6M0Bv1vGlWsQijfz9OTEKy6jhCQPivcG6Ddp5NAQ/VaUxb3fe03kBrBmm9goRQbOWFlYTeDGVSo0m42ruqjmMQUtwYIZ1Ox6xXa5CYksakNadUxxGWLvYGbBwDNd6AKh1VpzF9VlZab6Ckh7DZPD4lC9N1M/4msw/Nplv5bjQt2VR1HIOR4sZIebk6MLlLNUKO3WLTyduq4whLpddrIwx2TtBOuuwaTCFvrUfQsZ+1nkFCKJCuTycoNAhXe1dG1RulOo5BSXFjxLrWLEHrqp6MX3WSe/GyNo1Q4PAPcGm7NtLg6KY6jXmp2UvrFbR2MCRId3KR/349+ysHIw8yJWAKBe0Kqo5jUFLcGDGdTse0br7ogfGrTqLX61VHEpbk/hXYHAi1+0CFlqrTmB+dTjuHKS1ZuwpNiHx0Le4anx/+nDcqvUGDYg1UxzE4KW6MXBFne4K7VmfTqUjWhN9SHUdYivR0WD0AChSGNtNUpzFfzl5az6BTK+HkStVphIVIS09j/N7xFHEqwtA6Q1XHyRNS3JiA9r7F6OxXnKDVp4iKS1QdR1iCA4vhWih0WQD2zqrTmLfqr2q9g9YPh3hp/yDy3n9O/4fj0ccJDgjGydZJdZw8IcWNiZjSpRp2NlaM+eO4TE+JvHX3AmybDP79oIz5XD1htHS6/+8dZKWdfyPvb5GHLj64yFdHv6J31d7U9qytOk6eUV7cLFiwAB8fHxwcHPD39+fgwYPP3f7zzz+nUqVKODo64u3tzdChQ0lMNP/RjEJOdsx8xZcd56JZ/td11XGEuUpL1VavdikBLSaqTmM5Cnho59+c2wDhv6lOI8xUSnoK40PH4+3szaDag1THyVNKi5tly5YxbNgwJk6cyJEjR/Dz86NNmzbcufP0odlffvmFMWPGMHHiRM6cOcN3333HsmXLGDfOMnpFtKjiSY+6JZm67gw3HiSojiPM0b4v4NYR6LpIu/xb5J8qHaHG67BxNMTeVJ1GmKFvT3zLufvnmNZ4GvbW9qrj5Cmlxc1nn33GBx98QN++falatSqLFy/GycmJ77///qnb79u3j4CAAN588018fHxo3bo1PXv2fOFojzkJ7FgVFwcbRv1+nPR0Gb4WBhR1CnbMgEaDoJS/6jSWqd0srahcM1Cmp4RBnbl3hm/Cv+E93/eo7lFddZw8p6y4SU5O5vDhw7Rs+b9LTK2srGjZsiVhYWFPvU+jRo04fPhwRjFz+fJlNmzYQPv27Z95nKSkJOLi4jJ9mTIXB1tmv+bHvkv3+OnANdVxhLlITYZVH0Hh8tDcMkZCjZKjm9ZT6NJ2OLxUdRphJpLTkhm3dxzlCpWjX41+quPkC2XFzd27d0lLS8PT0zPT7Z6enkRGRj71Pm+++SZTpkyhcePG2NraUq5cOZo3b/7caakZM2bg6uqa8eXt7W3Qx6FC4woevN2gNDM2nOXq3Ueq4whzsGcORJ2GbovA1kF1GstWoaXWW2jzeHhwVXUaYQYWhS/iatxVpjWehq21reo4+UL5CcXZsXPnTqZPn87ChQs5cuQIK1euZP369UydOvWZ9xk7diyxsbEZX9evm8fJuGPaVaaoiz0jVoSTJtNTIjduHoHdc6DpSCheS3UaAVpvIafCEDJA6zkkRA6FR4fz/cnv6e/Xn0rulVTHyTfKihsPDw+sra2JiorKdHtUVBReXl5Pvc+ECRN4++23ef/99/H19aVbt25Mnz6dGTNmkP6MXwD29va4uLhk+jIHBextmNPdj8MRD/hu72XVcYSpSkmEkP7gWQ2ajlCdRvzN3hm6LoBre+Hg16rTCBP1OPUxgXsDqepelXerv6s6Tr5SVtzY2dlRp04dtm3blnFbeno627Zto2HDhk+9T0JCAlZWmSNbW1sDWGTvl3o+7rzfuAxz/jzPhaiHquMIU7RjGty/DN0Wg4UMV5uMMk2h/kewdZLWe0iIbPryyJfcir/FtMbTsLGyUR0nXymdlho2bBhLlizhxx9/5MyZM/Tv359Hjx7Rt29fAHr37s3YsWMztu/UqROLFi3it99+48qVK2zZsoUJEybQqVOnjCLH0gxvXYlS7k4MXxFOSpoMX4tsiDgA+76C5mO1kRthfFpO0noOhfSH9DTVaYQJ+SvyL34+8zOf1P6EsoXKqo6T75SWcq+//jrR0dEEBQURGRlJzZo12bRpU8ZJxhEREZlGagIDA9HpdAQGBnLz5k2KFClCp06dmDbNcte+cbC1Zm53P15ZtI9FOy/xSYsKqiMJU5D8CEL6Qcm60OgT1WnEs9g5aT2HfmgL+76Exua5DpAwrISUBAJDA6lVtBZvVXlLdRwldHoLm8+Ji4vD1dWV2NhYszn/BmDun+dYtPMSqwcGUK24q+o4wthtGAVHfoR+e8FDCmKjtyUI9i+CD3eBZ1XVaYSRmxo2lbWX1/JHpz/wdjH9K4RzwqSulhLPNujlClTwdGb48nCSUmX4WjzH5V3aSaotJ0lhYyqajwP3slovorQU1WmEEdt3cx/Lzy9nWJ1hFlvYgBQ3ZsPOxoq53f24FB3PF1vl5EPxDIlxsHoglG6snawqTIOtg3bSd9Qp7bJ9IZ4iLjmOoH1BNCjWgB6VeqiOo5QUN2akanEXhrSsyOJdlzga8UB1HGGM/hwPCfe0y4yt5O1vUorX0i7X3zMHbh1VnUYYodkHZ/Mo5RFTGk3BSmfZ72/LfvRm6KOmZfEtWYjhK8JJTJHpKfEPF7bAkf9Am2Bw81GdRuREkxFQtAqs6g+pSarTCCOyI2IHqy+tZlS9URQrWEx1HOWkuDEzNtba9NTNB4/5dPM51XGEsXj8ANYMgnIvQ52+qtOInLKxg25fw72LsGO66jTCSMQkxjA5bDLNSjaja/muquMYBSluzFD5ogUZ2aYS34de4cDle6rjCGOwcTQkJ2iLMup0qtOI3PCsBi+N1S4Nv35QdRphBKYdmEZKegoTG05EJ+9vQIobs9U3oAz1Srsz4vdwHiWlqo4jVDqzFo4vg3azwLWE6jTCEBoNhuK1YVU/rWgVFmvT1U1surqJ8f7jKeJURHUcoyHFjZmyttLxafca3H2YzPQNZ1THEao8ugtrh0Cl9uD3huo0wlCsbbSrp+JuwrbJqtMIRe4+vsu0/dNoVboV7cq0Ux3HqEhxY8ZKFy7AuA5V+PlABLvPR6uOI/KbXg/rhoI+HTp+LtNR5sajArSYCAcWw5XdqtOIfKbX65kcNhkrnRWBDQJlOupfpLgxc2/5l6JJBQ9G/3Gc2MfS/MuinPwDzqyBDnPB2VN1GpEX/PtB6QBYPQCSZPFcS7L28lp2Xt9JUMMg3B3cVccxOlLcmDmdTsesV2sQn5jKlLWnVccR+SXuNqwfDtVegeqvqE4j8oqVFXRZAI/uwZ+BqtOIfBL5KJKZB2bSsWxHWpRqoTqOUZLixgIUL+RIUKeq/HHkBltOR6mOI/KaXg9rB4O1nTZqI8ybexloPRUOL4ULW1WnEXlMr9czcd9EHG0cGVN/jOo4RkuKGwvxWp2StKhclLErT/DgUbLqOCIvHf0JLmyGTl+AkwxXW4S670LZl7ReRo+lO7k5+/3C7+y7tY/JAZNxtZdFkp9FihsLodPpmPGKL6np6UxYfVJ1HJFXYiJg01jwexMqt1edRuQXnQ66zIfkeNgon+bN1Y2HN/j00Ke8WuFVGpdorDqOUZPixoIUdXFgSpfqrDt+m7Xht1THEYaWnq4tiungAm1nqE4j8ptrSa2X0fHf4Mw61WmEgaXr05kQOgE3ezdG1hupOo7Rk+LGwnSqUYwOvsWYsPokdx4mqo4jDOmv7+DKLuj8FTgWUp1GqODXEyq2g3VDtJOMhdn45cwv/BX1F1MDplLAtoDqOEZPihsLo9PpmNq1OjZWOsatPIler1cdSRjCvUuwJUg796K8XD1hsXQ67Vyr9FRYP1Q7uVyYvCuxV/j8yOe8WflN6herrzqOSZDixgK5F7Bjejdftp6J4o8jN1XHEbmVnqb1OSlQBFpNVZ1GqObsqV0ld3q11utImLS09DQCQwPxKuDFkDpDVMcxGVLcWKjW1bx4pXYJJq89xa2Yx6rjiNzYvxAi9kPXhWBfUHUaYQyqvwrVusGGEfAwUnUakQtLTy3l5N2TBAcE42jjqDqOyZDixoJN7FSNAnY2jP7juExPmaroc7BtKjToDz5y9YT4h/ZzwcpG63kk72+TdOHBBRYcW0Cfan2oWbSm6jgmRYobC+bqaMus12qw58JdfjkYoTqOyK60VG1V6EKloEWQ6jTC2BQoDJ2+hPOb4NgvqtOIbEpJT2H83vGUci7FgJoDVMcxOVLcWLhmFYvQs34ppq0/Q8S9BNVxRHaEzoPbx7TVoW1luFo8ReX22hVUm8ZA7A3VaUQ2LDm+hPMPzjOtyTTsre1VxzE5UtwIxneognsBO0b8Hk56ugxfm4TIE7BzFgQMgZJ1VacRxqztTLArqJ10LtNTJuHUvVMsOb6ED2p8QLXC1VTHMUlS3AgK2tswp7sfB6/c54d9V1XHES+SmqxNR3lUhObSjVa8gGMh6PIVXN6p9UISRi05LZnAvYFUcKvAh74fqo5jsqS4EQA0KFuYvgE+zN50lkvR8arjiOfZNQuiz0K3RWAjw9UiC8q3hDp94c8guH9FdRrxHAuOLeBq3FWCGwdja22rOo7JkuJGZBjVpjIlCjkyfHk4qWnpquOIp7lxGPbOg2ajoZif6jTClLSeqp1kHPKxtlSHMDrH7hxj6amlDKg5gIpuFVXHMWlS3IgMjnbWzOnhx/EbMXy9+7LqOOLfUh5DSD/w8oXGQ1WnEabG3hm6LoKIfXBgkeo04l8epz4mMDSQ6oWr8061d1THMXlS3IhMapdy46Nm5fh863nORsapjiP+aXswPLimXR0lw9UiJ3wag39/2DYFos+rTiP+4YsjXxD5KJLgxsHYWNmojmPypLgRTxjSsgJlPQoybFk4yakyfG0Uru2DsAXw8ngoWkV1GmHKWgRpK4iH9NN6JQnlDt4+yM9nfmZw7cGUcS2jOo5ZkOJGPMHexpq5Pfw4H/WQ+dsvqI4jkuIhpD9414eGA1WnEabOzgm6LoZbR2HfF6rTWLxHKY8I2hdEXc+69KrSS3UcsyHFjXiq6iVcGfRyBRbsvMTxGzGq41i2rRPhYZR2voSVteo0whx414OAwbBjBkSeVJ3Gos35aw73E+8zJWAKVjr5k2wo8kyKZ/r4pXJULebCsOXhJKakqY5jmS7tgEPfQqspULic6jTCnDQfCx4VtOmp1GTVaSzS3pt7+f3874yoOwJvZ2/VccyKFDfimWytrZjbw4+IewnM2yInH+a7xFhYPRB8mkC991WnEebGxl4bDbxzBnZ/qjqNxYlNimXivok0Kt6I7hW7q45jdqS4Ec9V0dOZYa0r8s2ey/x19b7qOJZl8zitwOmyAKzkrSryQPGa0HQk7JkLN4+oTmNRZh2cxeOUx0xuNBmdTqc6jtmR35jihT5oUpZa3oUYsSKchGS5uiJfnNsER3+CNtPArbTqNMKcNRkOXtW1JT1SElWnsQjbIrax9vJaRtcfjVcBL9VxzJIUN+KFrK10zO1Rk8i4RGZtPKs6jvlLuA9rP4HyraB2b9VphLmztoVuX8ODK7Bjmuo0Zu9B4gOmhE2huXdzOpfrrDqO2ZLiRmRJGY8CjGlbmR/DrhF68a7qOOZtw0hITYTOX4EMV4v8ULQKvDQe9n0FEftVpzFber2eqfunkqZPY2LDiTIdlYekuBFZ1ruhDw3LFmbU78d5mJiiOo55OhUCJ3+H9nPApZjqNMKSNBoEJetpPZWSH6lOY5Y2Xd3ElmtbCGwQiIejh+o4Zk2KG5FlVlY6Zr9Wg5iEZILXnVEdx/zER8P6YVC5I/jK1RMin1lZa1dPxd2GrZNUpzE70QnRTDswjTY+bWjr01Z1HLMnxY3IFm93JyZ0rMqyv66z4+wd1XHMh14P64Zo/+74uUxHCTU8ykPLSXDwG7i8S3Uas6HX65kcNhlrnTXj/cerjmMRpLgR2fZ6PW+aVyrC6D+OE5Mgzb8M4vhyOLsOOs6DgkVUpxGWrP6HWm+l1QMgURbPNYTVl1az68YuJjWchJuDm+o4FkGKG5FtOp2Oma/UIDEljUlrTqmOY/ribsHGkdpUVNUuqtMIS2dlpfVWevwA/pRRhtyKfBTJrIOz6FyuMy+Vekl1HIshxY3IES9XB6Z0qU7IsVtsPHFbdRzTpdfDmkFg4wjtZqtOI4TGrbTWY+nIf+D8n6rTmCy9Xs+E0Ak42Toxuv5o1XEsihQ3Ise61CxOm2qejA85yd34JNVxTNORH+HiVuj8JTi5q04jxP/U7gPlW2rFd4J0J8+J5eeWs//2fqY0moKLnYvqOBZFihuRYzqdjmndfAEIXHUSvV6vOJGJeXANNo+HWm9BxTaq0wiRmU6n9VpKfQwbZdQhu67HXWfu4bl0r9idgBIBquNYHCluRK54FLRnWtfqbDoVyepjt1THMR3p6doJm45u0GaG6jRCPJ1LcW269MRyOL1GdRqTka5PJzA0EHcHd4bXHa46jkWS4kbkWjvfYnSpWZyg1SeJipO1abLk0BK4uge6zAcHGa4WRqzG61rvpXVD4ZF0J8+Kn07/xJE7R5gaMJUCtgVUx7FIUtwIg5jcuRoOttaM/uO4TE+9yN2LsGUi1PsAyjZXnUaI59PptBYF+nStF5O8v5/rcuxlvjjyBW9VeYt6XvVUx7FYUtwIgyjkZMfMV33ZeS6aZYeuq45jvNLTtPb2zl7QarLqNEJkTcGiWoFzZi2c+F11GqOVmp5K4N5Aihcszie1P1Edx6JJcSMM5uXKnrxe15up605z/X6C6jjGad9XcOOQ1ubeToarhQmp1hWqvwobRmhLNIgn/HDyB07dO0Vw42AcbRxVx7FoUtwIgwrsWIVCTnaM+v046ekyfJ3JnTOwYxo0HAClG6pOI0T2tZ8DNvaw9hOZnvqXc/fPsTB8IX2r9cWviJ/qOBZPihthUM4Otsx+rQZhl+/x3/3XVMcxHmkpsOojcCsDL09QnUaInHFyh05fwoU/4ehPqtMYjZS0FMbvHY+Piw8f1/xYdRyBFDciDwSU96B3w9LM2HiGK3cfqY5jHPZ8BpEnodsisHVQnUaInKvUFmq+BZvGQkyE6jRG4evjX3Mp5hLTGk/DztpOdRyBFDcij4xpVxlPFwdGrAgnzdKnp24dg92zockwKFFHdRohcq/tdHBw1Xo1paerTqPUybsn+fbEt3xY40OqFq6qOo74f1LciDzhZGfD3O5+HIl4wLd7LquOo05qknZ1VJEq0HSU6jRCGIaDq9aj6cpu+Os71WmUSUpLYvze8VR0q8j7Nd5XHUf8gxQ3Is/U9XHngyZlmfvnec5HPVQdR42dM+DuBW06ykaGq4UZKfcS1H0PtgTBvUuq0ygx/+h8rj+8zvTG07G1slUdR/yDFDciTw1rVZFShZ0YvjyclDQLG76+fghCv4Dmo8HLV3UaIQyv1RStB07Ix1oPJwty9M5Rfjz1IwNrDaS8W3nVccS/SHEj8pSDrTWf9fDj9O04Fu6woE93yQkQ0g+K1YSAoarTCJE37AtqPZuuH4D9C1WnyTcJKQmM3zueGkVq0KdqH9VxxFNIcSPyXI2ShRjQvBxfbb/AyZuxquPkj+1TIeY6dFsM1jaq0wiRd0o30no3bZsKd86qTpMvPj/yOdEJ0QQHBGNtZa06jngKKW5Evhj4cgUqejozfHk4SalmPnx9da/2KbZFEBSppDqNEHnv5UBwK62NVqalqk6Tp/bf3s+vZ39lSJ0h+Lj6qI4jnkGKG5Ev7GysmNvDj8t34/li6wXVcfJO0kPt/INSDaFBf9VphMgfto7QdTHcDoe981SnyTPxyfEEhQZRz6sePSv3VB1HPIcUNyLfVCnmwpCWFVm86xJHIh6ojpM3/pwAj6Kh60KQ4WphSUrWgcZDYdcsuH1cdZo8MeevOcQmxTI1YCpWOvnzacyU/3QWLFiAj48PDg4O+Pv7c/DgweduHxMTw4ABAyhWrBj29vZUrFiRDRs25FNakVsfNS2Lb8lCjFgezuNkM5ueurgVDv+gXUHiXlZ1GiHyX7PR2lRsSH9ITVadxqB239jNHxf+YGS9kZQoWEJ1HPECOS5utm3bRseOHSlXrhzlypWjY8eObN26NVv7WLZsGcOGDWPixIkcOXIEPz8/2rRpw507d566fXJyMq1ateLq1av8/vvvnDt3jiVLllCihLzQTIWNtRVzu/txM+Yxn24+pzqO4TyOgdWDoGxzrfeHEJbIxl67eir6rDaCYyZik2KZtG8SASUCeLXCq6rjiCzIUXGzcOFC2rZti7OzM4MHD2bw4MG4uLjQvn17FixYkOX9fPbZZ3zwwQf07duXqlWrsnjxYpycnPj++++fuv3333/P/fv3CQkJISAgAB8fH5o1a4afn6zAakrKFy3IyDaV+D70Cvsv31MdxzA2jYXkeOg8H6yUD4gKoU6xGtBsDOz9DG4cVp3GIGYcnEFiWiKTG05Gp9OpjiOyQKfXZ3/d+pIlSzJmzBgGDhyY6fYFCxYwffp0bt68+cJ9JCcn4+TkxO+//07Xrl0zbu/Tpw8xMTGsXr36ifu0b98ed3d3nJycWL16NUWKFOHNN99k9OjRWFs//fyGpKQkkpKSMv4/Li4Ob29vYmNjcXFxyeIjFoaWnq7njSX7uR37mI2Dm1LQ3oQvlz67AX7rCV0WQK23VKcRQr20VPiuJSQ/go92ayccm6it17YydOdQpjeeTqdynVTHEVmUo78oMTExtG3b9onbW7duzejRo7O0j7t375KWloanp2em2z09PTl79um9Ei5fvsz27dvp1asXGzZs4OLFi3z88cekpKQwceLEp95nxowZTJ48OUuZRP6xstIx5zU/2n6xm+kbzjC9m4l28H10D9YOhoptoWYv1WlyRK/Xk5pq3pfvmjJra2usTG000NpGu3rq66awPRjaTFOdKEfuJ95n6v6pvOz9Mh3LdlQdR2RDjoqbzp07s2rVKkaOHJnp9tWrV9OxY969ANLT0ylatCjffPMN1tbW1KlTh5s3b/Lpp58+s7gZO3Ysw4YNy/j/v0duhHqlCjsxrn0VAkNO0qaaF80qFlEdKfs2DIe0ZOj0BZjgcHVqairR0dHkYABX5CMnJydcXV1Na0qkaGWt/82WIKjcQWv2Z0L0ej1Tw6aSrk9nQsMJpvXci5wVN1WrVmXatGns3LmThg0bArB//35CQ0MZPnw4X375Zca2n3zyyVP34eHhgbW1NVFRUZluj4qKwsvL66n3KVasGLa2tpmmoKpUqUJkZCTJycnY2T25MKG9vT329vbZfowif/TyL8XmU5GM/v04m4c2xdXRhBafO/kHnFoFr34Hzk9/zRozvV5PTEwMVlZWuLm5yS9vI6TX60lOTiYuLg6AQoUKqQ2UXQ0HwNn12tVT/UK15RpMxIYrG9gasZW5zebi4eihOo7Iphydc1OmTJms7Vyn4/Lly8/8vr+/P/Xr1+err74CtJGZUqVKMXDgQMaMGfPE9uPGjeOXX37h8uXLGcO0X3zxBbNmzeLWrVtZyhQXF4erq6ucc2NEbsU8ps283bSq5slnPWqqjpM1D6NgoT+UaQrdfzTJUZu0tDSioqJwc3PD0dF0z4mwBPHx8cTFxeHl5WV6U1T3LsHixlDzTegwV3WaLLmTcIduq7sRUDyA2c1mq44jciBHIzdXrlwxyMGHDRtGnz59qFu3LvXr1+fzzz/n0aNH9O3bF4DevXtTokQJZsyYAUD//v2ZP38+gwcPZtCgQVy4cIHp06c/c3RImIbihRyZ2LkaI1aE07aaF62rGfkoiF4P64aAlQ10+MwkCxvQPkwAzzwZXxiPv0el09LSTK+4KVxO6/20YQRU7gjlXlKd6Ln0ej2T9k3CztqOcf7jVMcROaT0EpXXX3+d6OhogoKCiIyMpGbNmmzatCnjJOOIiIhMb2Rvb282b97M0KFDqVGjBiVKlGDw4MFZPolZGK9Xa5dg08nbjFt1gro+7rgXeHKK0WiE/wrnNsDrP0MB0x+uluko42fyP6O678GZNbB6IHy8DxxcVSd6ppCLIey5uYf5L8+nkEMh1XFEDmV5WmrYsGFMnTqVAgUKZDpB92k+++wzg4TLCzItZbzuPEyk9bzdBJT3YMGbtVXHebrYG7CwEVRqB698rTpNrqSkpBAdHU2RIkWwtTWhc50skFn8rGIitPdO1S7QNev90PLTrfhbvLLmFVqVbsXUgKmq44hcyPLIzdGjR0lJScn497OY/CcMoUxRZwemdqnOoF+P0rbaLTr5FVcdKTO9HtYMAjsnaDdTdRohTEuhUtB2uvYeqtIJKj3ZTkSldH06QaFBONs5M6reKNVxRC5lubjZsWPHU/8thCF18ivOplORTFh9Ev+y7hR1dlAd6X8O/wCXtkOvP8DRTXUai9W8eXNq1qzJ559/rjqKyK5ab8OZtbD2E/DeD07uqhNlWHZuGQciD/BNq29wtnNWHUfkkomdmSYswdQu1bGxsmLsHyeMp//K/SuwORBq94EKLVWnEcI06XTQ6UtITYINI1+8fT6JiItg3uF5vF7pdRoWb6g6jjCAHBU3jx49YsKECTRq1Ijy5ctTtmzZTF9C5IZ7ATtmvOLLtrN3+P3wDdVxID0dVg+AAoVNttOqEEbDpRi0/xRO/g6nQlSnIS09jcDQQAo7FGZYneefTypMR46ulnr//ffZtWsXb7/9NsWKFZPzbITBtarqyau1SzJl7WkCyntQvJDCPiwHFsO1UOizFuxluNqYPHjwgMGDB7N27VqSkpJo1qwZX375JRUqVECv11O0aFEWLVrEa6+9BkDNmjWJiori9u3bAOzdu5cWLVrw4MEDnJycVD4Uy+LbXbt6av0wrXNxwaLKovx05ieO3TnGD21/wMlWXgPmIkfFzcaNG1m/fj0BAQGGziNEhqBOVQm9eJfRfxznP+/WV1NE370A2yaDfz+tYZ+Ze5ycxqXo+Hw/brkiBXG0y36/nXfeeYcLFy6wZs0aXFxcGD16NO3bt+f06dPY2trStGlTdu7cyWuvvcaDBw84c+YMjo6OnD17lsqVK7Nr1y7q1asnhU1+0+mgwzytEea6ofD6T0r6RV2KucSXR77k7apvU8ezTr4fX+SdHBU3bm5uuLsbz4lgwjy5Otoy+7Ua9P7+ID8fiOCtBqXzN0BaKqzqBy4loMXT1y4zN5ei4+n41d58P+66QY2pXiJ7vU/+LmpCQ0Np1Ehbt+jnn3/G29ubkJAQunfvTvPmzfn6a+2S/d27d1OrVi28vLzYuXMnlStXZufOnTRr1szgj0dkQcEi0PFzWP42HF8Ofq/n6+FT01MZv3c8JZxLMKjWoHw9tsh7OSpupk6dSlBQED/++KN84hF5qmnFIrzpX4rpG87QtEIRShXOx9fbvi/h1hHou0m7/NsClCtSkHWDGis5bnadOXMGGxsb/P39M24rXLgwlSpV4syZMwA0a9aMwYMHEx0dza5du2jevHlGcfPee++xb98+Ro2Sy36VqdpZm6LaOBLKNAGX/Gv/8N2J7zhz/ww/tfsJBxsjuipTGESWi5tatWplmha4ePEinp6e+Pj4PNFU6siRI4ZLKCzeuPZV2HMhmhErwvntwwZYWeXD8HXUKdgxHRoNglL+L97eTDjaWWd7BMWY+fr64u7uzq5du9i1axfTpk3Dy8uLWbNmcejQIVJSUjJGfYQi7WbDlT1a/5tev+fL9NTZ+2dZfHwx71V/D98ivnl+PJH/slzcdO3aNQ9jCPFsBe1t+PQ1P3ou2c/3oVd4v0keX5GXmqxNRxUuD81lbRljVaVKFVJTUzlw4EBGgXLv3j3OnTtH1apVAa2paJMmTVi9ejWnTp2icePGODk5kZSUxNdff03dunUpUKCAyochnNyh81fwS3c48h+o0ydPD5eSlsL4veMp61qWfn798vRYQp0sFzcTJ1rGOQfCODUoW5i+jcowe/M5mlcqSvmi2Z/GyLI9c7SRmw+2ga0MVxurChUq0KVLFz744AO+/vprnJ2dGTNmDCVKlKBLly4Z2zVv3pzhw4dTt25dChbUXjdNmzbl559/ZuRI4+m1YtEqttYa/G0eB2Wbg1venV+3KHwRl2Mu82vHX7GzNuI17ESu5KjPzfXr17lx43/9Rw4ePMiQIUP45ptvDBZMiH8b1bYSJd0cGb4inNS09Lw5yK2jsHsONB0JxWvlzTGEwfzwww/UqVOHjh070rBhQ/R6PRs2bMg0Vd6sWTPS0tJo3rx5xm3Nmzd/4jahWJvpWufv1QO03lJ54ET0Cb47+R39/PpR2b1ynhxDGIcsL5z5T02aNOHDDz/k7bffJjIykooVK1K9enUuXLjAoEGDCAoKyousBiELZ5q2oxEPeHXRPoa3rsSAl8obducpifBNM7C2gw+2g7WJLlCYRWaxGKOFsJif1eWd8J8u2nk4/h8ZdNeJqYn0WNcDJxsnfmr/EzZWObqeRpiIHI3cnDx5kvr16wOwfPlyfH192bdvHz///DNLly41ZD4hMqlVyo1+zcrx+dbznLkdZ9id75wO9y9Dt8VmX9gIYZTKNod6H8CWiXDvkkF3/dXRr7j58CbTGk+TwsYC5Ki4SUlJwd7eHoCtW7fSuXNnACpXrpzR+VOIvDK4ZQXKFSnIsOXhJKcaaPg64gCEfgnNx4JnNcPsUwiRfa0mg7OXdlJ/eppBdnk46jD/Pf1fBtUaRLlC5QyyT2HcclTcVKtWjcWLF7Nnzx62bNlC27ba0vW3bt2icOHCBg0oxL/Z21gzp7sfF6Ie8tX2C7nfYfIjCOkHJetCo09yvz8hRM7ZFdBGT28cgrD5ud5dQkoCgXsDqVm0Jm9XfdsAAYUpyFFxM2vWLL7++muaN29Oz5498fPzA2DNmjUZ01VC5KXqJVz5pEUFFu68RPj1mNztbOtkiLsFXReBtQxXC6FcqQbQaCBsD4Y7Z3K1q88Of8a9xHsEBwRjbZX9JT6Eacr2b3K9Xk/ZsmWJiIggNTUVNze3jO99+OGH0rFY5Jv+zcux5XQUw1eEs25QYxxsc/CL68puOPg1tJ0JHhUMH1IIkTMvBcL5P7Xpqfe35ug8uLBbYSw7t4xx/uMo5VIqD0IKY5XtkRu9Xk/58uWJjIzMVNgA+Pj4ULSoutVdhWWxtbZibg8/Iu4n8NmW89nfQWIchAyA0o2hvmGvzBBC5JKtA3RbBJEnYM9n2b77w+SHBO0Lwt/Ln9cr5e+6VUK9bBc3VlZWVKhQgXv37uVFHiGypaKnM8NbVWTJnsscuno/e3f+MxAS7kHXBWCVoxlaIUReKlEHmgyD3bPhdni27jr70GweJj9kSsAUrHTy/rY0OfqJz5w5k5EjR3Ly5ElD5xEi295vUpbapdwYsSKchOTUrN3pwhY48iO0CQY3nzzNJ4TIhaajoEgVbXoqNSlLd9l1fRchF0MYVW8UxQvm32KcwnjkqLjp3bs3Bw8exM/PD0dHR9zd3TN9CZGfrK10zO3ux524JGZuPPviOzx+oC3SV+5lqNM37wMKIXLOxk67euruBdg584WbxyTGMClsEk1KNKFb+W75EFAYoxxdGvL5558bOIYQuePjUYAx7Sozcc0p2lTzIqC8x7M33jgakhOg8/x8WYFYCJFLXtWh+RjYMQ0qtQfves/cdPrB6SSnJTOp0SR08v62WDkqbvr0ydtVW4XIibcblGbzqUhG/X6cjUOa4OLwlKsrzqyF48ug62JwLZH/IYUQORMwBM5t0HpSfbQH7J68MvfPq3+y8cpGZjaZSVEnubjFkuX4LKtLly4RGBhIz549uXPnDgAbN27k1KlTBgsnRHZYWemY/VoNYh+nELzu9JMbPLoLa4don/z83sj3fMJ0paWlkZ5HizmKLLK20T6UxN6A7VOf+Pbdx3cJ3h9My1ItaV+mvYKAwpjkqLjZtWsXvr6+HDhwgJUrVxIfHw9AeHg4EydONGhAIbKjpJsTEzpWYflfN9h+Nup/39DrYd1Q0KdDx89lOsrEbdq0icaNG1OoUCEKFy5Mx44duXRJW4uoUaNGjB49OtP20dHR2Nrasnv3bgCSkpIYMWIEJUqUoECBAvj7+7Nz586M7ZcuXUqhQoVYs2YNVatWxd7enoiICA4dOkSrVq3w8PDA1dWVZs2aceTIkUzHOnv2LI0bN8bBwYGqVauydetWdDodISEhGdtcv36dHj16UKhQIdzd3enSpQtXr17Nk+fKrBSpCC9PgP2L4OrejJv1ej1Tw6ai0+kIbBAo01EiZ9NSY8aMITg4mGHDhuHs7Jxx+8svv8z8+blvly1EbvSo682mk5GM/uMEW4a6UcjJDk7+AWfWwGs/gLOn6ojGKzkB7uagZ1BueVR86jTDszx69Ihhw4ZRo0YN4uPjCQoKolu3bhw7doxevXoxe/ZsZs6cmfFHbtmyZRQvXpwmTZoAMHDgQE6fPs1vv/1G8eLFWbVqFW3btuXEiRNUqKA1c0xISGDWrFl8++23FC5cmKJFi3L58mX69OnDV199hV6vZ+7cubRv354LFy7g7OxMWloaXbt2pVSpUhw4cICHDx8yfPjwTNlTUlJo06YNDRs2ZM+ePdjY2BAcHEzbtm05fvw4dnZ2BnpSzVSD/nB2PYR8DP33gX1B1l1ex/br25nXfB6FHWUJIAE6vV6vz+6dChYsyIkTJyhTpgzOzs6Eh4dTtmxZrl69SuXKlUlMTMyLrAYRFxeHq6srsbGxuLi4qI4j8khUXCKt5+2meaUifNHeCxY20K6O6v6D6mhGIyUlhejoaIoUKYKt7f+fn3TrGHzTLP/DfLgLitfM8d3v3r1LkSJFOHHiBJ6enhQvXpzt27dnFDONGjWiadOmzJw5k4iIiIwu68WL/+8y4ZYtW1K/fn2mT5/O0qVL6du3L8eOHctYXuZp0tPTKVSoEL/88gsdO3Zk06ZNdOrUievXr+Pl5QVoiwu3atWKVatW0bVrV3766SeCg4M5c+ZMRvGVnJxMoUKFCAkJoXXr1k8c56k/K0t2/zIsCgC/N4h6aQzdVnejSckmzGo6S3UyYSRyNHJTqFAhbt++TZkyZTLdfvToUUqUkJM0hXqeLg5M6VKNwb8dZXzMRIpa20GHuapjGT+PilqhoeK42XDhwgWCgoI4cOAAd+/ezTgfJiIigurVq9O6dWt+/vlnmjRpwpUrVwgLC+Prr78G4MSJE6SlpVGxYuZjJiUlZVr4187Ojho1amTaJioqisDAQHbu3MmdO3dIS0sjISGBiIgIAM6dO4e3t3dGYQM8sd5eeHg4Fy9ezDTqDZCYmJgxtSZewL0stJ6Kfv1wJqbdwMHGgXH+41SnEkYkR8XNG2+8wejRo1mxYgU6nY709HRCQ0MZMWIEvXv3NnRGIXKks19xYkN/oGjkLuK6/gcXJ+nB9EJ2TrkaQckvnTp1onTp0ixZsoTixYuTnp5O9erVSU5OBqBXr1588sknfPXVV/zyyy/4+vri6+sLQHx8PNbW1hw+fBhr68zrkRUsWDDj346Ojk+cu9GnTx/u3bvHF198QenSpbG3t6dhw4YZx82K+Ph46tSpw88///zE94oUKZLl/Vi8uu/xx+mfCY05y4Ims3G1d1WdSBiRHBU306dPZ8CAAXh7e5OWlkbVqlVJS0vjzTffJDAw0NAZhcgRXex13opdxFpdc9YeL8HXfno50dAM3Lt3j3PnzrFkyZKMaae9e/dm2qZLly58+OGHbNq0iV9++SXTh65atWqRlpbGnTt3Mu6fVaGhoSxcuJD27bWrca5fv87du3czvl+pUiWuX79OVFQUnp7auV2HDh3KtI/atWuzbNkyihYtKlPjuXDz0S0+tX7EK3FJNA1fA2XbqY4kjEiOrpays7NjyZIlXLp0iXXr1vHTTz9x9uxZ/vvf/z7xSUgIJdLTYfVArBxccew0mz9PRxFy7KbqVMIA3NzcKFy4MN988w0XL15k+/btDBs2LNM2BQoUoGvXrkyYMIEzZ87Qs2fPjO9VrFiRXr160bt3b1auXMmVK1c4ePAgM2bMYP369c89doUKFfjvf//LmTNnOHDgAL169cLR0THj+61ataJcuXL06dOH48ePExoamvGB7+/CulevXnh4eNClSxf27NnDlStX2LlzJ5988gk3btww1NNk1tL16UwInYCrQyFG1h8N4b/A2Q2qYwkjkqvVxEqVKkW7du3o3r17xhUGQhiFv76DK7ug81e0rF2JrjWLM3H1KSJjjfdkd5E1VlZW/Pbbbxw+fJjq1aszdOhQPv300ye269WrF+Hh4TRp0oRSpUpl+t4PP/xA7969GT58OJUqVaJr164cOnToie3+7bvvvuPBgwfUrl2bt99+m08++YSiRf/XLM7a2pqQkBDi4+OpV68e77//PuPHjwfAwcEBACcnJ3bv3k2pUqV45ZVXqFKlCu+99x6JiYkykpNFv579lUORh5gSMIWCdd6Fim1h7WBIyObiucJs5ehqKdDe5PPmzePChQuA9olmyJAhvP/++wYNaGhytZQFuHcJFjfWGvV1nAdAbEIKrebtokoxF5b2rSfTU8gVOPklNDSUxo0bc/HiRcqVK5ejfcjP6n+uxl6l+9rudC3flfENtMKRh5GwwF+uiBQZcjRyExQUxODBg+nUqRMrVqxgxYoVdOrUiaFDhxIUFGTojEJkXXoarB4ABYpAq/91MXV1smXWqzXYdT6aZYeuKwwozN2qVavYsmULV69eZevWrXz44YcEBATkuLAR/5OWnkZgaCBFnIowtM7Q/33D2Uu7GvLUSji5Ul1AYTRydELxokWLWLJkSaZ57M6dO1OjRg0GDRrElClTDBZQiGzZvxAi9sM768C+YKZvvVS5KG/U82bqutMElPfA2z3rTeOEyKqHDx8yevRoIiIi8PDwoGXLlsydK20IDOHH0z9yPPo4P7b7ESfbf71/q7+qNepcPxxKB0izTguXo5GblJQU6tat+8TtderUITU1NdehhMiR6HOwbarWwdSn8VM3Gd+hCoWc7Bj5ezjp6TmakRXiuXr37s358+dJTEzkxo0bLF26NFP/HJEzFx9cZP7R+fSp1odaRWs9uYFOBx0+AytrWDdEW3JFWKwcFTdvv/02ixYteuL2b775hl69euU6lBDZlpYKq/pBoVLQ4tlTo84Otnz6Wg32X77Pf8Ku5l8+IUSOpaSnMG7vOLydvRlYa+CzNyzgoa0dd24DhP+Wb/mE8cnytNQ/L7XU6XR8++23/PnnnzRo0ACAAwcOEBERIU38hBqh8+D2MXhvC9g6PnfTRuU96NOwNDM3naVpxSKULVLwudsLIdT69sS3nH9wnp/a/4S9tf3zN67SEWq8ARtHQ5mm4Cpd8y1Rlq+Weumll7K2Q52O7du35ypUXpKrpcxQ5An45iVoNAhaZm1V+oTkVNp/sQf3Anas6NcIayvLu3pKrsAxHZb8szp97zS91vfiXd93GVRrUNbu9PgBLGwIRavAWyu1KSthUXJ8KbipkuLGzKQmw5KXtPn1D3eAzQs+1f3DX1fv0/3rMEa3rUy/ZpZ3JYsl/8E0NZb6s0pOS+b1da9jrbPm1w6/Ymudjcd+YSv8/KrWDqLuu3kXUhilXDXxE0K5XbMg+ix0W5ytwgagro87HzYpy2d/nud81MM8CiiEyKmFxxZyNe4q0xpPy15hA1ChJdTuA5sD4f6VvAkojFaOLgVPTEzkq6++YseOHdy5cydjRd6/HTlyxCDhhHiuG4dh7zxoPgaK1Xjx9k8xtFVFtp+9w7Dlx1j1cQC21lLvC2EMwqPD+eHUDwysOZBK7pVytpM20+DyDlg9EPqsBSt5f1uKHP2k33vvPWbPnk3p0qXp2LEjXbp0yfQlRJ5LeQwh/cDLFxoPffH2z+Bga81nPWpy5vZDFuy4aMCAIq80b96cIUOGPPP7Op2OkJCQLO9v586d6HQ6YmJicp1NGMbj1McE7g2kWuFq9K3eN+c7sneGLgvg2l44+LXhAgqjl6ORm3Xr1rFhwwYCAgIMnUeIrNkeDA+uwUe7ILvD1f/iW9KVAS+VZ/72i7Ss4kn1Eq4GCilUuH37Nm5ubqpjiFz48siX3H50my9e/gIbqxz9mfqfMk3Bvx9snQTlW4KHrINoCXI0clOiRAmcnZ0NnUWIrLm2D8IWwMvjtashDGDgS+Wp6OnMsOXHSEpNM8g+hRpeXl7Y22fv/CthPA5FHuKnMz8xqNYgyrqWNcxOW0wElxIQ0l/riSXMXo6Km7lz5zJ69GiuXbtm6DxCPF9SvPYLyrs+NHxOM69ssrOx4rPX/bhy9xGfb71gsP2KvJGens6oUaNwd3fHy8uLSZMmZXzv39NS+/bto2bNmjg4OFC3bl1CQkLQ6XQcO3Ys0z4PHz5M3bp1cXJyolGjRpw7dy5/HozI8CjlERNCJ1C7aG3eqvKW4XZs5wRdF8HNw7DvS8PtVxitHI331a1bl8TERMqWLYuTk9MTlybevy/Lzos8snUiPIzSeldYWRt015W9XBjSsiJz/zxHq6qe1C5leVMbj1MfcyU2/68sKeNaBkeb5zdf/Kcff/yRYcOGceDAAcLCwnjnnXcICAigVatWmbaLi4ujU6dOtG/fnl9++YVr164983yd8ePHM3fuXIoUKUK/fv149913CQ0Nzc3DEtk096+53E+8z5JWS7A28PubUv5aL6ydM6BiG/CsZtj9C6OSo+KmZ8+e3Lx5k+nTp+Pp6YlOGiSJ/HBpBxz6Ftp9CoXzpi/NR03LsuV0FCOWh7P+kyY42hn4F6yRuxJ7hdfXvZ7vx13WcRlVC1fN8vY1atRg4kStYWOFChWYP38+27Zte6K4+eWXX9DpdCxZsgQHBweqVq3KzZs3+eCDD57Y57Rp02jWrBkAY8aMoUOHDiQmJuLg4JCLRyayKvRmKCvOryDQPxBvF++8OUjzcXD+T22plg+25/p8PWG8clTc7Nu3j7CwMPz8/AydR4inS4zVLuf0aQL13s+zw9hYWzG3hx/tv9jD7M1nmdjJsj7dlXEtw7KOy5QcNztq1Mh86X+xYsW4c+fOE9udO3eOGjVqZCpQ6tev/8J9FitWDIA7d+5QqlSpbGUT2ReXHEfQviAaFGtAj0o98u5Atg7QbREsaQG758BLY/PuWEKpHBU3lStX5vHjx4bOIsSzbR6nFThdFuR5r4pyRQoyqm1lpq47TeuqXjQsZzkrOjvaOGZrBEWVf0+F63S6J/pt5Waff49G53afImtmHZxFQkoCUxpNyfuZgOK1oOlI2P0pVGqr/b8wOzn6KzFz5kyGDx/Ozp07uXfvHnFxcZm+hDCoc5vg6E9aQy630vlyyL6NfPAv487I38OJT5KrK0xVpUqVOHHiBElJSRm3HTp0SGEi8W87Inaw5tIaRtUbRbGCxfLnoE1HaOfcrOoPKYn5c0yRr3JU3LRt25awsDBatGhB0aJFcXNzw83NjUKFCkl/CWFYCfdh7SdQvhXUzr8V562sdHz6mh/3HyUzbf2ZfDuuMKw333yT9PR0PvzwQ86cOcPmzZuZM2cOgJwraARiEmOYHDaZZiWb0bV81/w7sLWttmTL/Uuwc3r+HVfkmxxNS+3YscPQOYR4ug0jITUROn+V7yv7lirsxPgOVRi/6iRtq3vRrGKRfD2+yD0XFxfWrl1L//79qVmzJr6+vgQFBfHmm2/KicJGYNqBaaSkpzCx4cT8LzY9q0HzsbB9KlTqoF1NJcyGrAoujNepEFjRB15ZAjXy8CTD59Dr9fT+/iAXouLZPKQprk7mc3WFpa40/fPPP9O3b19iY2NxdMz65ecqmePPatPVTYzcNZLZTWfTrkw7NSHSUuGHttoIcb+9Wj8cYRZyfGbmnj17eOutt2jUqBE3b94E4L///S979+41WDhhweKjYf0wqNwRfLsri6HT6Zj9Wg0eJacyee0pZTlEzv3nP/9h7969XLlyhZCQEEaPHk2PHj1MprAxR3cf32Xa/mm0Kt2Ktj5t1QWxttGa+8XdhG2T1eUQBpej4uaPP/6gTZs2ODo6cuTIkYyT9WJjY5k+XeYvRS7p9bBuiPbvjp/n+3TUvxVzdWRSp2qsPHqTzacilWYR2RcZGclbb71FlSpVGDp0KN27d+ebb75RHcti6fV6JodNxkpnRWCDQPXnPnlUgJaT4MBiuLJbbRZhMDkqboKDg1m8eDFLlizJNEQaEBDAkSNHDBZOWKjjy+HsOug4Dwoax3kur9QuQcsqnoxfdYL7j5JVxxHZMGrUKK5evUpiYiJXrlxh3rx5ODnJ9IMqay+vZef1nQQ1DMLdwV11HE39j6B0YwgZAEkPVacRBpCj4ubcuXM0bdr0idtdXV2JiYnJbSZhyeJuwcaR2lRU1S6q02TQ6XRMf6U6ael6AkNOYGGnqglhEJGPIpl5YCadynaiRakWquP8j5UVdF0ACfdg83jVaYQB5Ki48fLy4uLFi0/cvnfvXsqWNdAqrsLy6PWwZhDYOEK72arTPKGoswNTu1Znw4lI1h6/rTqOwUihZvzM4Wek1+uZuG8ijjaOjK4/WnWcJ7n5QJtgOPIjXNiqOo3IpRxdCv7BBx8wePBgvv/+e3Q6Hbdu3SIsLIwRI0YwYcIEQ2cUluLIf+DiVnhzOTgZyXD1v3SsUZxNJyMJWn2SBmXcKepiupcTW1tbo9PpePjwIc7OzurPfRBP0Ov1pKWlERcXh06nw8YmR7+yjcKK8yvYd2sfi1ouwtXeVXWcp6vTF86shTUD4eMwcJS+baYqR5eC6/V6pk+fzowZM0hISADA3t6eESNGMHXqVIOHNCS5FNxIPbgGixpBta7aEgtG7MGjZFrN241fSVe+7VPXpIuCpKQk7t+/bxYjA+bMzs6OQoUKmWxxc/3hdV5d8yrty7RnUqNJquM8X+xNWNgQKrWDV75WnUbkUK763CQnJ3Px4kXi4+OpWrUqBQsWNGS2PCHFjRFKT4f/dIYHV6H/PnAw/p/L1tNRvP+fv5j9Wg161M2jFYzzSXp6OmlpaapjiGewsrLCysrKZIvodH06721+j9uPbvNH5z8oYFtAdaQXO/YrhPSD13+GKh1VpxE5kK2PAe+++26Wtvv++++zFWLBggV8+umnREZG4ufnx1dfffXMlXv/6bfffqNnz5506dKFkJCQbB1TGJFDS+DqHui92iQKG4CWVT15rU5Jpq49TUB5D0oUMt2eKX//8RQiL/xy5hf+ivqL71p/ZxqFDYDfG3BmjdaSolRDKGA5i+eai2z9Rlu6dCk7duwgJiaGBw8ePPMrO5YtW8awYcOYOHEiR44cwc/PjzZt2nDnzp3n3u/q1auMGDGCJk2aZOt4wsjcuwRbJkK9D6Bsc9VpsiWoU1UKOtgw+vfjMq0jxFNcib3C50c+p1eVXtQv9uIPrEZDp9N6bKWnwfqh2sUOwqRka1pqwIAB/Prrr5QuXZq+ffvy1ltv4e6euxM//f39qVevHvPnzwe0IXJvb28GDRrEmDFjnnqftLQ0mjZtyrvvvsuePXuIiYl55shNUlJSphWB4+Li8Pb2lmkpY5CeBt+3hUfR0D8U7EzkU90/7D4fTe/vDzK1a3XebpA/K5YLYQpS01Pps6kPsUmxrOi0AkcbExzdPLkSfu8Lr34Hvq+pTiOyIVsjNwsWLOD27duMGjWKtWvX4u3tTY8ePdi8eXOOPrkmJydz+PBhWrZs+b9AVla0bNmSsLCwZ95vypQpFC1alPfee++Fx5gxYwaurq4ZX97epn1+hFkJmw83Dmntz02wsAFoWrEIvfxLMX39Ga7de6Q6jhBGY+mppZy8e5LggGDTLGwAqr8C1V6BDSPgoXQnNyXZnmi3t7enZ8+ebNmyhdOnT1OtWjU+/vhjfHx8iI+Pz9a+7t69S1paGp6enplu9/T0JDLy6S+kvXv38t1337FkyZIsHWPs2LHExsZmfF2/fj1bGUUeuXMGtgdDwwFQuqHqNLkyrn0VPJztGLniOGnpMnwtxPkH51l4bCF9qvWhZtGaquPkToe5YGULawfL9JQJydVZhH+fwf93L4a89vDhQ95++22WLFmCh4dHlu5jb2+Pi4tLpi+hWFoKrOoHbmXgZdPvi1TA3oY5r/lx6Np9fgi9ojqOEEqlpKcQuDeQ0i6lGVBzgOo4uefkDp2+gPOb4NgvqtOILMp2cZOUlMSvv/5Kq1atqFixIidOnGD+/PlERERk+1JwDw8PrK2tiYqKynR7VFQUXl5eT2x/6dIlrl69SqdOnbCxscHGxob//Oc/rFmzBhsbGy5dupTdhyNU2PMZRJ6AbovA1nSb4P2Tf9nCvBtQhtmbz3HxjqxNIyzXkuNLOP/gPMGNg7G3tlcdxzAqtwe/N2HTGIi9oTqNyIJsFTcff/wxxYoVY+bMmXTs2JHr16+zYsUK2rdvn6NLSe3s7KhTpw7btm3LuC09PZ1t27bRsOGTUxWVK1fmxIkTHDt2LOOrc+fOvPTSSxw7dkzOpzEFt8Nh92xoMgxK1FGdxqBGtqlESTdHhi8PJzUtXXUcIfLdqXun+Ob4N3xY40OqFa6mOo5htZ0BdgVh9QCZnjIB2bpaysrKilKlSlGrVq3nNpRauXJllgMsW7aMPn368PXXX1O/fn0+//xzli9fztmzZ/H09KR3796UKFGCGTNmPPX+77zzznOvlvo3aeKnUGoSfNMcdNbwwXawsVOdyOCORjzg1UX7GNaqIgNfrqA6jhD5JiktiTfWvYGtlS0/d/gZWytb1ZEM7+I2+OkV7Tyceu+rTiOeI1tN/Hr37m3wLpmvv/460dHRBAUFERkZSc2aNdm0aVPGScYRERHSYMxc7JwJdy/AhzvMsrABqFXKjf7Ny/HFtgu8XNmTqsWlgBaWYcGxBVyLu8ZvHX8zz8IGoHwLbf2pP4Og3MvgLgtFG6tcLb9gimTkRpHrh+D71vDSOGg6UnWaPJWUmkaX+aEArBnYGDsbKc6FeTt25xh9NvVhUK1BvO9r5iMaSQ9hUQC4lIB31oN8+DZK8lMReS85QVunpVhNCBiqOk2es7exZm4PPy7eieer7RdUxxEiTz1OfUxgaCDVParzTrV3VMfJe/bO0HUhROyDA4tUpxHPIMWNyHvbp0LMdei2GKxNc1Xj7KpW3JXBLSqwcOcljl2PUR1HiDzzxZEviHwUSXBAMDZWlvH+xqcxNPgYtk6G6POq04inkOJG5K2re2H/QmgRBEUqqU6Tr/o3L0e14i4MX36MxBRZdVuYn4O3D/LzmZ8ZUnsIZVzLqI6Tv1oEQSFvbVQ6LVV1GvEvUtyIvJP0EEI+1lbVbdBfdZp8Z2Ntxdzuflx/8Ji5f55THUcIg3qU8ogJoROo61mXN6u8qTpO/rN1hK6L4dZRCP1cdRrxL1LciLzz5wRtUcyuC8HKWnUaJSp4OjOidUW+3XuFg1fuq44jhMF8euhTHiQ9YGrAVKx0FvqnxLseBAzWrgSNPKk6jfgHC31Fijx3cSsc/gFaTbH4yyXfa1yWOqXcGLEinEdJMnwtTN/em3v548IfjKg7gpLOJVXHUav5WPCooC0pk5qsOo34f1LcCMN7HAOrB0HZ5lD3xSu3mztrKx1zuvsR/TCJmRvPqo4jRK7EJsUyMXQijYo3onvF7qrjqGdjr10sEX0Gdn+qOo34f1LcCMPbNBaS46HzfOkB8f98PAowtn1l/rv/Gnsv3FUdR4gcm3VwFo9THzO50WSDN3U1WcX8oOko2DMXbh5WnUYgxY0wtLMbIPwXbR2WQrLW1z+95V+agPKFGfV7OHGJKarjCJFt2yK2sfbyWsb4j8GrwJOLG1u0JsPAyxdW9YeURNVpLJ4UN8JwHt2DtYOhYluo2Ut1GqNjZaVj9mt+xCWmMnXtadVxhMiW+4n3mRI2hebezelUtpPqOMbH2labnnpwBXYEq05j8aS4EYazYTikJUOnL0CGq5+qRCFHgjpWZcXhG2w7E6U6jhBZotfrCd4fTLo+nYkNJ8p01LMUrQIvjYd98yFiv+o0Fk2KG2EYJ/+AU6u01XKdZbj6ebrXLclLlYowZuUJHjySqyuE8dt0dRNbrm1hfIPxeDh6qI5j3BoNgpL1tKunkh+pTmOxpLgRufcwCtYPh6pdoPqrqtMYPZ1Ox8xXa5Ccms7ENadUxxHiuaITogneH0xbn7a09WmrOo7xs7LWpqceRsLWSarTWCwpbkTu6PWwbghY2UCHz2Q6Kos8XRyY0qUaa8JvseHEbdVxhHgqvV7P5LDJ2FrZMt5/vOo4pqNwOWg1GQ5+A5d3qk5jkaS4EbkT/iuc2wAdP4cCMlydHZ39itOuuheBISeJfpikOo4QTwi5GMKuG7uY2HAihRwKqY5jWup9AD5NYPVASIxTncbiSHEjci72BmwcAzXegCodVacxOTqdjuCu1dEB41edQK/Xq44kRIbb8beZfWg2nct15qVSL6mOY3qsrKDLAnj8ADaPU53G4khxI3JGr4c1g8DOCdrNVJ3GZBUuaM+0br78eTqKVUdvqo4jBKBNRwXtC8LJ1onR9UerjmO63EpDm2lw9L9w/k/VaSyKFDciZw7/AJe2a12IHd1UpzFpbat70a1WCSauOcXt2Meq4wjB8nPL2X97P1MbTcXFzkV1HNNWuw+Ub6l9GEyQxXPzixQ3IvvuX4HNgdqbtkJL1WnMwqRO1XCys2b0HzI9JdS6HneduYfn0r1idxqVaKQ6junT6aDzV5D6GDbKKFh+keJGZE96OqweAAUKa8OtwiBcnWyZ+WoNdp+P5rdD11XHERYqLT2NwNBA3B3cGV53uOo45sOlOLT7FE4sh9NrVKexCFLciOw5sBiuhWonytk7q05jVl6qVJSe9b0JXnea6/cTVMcRFuinMz9x5M4RpgZMpYBtAdVxzEuNHlC5I6wbCvHRqtOYPSluRNbdvQDbJoN/PyjTVHUaszS+Q1UKOdkx8vdw0tNlekrkn8sxl/nyyJe8VeUt6nnVUx3H/Oh00HEeoIf1Q7WLMkSekeJGZE1aqtZO3KUEtJioOo3ZKmhvw6fda7D/8n1+DLuqOo6wEKnpqYzfO57iBYszuPZg1XHMV8GiWrPTM2vhxO+q05g1KW5E1uz7Em4dga6LtMu/RZ5pVM6Ddxr5MGvTWS5Hx6uOIyzADyd/4PT90wQ3DsbBxkF1HPNWrStUf01baDhOupPnFSluxItFnYId07UF4Ur5q05jEUa3rUwxV0eGrwgnTaanRB46d/8cC8MX0rdaX/yK+KmOYxnafwo2DrD2E5meyiNS3IjnS03WpqMKl4fm0mUzvzjaWTOnew3Cr8fwze7LquMIM5WSlsL4vePxcfHh45ofq45jOZzcodOXcOFPrcGfMDgpbsTz7Zmjjdx0WwS2Mlydn+qUdueDpmWZt+U85yIfqo4jzNDi44u5FHOJ6Y2nY2dtpzqOZanUFmq+BZvGQUyE6jRmR4ob8Wy3jsLuOdB0JBSvpTqNRRrasiI+Hk4MW36MlLR01XGEGTl59yTfnfiOD/0+pErhKqrjWKa208HBVesdli7vb0OS4kY8XUqiNh3lWQ2ajlCdxmI52Fozt3tNzkY+ZP72i6rjCDORlJbE+L3jqeReifd931cdx3I5uEKX+XBlN/z1neo0ZkWKG/F0O6fD/cvQbTFY26pOY9F8S7oy8KXyLNhxkRM3YlXHEWZg/tH5XH94nWkB07C1kve3UuVegnrvw5YguHdJdRqzIcWNeFLEAQj9EpqP1UZuhHIDXy5PJS9nhq84RlJqmuo4woQdiTrCj6d+ZGCtgZR3K686jgBoOVnrgRPyMaTL+9sQpLgRmSU/gpB+ULIuNPpEdRrx/2ytrZjbw4+rdxOYt+WC6jjCRCWkJBAYGkiNIjXoU7WP6jjib/YFtR5i1w9A2ALVacyCFDcis62TIe6W9kaztlGdRvxDZS8XhrSqwDe7L3H42gPVcYQJmnd4HtEJ0UxrPA1rK2vVccQ/lW4EDQfA9mC4c1Z1GpMnxY34nyu74eDX0HISeFRQnUY8xYdNyuLnXYgRK8J5nCzD1yLr9t/ez2/nfmNInSGUdimtOo54mpcDwa20Nnqelqo6jUmT4kZoEuMgZACUbgz1P1KdRjyDjbUVc7v7cTv2MbM2yac7kTXxyfEEhQZR36s+PSv3VB1HPIutI3RdDLfDYe881WlMmhQ3QvNnICTcg64LwEpeFsasbJGCjGpTmaX7rrLv0l3VcYQJ+PSvT4lNimVKwBSsdPL+Nmol60DjYbBrJtw+rjqNyZJXuYALW+DIj9AmGNx8VKcRWfBOIx/8y7gzcsVx4pNk+Fo82+4bu1l5YSUj642kRMESquOIrGg2GopUhpD+kJqkOo1JkuLG0j1+AGsGQbmXoU5f1WlEFllZ6ZjT3Y+YhGSmrT+tOo4wUrFJsUzaN4mAEgG8WuFV1XFEVtnYaT3Gos/Brlmq05gkKW4s3cbRkJwAneeDTqc6jcgGb3cnxneoyq8Hr7Pz3B3VcYQRmn5gOolpiUxuOBmdvL9Ni5evNoKzdx7c+Et1GpMjxY0lO7MWji+DdrPAVYarTVHP+t40rViE0X8cJzYhRXUcYUS2XtvKhisbGFt/LJ4FPFXHETnReCgUq6kthZPyWHUakyLFjaV6dBfWDoFK7cHvDdVpRA7pdDpmvepLQnIak9eeUh1HGIl7j+8xdf9UXvZ+mY5lO6qOI3LK2kabnoqJ0PrfiCyT4sYS6fWwbijo06Hj5zIdZeKKuToyuXM1Vh69yaaTkarjCMX0ej3B+4PR6/VMaDhBpqNMXZFK0GKC1rn42j7VaUyGFDeW6OQfcGYNdJgLzjJcbQ661SpBq6qejF91gnvxcnWFJdtwZQNbI7YS2CAQD0cP1XGEITT4GLz9taunkuJVpzEJUtxYmoeRsH44VHsFqr+iOo0wEJ1Ox/RuvqTr9QSGnESv16uOJBS4k3CHaQem0a5MO1r7tFYdRxiKlTV0XQjxd2DrRNVpTIIUN5ZEr4c1n4C1nTZqI8xKEWd7grv6svFkJGvCb6mOI/KZXq9n0r5J2FvbM95/vOo4wtAKl4NWU+DQt3Bph+o0Rk+KG0ty7Ge4sBk6fQFO7qrTiDzQoUYxOvkVJ2j1Ke7EJaqOI/LRqour2HNzD5MaTsLV3lV1HJEX6r4HZZrB6oGQGKs6jVGT4sZSxFyHjWPA702o3F51GpGHpnSuhp2NFWNWnpDpKQtxK/4Wsw/Npmv5rjTzbqY6jsgrVlbQZYFW2GwapzqNUZPixhKkp8OageDgAm1nqE4j8phbATtmvuLL9rN3WHH4huo4Io+l69MJCg3C2c6ZUfVGqY4j8lohb+33+LGf4Nwm1WmMlhQ3luCv7+DyTuj8FTgWUp1G5IMWVTzpXqckU9ae5saDBNVxRB5adm4ZByIPMKXRFJztnFXHEfmh1ltQoTWs/QQS7qtOY5SkuDF39y/DliCo+y6Ub6E6jchHEzpVxcXBhtF/HCc9XaanzFFEXATzDs/j9Uqv07B4Q9VxRH7R6aDTl9qimhtGqk5jlKS4MWfpaRDyMRQoAq2mqk4j8pmLgy2zX/Mj9OI9fj5wTXUcYWBp6WkEhgZS2KEww+oMUx1H5DeXYtB+Dpz8HU6FqE5jdKS4MWf7F0HEfq0/gn1B1WmEAo0rePBWg1JM33CWq3cfqY4jDOi/p//LsTvHCG4cjJOtk+o4QgXf16BKZ1g/TOuBIzJIcWOuos/BtilaZ0ufxqrTCIXGtqtCEWd7Rv4eTppMT5mFSzGX+OroV7xd9W3qeNZRHUeootNBx3mA7v+X1JH399+kuDFHaanaKrKFSmlrkgiLVsDehjnd/fjr2gO+33tFdRyRS6npqYzfO54SziUYVGuQ6jhCtQIeWoFzdh0cX646jdGQ4sYchc6D28e01WRtHVWnEUagfhl33gsow6d/nuPinYeq44hc+O7Ed5y5f4ZpAdNwsHFQHUcYg6qdwbeHdnJxnHQnByluzE/kCdg5CwKGQMm6qtMIIzKiTSW83RwZtjyc1LR01XFEDpy9f5bF4Yt5r/p7+BbxVR1HGJP2s8HOCdYMkukppLgxL6nJ2nSUR0VoPkZ1GmFkHGytmdujJidvxrJo5yXVcUQ2JaclM37veMoWKkt/v/6q4whj4+im9TK7uBWO/Kg6jXJS3JiTXbMg+qw2HWVjrzqNMEI1vQvxcfPyfLn9Aqduydo0pmRx+GIux15meuPp2Frbqo4jjFGFVlC7N2weDw8su/2DFDfm4sZh2DsPmo2GYjVUpxFG7JMWFShXpCDDl4eTnCrTU6bgePRxvjv5Hf1q9KOSeyXVcYQxaz1NG8VZPUBbesdCSXFjDlIeQ0g/8PKFxkNVpxFGzs7Gis961ORSdDxfbrugOo54gcTURMbvHU9V96q85/ue6jjC2Dm4aItrXt0Dh5aoTqOMFDfmYHuwNgTZbTHIcLXIgqrFXRjcogILd17k2PUY1XHEc3x19Ctuxd9iWuNp2FjZqI4jTEHZZlD/Q9gyEe5eVJ1GCSluTN21fRC2AF4eD0WrqE4jTEi/ZuXwLeHK8OXHSExJUx1HPMXhqMP89/R/+aT2J5QtVFZ1HGFKWk7SlmgI6a8txWNhjKK4WbBgAT4+Pjg4OODv78/Bgwefue2SJUto0qQJbm5uuLm50bJly+dub9aS4rUXrnd9aDhQdRphYmysrZjbw4/rDx4zZ/M51XHEvySkJBC4N5CaRWvyVpW3VMcRpsauAHRdBDcOwb6vVKfJd8qLm2XLljFs2DAmTpzIkSNH8PPzo02bNty58/R1Mnbu3EnPnj3ZsWMHYWFheHt707p1a27evJnPyY3A1onwMEp7AVtZq04jTFD5os6MbF2J70KvcPDKfdVxxD98dvgz7iXeIzggGGt5f4ucKNUAGg2CHdPgzhnVafKVTq9X2+3H39+fevXqMX/+fADS09Px9vZm0KBBjBnz4l4taWlpuLm5MX/+fHr37v3C7ePi4nB1dSU2NhYXF5dc51fm0g74b1do9yn4f6g6jTBhael63vgmjKi4JDYObkIBezmvQ7V9t/bx0ZaPGOc/jp6Ve6qOI0xZSiJ800xrD/L+Nos5L1PpyE1ycjKHDx+mZcuWGbdZWVnRsmVLwsLCsrSPhIQEUlJScHd3f+r3k5KSiIuLy/Rl8hJjYfVA8GkC9d5XnUaYOGsrHXO6+xH9MIkZGy3r050xepj8kKDQIPyL+fN6pddVxxGmztZBG92PPAl7PlOdJt8oLW7u3r1LWloanp6emW739PQkMjIyS/sYPXo0xYsXz1Qg/dOMGTNwdXXN+PL29s51buU2j9MKnC4LwEr5zKIwA6ULF2Bc+8r8tD+CPReiVcexaLMPzSY+JZ6pjaZipZP3tzCAErWhyXDYPRtuHVOdJl+Y9Dtn5syZ/Pbbb6xatQoHh6cvIDd27FhiY2Mzvq5fv57PKQ3s3CY4+hO0mQZupVWnEWakl39pGpf3YNTvx4lLTFEdxyLtur6LkIshjK43mmIFi6mOI8xJ05HaFbUh/SE1SXWaPKe0uPHw8MDa2pqoqKhMt0dFReHl5fXc+86ZM4eZM2fy559/UqPGszvy2tvb4+LikunLZCXch7WfQPn/b7EthAFZWemY9VoN4hNTmbL2tOo4FicmMYZJYZNoUqIJXct3VR1HmBsbO+i6GO5egJ0zVKfJc0qLGzs7O+rUqcO2bdsybktPT2fbtm00bNjwmfebPXs2U6dOZdOmTdSta0ErX28YCamJ2uJoOp3qNMIMlSjkyIROVfn98A22no568R2EwUw/MJ3ktGQmNZqETt7fIi94VdcWVQ79Aq4fUp0mTymflho2bBhLlizhxx9/5MyZM/Tv359Hjx7Rt29fAHr37s3YsWMztp81axYTJkzg+++/x8fHh8jISCIjI4mPj1f1EPLHqRA4+Tu0n6M1ZhIij3SvU5IWlYsyZuUJHjxKVh3HImy+upmNVzcyzn8cRZ2Kqo4jzFnAECheS1uyJzlBdZo8o7y4ef3115kzZw5BQUHUrFmTY8eOsWnTpoyTjCMiIrh9+3bG9osWLSI5OZnXXnuNYsWKZXzNmTNH1UPIe/HRsH4YVO4Ivt1VpxFmTqfTMeMVX1LS0glac0p1HLN39/FdgvcH06p0K9qXaa86jjB31jba9FTsDdg+VXWaPKO8z01+M7k+N3o9LHsLIsLg4wNQsIjqRMJCrD52k8G/HWPBm7XpUENGC/OCXq9nyI4hHIs+xqouq3B3eHpLCyEMLmyBduXtO+vBp7HqNAanfORGvMDx5XB2HXScJ4WNyFed/YrT3teLwJATRD80/6srVFh3eR3br29nQoMJUtiI/OXfH0o1gpCPIemh6jQGJ8WNMYu7BRtHalNRVbuoTiMsjE6nY2qX6lhb6Ri78gQWNsib5yIfRTLjwAw6lO1Ay9JP79MlRJ6xsoKuC+DRXfhzguo0BifFjbHS62HNILBxhHazVacRFqpwQXumdfNl65koVh6xwPXb8oher2fSvkk42jgytv7YF99BiLzgXhZaT4HDP8DFrarTGJQUN8bqyH+0F1vnL8FJhquFOm2qefFKrRJMWnuK27GPVccxC39c+IPQW6FMajQJV3tX1XGEJav7HpR9CVYPgscxqtMYjBQ3xujBNe1Er1pvQcU2qtMIwcRO1XCys2bU78dleiqXbsbf5NNDn/JKhVdoUrKJ6jjC0ul00GU+JMfDJvMZRZTixtikp8PqAeDoBm3Mv4ukMA2uTrbMerUGey7c5deDJr6EiULp+nQmhE7A1d6VkXVHqo4jhMa1JLSdCeG/wNkNqtMYhBQ3xubQEri6R6ukHUzgUnVhMZpXKkrP+qUIXn+a6/fNt/lXXvr17K8cijzE1ICpFLQrqDqOEP9T802o2BbWDoZH91SnyTUpbozJvUuwZSLU+wDKNledRognjO9QBfcCdoxYEU56ukxPZcfV2Kt8fvhzelbuiX8xf9VxhMhMp4NOX0B6CmwYrjpNrklxYyzS02BVP3D2glaTVacR4qkK2tvw6Wt+HLhyn6X7rqqOYzLS0tMIDA2kqFNRhtQeojqOEE/n7KUt8XNqFZz8Q3WaXJHixliEzYcbh6DrIrAroDqNEM/UsFxh3mnkw6xNZ7kUbeZruhnIj6d/5Hj0cYIbB+Nk66Q6jhDPVv1VqNoV1g+Hh6a7eK4UN8bgzhnYHgwNB0DpZ6+GLoSxGN22MsULOTJiRTipaemq4xi1Cw8uMP/ofPpU60OtorVUxxHi+XQ66PAZWNnAuiFazzUTJMWNamkp2nSUWxl42fy6RArz5GhnzZzufoRfj+GbPZdVxzFaKekpjN87Hm9nbwbWGqg6jhBZU6AwdPwczm2A8F9Vp8kRKW5U2/MZRJ6AbovA1kF1GiGyrE5pNz5sWo7Pt1zgbGSc6jhG6dvj33L+wXmmN56OvbW96jhCZF2VjlDjDdg4RltB3MRIcaPS7XDYPRuaDIMSdVSnESLbhraqgI+HE8OXh5Mi01OZnL53mm+Of8P7vu9TzaOa6jhCZF+7mdo5oGsGmdz0lBQ3qqQmadNRRapA01Gq0wiRI/Y21nzWoybnIh8yf/tF1XGMRnJaMuP3jqe8W3k+qvGR6jhC5IyjG3T+Ci5t19afMiFS3KiycybcvaBNR9nYqU4jRI5VL+HKwJfLM3/HRU7ciFUdxygsPLaQq3FXCQ4IxtbaVnUcIXKuQkuo8w5sDoT7V1SnyTIpblS4fghCP4fmo8HLV3UaIXJtwEvlqVLMmWHLj5GYkqY6jlLh0eH8cOoHPvb7mErulVTHESL3WgdrJxmvHqAtEWQCpLjJb8kJENIPitWEgKGq0whhELbWVsztXpNr9xKYt/W86jjKPE59TODeQKoVrkbf6n1VxxHCMOydoctCuBYKBxarTpMlUtzkt+1TIeY6dFsM1jaq0whhMJW8nBnaqiLf7L7M4Wv3VcdR4ssjX3L70W2CGwdjYyXvb2FGyjQB/36wbbJ2SoWRk+ImP13dC/sXQYsgKCLD1cL8fNi0LDW9CzF8eTgJyamq4+SrQ5GH+OnMT3xS6xPKupZVHUcIw2sxEVxKaBfDpBn3+1uKm/ySFA8hH0OpBtCgv+o0QuQJaysdc7v7ERmXyOxN51THyTePUh4xIXQCtYvW5q2qb6mOI0TesHPSZh1uHYF9X6pO81xS3OSXLRPgUTR0XQhW1qrTCJFnyhYpyOi2lVm67yr7Lt1VHSdfzP1rLvcT7xMcEIyVTn6tCjPmXR8afQI7pkPUKdVpnknehfnh4jb463toPRXcZbhamL8+DX1oUNadkSuO8zAxRXWcPBV6M5QV51cwvM5wvF28VccRIu+9NA4Kl///6SnjfH9LcZPXHsdo3R3LNoe676lOI0S+sLLS8elrfsQkJDNt/RnVcfJMXHIcQfuCaFisIT0q9VAdR4j8YWOv9Wi7cxp2z1Gd5qmkuMlrm8ZC0kPoPF9bbVUIC+Ht7kRgx6r8dug6O87dUR0nT8w6OIuElASmBExBJ+9vYUmK14ImI2D3p3DrqOo0T5DiJi+d3QDhv0DbGVBIhquF5XmjnjfNKhZhzB/HiU0wzuHrnNoesZ01l9Ywuv5ovAp4qY4jRP5rOgI8q8Gq/pCSqDpNJlLc5JWE+7B2MFRsCzV7qU4jhBI6nY5Zr9bgcXIak9Ya78mH2fUg8QGTwybTrGQzupTrojqOEGpY20K3r+H+Jdg5XXWaTKS4ySvrh0NaMnT6QqajhEXzcnVgcpdqrDp6k00nI1XHMYhpB6aRpk9jYsOJMh0lLJtnVe0E431fQcQB1WkySHGTF06uhFMrocNccJbhaiG61ixB66qejF91gnvxSarj5MqmK5vYfHUz4/3HU8SpiOo4QqjX6BMoUQdC+mtLDBkBKW4M7WGUNmpTtQtUf1V1GiGMgk6nY1o3X/TA+FUn0ev1qiPlyN3Hdwk+EEzr0q1p69NWdRwhjIOVNXRdDHG3tOUZjIAUN4ak18O6IdoPusNnMh0lxD8UcbYnuGt1Np2KZE34LdVxsk2v1zM5bDLWOmsCGwTKdJQQ/+RRHlpO1BbWvLJbdRopbgwq/Dc4twE6fg4FPFSnEcLotPctRme/4gStPkVUnHFdXfEiay6tYef1nQQ1DMLNwU11HCGMT/2PoHRjCBmgtUBRSIobQ4m9CRtHQ403oEpH1WmEMFpTulTDzsaKMX8cN5npqchHkcw6OItOZTvRolQL1XGEME5WVtB1ATy+D5vHq42i9OjmQq+HNQO1RcXazVSdRgijVsjJjpmv+LLjXDQr/rqhOs4L6fV6Ju6biKOtI6Prj1YdRwjj5uYDrYPhyI9wYauyGFLcGMLhH+DSdq0LsaMMVwvxIi2qeNKjbkmmrDvNjQfGcXXFs6w4v4J9t/YxudFkXO1dVccRwvjVeQfKtdA+9D9+oCSCFDe5df8KbA6E2n2gQkvVaYQwGYEdq+LiYMOo34+Tnm6c01PXH15nzl9zeK3iazQu0Vh1HCFMg04Hnb/SLgvfOEZJBCluciM9HVYPgAKFoc001WmEMCkuDrbMfs2PfZfu8dOBa6rjPCFdn86E0Am4O7gzou4I1XGEMC2uJaDdLDj+G5xZl++Hl+ImNw4shmuh0GUB2DurTiOEyWlcwYO3G5RmxoazXL37SHWcTH4+8zOHow4zNWAqBWwLqI4jhOnxewMqddBapDy6m6+HluImp+5e0JoV+feDMk1VpxHCZI1pV5miLvaMWBFOmpFMT12JvcIXR76gV5Ve1POqpzqOEKZJp4NOn0N6Gqwfpl18k0+kuMmJtFRY1Q9cSkCLiarTCGHSCtjbMKe7H4cjHvDd3suq45Cankrg3kC8CngxuPZg1XGEMG0Fi0LHz+D0ajj5R74dVoqbnNj3Jdw6Al0XaZd/CyFypZ6PO+83LsOcP89zIUpt86+lp5Zy8t5JggOCcbRxVJpFCLNQrRtUe0Vbmuhh/iyeK8VNdkWdgh3TodEgKOWvOo0QZmN460qUcndi+IpwUtLSlWQ4/+A8C44t4J1q71CzaE0lGYQwSx3mgrUdrB2cL9NTUtxkR2qyNh1VuDw0H6c6jRBmxcHWmrnd/Th1K45FOy/l+/FT0lII3BuIj4sPA2oOyPfjC2HWnNyh85dwfhMc+znPDyfFTXbsmaON3HRbBLYOqtMIYXb8vAvxcfNyfLntAqduxebrsb858Q0XHlwguHEwdtZ2+XpsISxCpXZQsxdsGgsx1/P0UFLcZNWto7B7DjQdCcVrqU4jhNka9HIFKng6M3x5OEmpaflyzFP3TrHk+BI+qPEB1QpXy5djCmGR2s7QWqesGZin01NS3GRFSqI2HeVZDZpKMy8h8pKdjRVzu/txKTqeL7ddyPPjJaUlMX7PeCq6VeSDGh/k+fGEsGgOrlr34ss74a/v8uwwUtxkxc7pcP8ydFsM1raq0whh9qoWd2FIy4os2nmJoxF5uzbNgmMLiHgYwbTG07C1kve3EHmufAuo+y78OUH725oHpLh5kYgDEPolNB+rjdwIIfLFR03L4luyEMNXhJOYkjfTU8fuHGPpyaUMqDmACm4V8uQYQoinaDUVChSBkAFakz8Dk+LmeZIfQUg/KFkXGn2iOo0QFsXGWpueuvngMZ9uPmfw/SekJDB+73h8i/jyTrV3DL5/IcRz2BfUesVFhMH+RQbfvRQ3z7N1MsTd0n4A1jaq0whhccoXLcjINpX4PvQKBy7fM+i+vzjyBXcS7jAtYBrWVtYG3bcQIgt8AqDBx7BtCkQb9gOMFDfPcmU3HPwaWk4CDxmuFkKVvgFlqFfanRG/h/MoKdUg+zx4+yC/nP2FwbUH4+PqY5B9CiFyoMUEKFRKu2gnzTDvb5Di5ukS47R5wNKNof5HqtMIYdGsrXR82r0Gdx8mM33DmVzvLz45ngmhE6jrWZc3q7xpgIRCiByzddQu1rl9DEI/N9hupbh5mj8DIeEedF0AVvIUCaFa6cIFGNehCj8fiGD3+ehc7WvOX3OISYphasBUrHTy/hZCuZJ1IWAI7JwJkScMskt5Z//bhS1w5EdoEwxuPqrTCCH+31v+pWhSwYPRfxwn9nFKjvax58Ye/rjwByPqjaCkc0kDJxRC5FjzMeBREVb115Y6yiUpbv7p8QNYMwjKvQx1+qpOI4T4B51Ox6xXaxCfmMrUdaezff/YpFgm7ZtEQPEAXqvwWh4kFELkmI29Nj0VfQZ2z8717qS4+aeNoyE5ATrPB51OdRohxL8UL+RIUKeq/H74BltOR2XrvjMPzuRx6mMmNZqETt7fQhifYjWg2WjY8xncPJyrXUlx87cza+H4Mmg3C1xLqE4jhHiG1+qUpEXlooxdeYIHj7I2fL3t2jbWXV7HGP8xeBXwyuOEQogcazwUvHy16amUxBzvRoobgEd3Ye0QqNQe/N5QnUYI8Rw6nY4Zr/iSmp7OhNUnX7j9/cT7TNk/hZe8X6JT2U75kFAIkWPWttr01IOrsCM4x7uR4kavh3VDQZ8OHT+X6SghTEBRFwemdKnOuuO3WXf81jO30+v1BO8PJl2fTlDDIJmOEsIUFK0CL4+HffPhWliOdiHFzck/4Mwa6DAXnD1VpxFCZFGnGsXo4FuMCSEnufPw6cPXG69sZMu1LQQ2CMTD0SOfEwohcqzhQPCuDyH9taWQssmyi5uHkbB+OFR7Baq/ojqNECIbdDodU7tWx9pKx7iVJ9Hr9Zm+H50QzbQD02jr05Y2Pm0UpRRC5IiVtbb00cNI2DIx+3fPg0imQa+HNZ+AtZ02aiOEMDnuBeyY3s2XrWeiWHnkZsbter2eSWGTsLWyZbz/eIUJhRA5VrgctJoCh5bA5Z3ZuqtRFDcLFizAx8cHBwcH/P39OXjw4HO3X7FiBZUrV8bBwQFfX182bNiQ/YMeXw4XNkOnL8DJPYfJhRCqta7mxSu1SzBp7SluxTwGIORiCLtv7GZSo0kUciikNqAQIufqvQ8+TWD1QG1ppCxSXtwsW7aMYcOGMXHiRI4cOYKfnx9t2rThzp07T91+37599OzZk/fee4+jR4/StWtXunbtysmTL75qIpMtE8HvTajc3gCPQgih0sRO1ShgZ8PoP45z6+EtZh2aRZdyXWju3Vx1NCFEblhZQZcF8DgGNo/L8t10+n9PVOczf39/6tWrx/z58wFIT0/H29ubQYMGMWbMmCe2f/3113n06BHr1q3LuK1BgwbUrFmTxYsXv/B4cXFxuLq6EjutIi5DD4BjIYM9FlOW1ZeBnixuZ+j9ZXG7rGxm6GOqeu6yyth/ZoZ6vKEX7/LxL4fxrbmWx9xmVZdVONs5G2TfQgjFDv8Iaz+BSbFZ2twmj+M8V3JyMocPH2bs2LEZt1lZWdGyZUvCwp5++VdYWBjDhg3LdFubNm0ICQl56vZJSUkkJSVl/H9srPbENHSyxvq/TZ8dLst/S437D6UQlsTJGy7dg+Sbfah54E/VcYQQBlOAr6yr0zguDmdn5xe2dVBa3Ny9e5e0tDQ8PTNfgu3p6cnZs2efep/IyMinbh8ZGfnU7WfMmMHkyZOfuP300DM5TC2EMH5PjvoKIUxbB4DZrsTGxuLi4vLcbZUWN/lh7NixmUZ60tPTuX//PoULFzaLhl5xcXF4e3tz/fr1F/6wzZk8D/IcgDwHf5PnQZ4DMN/nwNn5xdPNSosbDw8PrK2tiYrKvABeVFQUXl5PX//Fy8srW9vb29tjb2+f6bZChQrlPLSRcnFxMasXb07J8yDPAchz8Dd5HuQ5AMt8DpReLWVnZ0edOnXYtm1bxm3p6els27aNhg0bPvU+DRs2zLQ9wJYtW565vRBCCCEsi/JpqWHDhtGnTx/q1q1L/fr1+fzzz3n06BF9+/YFoHfv3pQoUYIZM2YAMHjwYJo1a8bcuXPp0KEDv/32G3/99RfffPONyochhBBCCCOhvLh5/fXXiY6OJigoiMjISGrWrMmmTZsyThqOiIjAyup/A0yNGjXil19+ITAwkHHjxlGhQgVCQkKoXr26qoeglL29PRMnTnxi6s3SyPMgzwHIc/A3eR7kOQDLfg6U97kRQgghhDAk5R2KhRBCCCEMSYobIYQQQpgVKW6EEEIIYVakuBFCCCGEWZHiRqHdu3fTqVMnihcvjk6ne+b6WP+0c+dOateujb29PeXLl2fp0qWZvj9p0iR0Ol2mr8qVK2faJjExkQEDBlC4cGEKFizIq6+++kRjxPyUF8+Dj4/PE8+DTqdjwIABGds0b978ie/369fPwI8ua7L7HNy+fZs333yTihUrYmVlxZAhQ5663YoVK6hcuTIODg74+vqyYcOGTN/X6/UEBQVRrFgxHB0dadmyJRcuXDDQo8qevHgOlixZQpMmTXBzc8PNzY2WLVty8ODBTNu88847T7wO2rZta8BHlnV58RwsXbr0icfn4OCQaRtjeh1A3jwPT3u/63Q6OnTokLGNKb8WVq5cSatWrShSpAguLi40bNiQzZs3P7HdggUL8PHxwcHBAX9//yfeD8b29yGnpLhR6NGjR/j5+bFgwYIsbX/lyhU6dOjASy+9xLFjxxgyZAjvv//+Ey/gatWqcfv27YyvvXv3Zvr+0KFDWbt2LStWrGDXrl3cunWLV155xWCPK7vy4nk4dOhQpudgy5YtAHTv3j3Tvj744INM282ePdtwDywbsvscJCUlUaRIEQIDA/Hz83vqNvv27aNnz5689957HD16lK5du9K1a1dOnjyZsc3s2bP58ssvWbx4MQcOHKBAgQK0adOGxMREgzyu7MiL52Dnzp307NmTHTt2EBYWhre3N61bt+bmzZuZtmvbtm2m18Gvv/6a68eTE3nxHIDWofafj+/atWuZvm9MrwPIm+dh5cqVmZ6DkydPYm1t/cTvBFN9LezevZtWrVqxYcMGDh8+zEsvvUSnTp04evRoxjbLli1j2LBhTJw4kSNHjuDn50ebNm24c+dOxjbG9vchx/TCKAD6VatWPXebUaNG6atVq5bpttdff13fpk2bjP+fOHGi3s/P75n7iImJ0dva2upXrFiRcduZM2f0gD4sLCxH2Q3JUM/Dvw0ePFhfrlw5fXp6esZtzZo10w8ePDg3cfNEVp6Df3rW4+jRo4e+Q4cOmW7z9/fXf/TRR3q9Xq9PT0/Xe3l56T/99NOM78fExOjt7e31v/76a46yG4qhnoN/S01N1Ts7O+t//PHHjNv69Omj79KlS/ZD5jFDPQc//PCD3tXV9Zn3M+bXgV6fd6+FefPm6Z2dnfXx8fEZt5nLa+FvVatW1U+ePDnj/+vXr68fMGBAxv+npaXpixcvrp8xY4Zerzf+vw/ZISM3JiQsLIyWLVtmuq1NmzaEhYVluu3ChQsUL16csmXL0qtXLyIiIjK+d/jwYVJSUjLtp3LlypQqVeqJ/RirrD4Pf0tOTuann37i3XfffWKx1J9//hkPDw+qV6/O2LFjSUhIyLPc+e1Fz9OVK1eIjIzMtI2rqyv+/v4m81rIroSEBFJSUnB3d890+86dOylatCiVKlWif//+3Lt3T1HCvBEfH0/p0qXx9vamS5cunDp1KuN7lvg6APjuu+944403KFCgQKbbzeW1kJ6ezsOHDzNe68nJyRw+fDjTz9nKyoqWLVtm/JzN4e/D35R3KBZZFxkZmdG5+W+enp7ExcXx+PFjHB0d8ff3Z+nSpVSqVInbt28zefJkmjRpwsmTJ3F2diYyMhI7O7snFg/19PQkMjIyHx9NzmXlefinkJAQYmJieOeddzLd/uabb1K6dGmKFy/O8ePHGT16NOfOnWPlypV5/RDyxbOep79/zn//93nbmJvRo0dTvHjxTL+827ZtyyuvvEKZMmW4dOkS48aNo127doSFhWFtba0wrWFUqlSJ77//nho1ahAbG8ucOXNo1KgRp06domTJkhb5Ojh48CAnT57ku+++y3S7Ob0W5syZQ3x8PD169ADg7t27pKWlPfXnfPbsWQCz+PvwNyluzEy7du0y/l2jRg38/f0pXbo0y5cv57333lOYTJ3vvvuOdu3aUbx48Uy3f/jhhxn/9vX1pVixYrRo0YJLly5Rrly5/I4p8tjMmTP57bff2LlzZ6YTat94442Mf/v6+lKjRg3KlSvHzp07adGihYqoBtWwYcNMCws3atSIKlWq8PXXXzN16lSFydT57rvv8PX1pX79+pluN5fXwi+//MLkyZNZvXo1RYsWVR1HCZmWMiFeXl5PnLUeFRWFi4vLE6MVfytUqBAVK1bk4sWLGftITk4mJibmif14eXnlSW5Dy87zcO3aNbZu3cr777//wv36+/sDZDxXpu5Zz9PfP+e///u8bczFnDlzmDlzJn/++Sc1atR47rZly5bFw8PDbF4H/2Zra0utWrUy/U4Ay3gdgHai7m+//ZalD3um+Fr47bffeP/991m+fHmmEUoPDw+sra1f+DvB1P8+/E2KGxPSsGFDtm3blum2LVu2ZPpU9m/x8fFcunSJYsWKAVCnTh1sbW0z7efcuXNEREQ8dz/GJDvPww8//EDRokUzXe75LMeOHQPIeK5M3YuepzJlyuDl5ZVpm7i4OA4cOGAyr4WsmD17NlOnTmXTpk3UrVv3hdvfuHGDe/fumc3r4N/S0tI4ceJExuOzlNfB31asWEFSUhJvvfXWC7c1tdfCr7/+St++ffn111+f+J1nZ2dHnTp1Mv2c/6+9ew1pev/jAP7eUafNPfBYUctwpTaRCuxCV9MwuxBFVqRdyKTMoiQCN0ooNB+UkPUkgiBqSiYVESwI1MpWsFZ5GayLmtVyBAsrul+W6ec86H9+tL+e8+/y3/TsvF+wB/6+n+178ef25vv7DXt6enD58mXl9xwMnw+K/r6j+d/s7du34nA4xOFwCAA5ePCgOBwO6ejoEBGRnTt3ytq1a5X6R48eiUajEZPJJC0tLXL48GEJCQmRmpoapaawsFCsVqu4XC6x2WySkZEhQ4YMkc7OTqVm8+bNEhsbK/X19dLY2CjTp0+X6dOnB27i/8Uf6yDy9ZsAsbGxsmPHjl59PnjwQEpLS6WxsVFcLpdYLBaJi4uT1NRU/072L/zoGoiIUj9p0iRZvXq1OBwOuXv3rtJus9kkNDRUysvLpaWlRYqLiyUsLExu376t1JSVlUlUVJRYLBZxOp2yZMkSGT16tHz8+DEwE/+GP9agrKxM1Gq1nD17Vjwej/J4+/at0qfRaBS73S4ul0suXbokEydOlDFjxsinT58CN/n/8Mca7NmzR2pra+Xhw4fS1NQkK1eulIiIiF7rNFDOAxH/rMOfUlJSJDs7u88+/8nnwsmTJyU0NFQOHz7sc66/evVKqTl16pSEh4dLRUWF3Lt3T/Lz8yUqKkqePn2q1Ay0z4efxXDTj65cuSIAej3WrVsnIl+/lpiWltbrOcnJyaJWqyUuLk7MZrNPe3Z2tuh0OlGr1RITEyPZ2dny4MEDn5qPHz/Kli1b5PfffxeNRiNLly4Vj8fjx5n+PX+sg4hIbW2tAJC2trZebW63W1JTUyU6OlrCw8MlISFBTCaTvH792g8z/N9+Zg36qtfr9T41Z86cEYPBIGq1WsaOHSsXLlzwae/p6ZHdu3fLsGHDJDw8XObMmdPnegWCP9ZAr9f3WVNcXCwiIh8+fJB58+bJ0KFDJSwsTPR6vWzcuNHnzT6Q/LEG27dvl9jYWFGr1TJs2DBZuHChNDc3+7zGQDoPRPz399Da2ioApK6urlef//RzIS0t7W/r/3To0CHlfJgyZYrcuHHDp32gfT78LJWIyM/u+hARERENNLznhoiIiIIKww0REREFFYYbIiIiCioMN0RERBRUGG6IiIgoqDDcEBERUVBhuCEiIqKgwnBDREREQYXhhogGhNmzZ2P79u0B6aukpATJyckB6YuIAo/hhoj+dYxGo88/B8zNzUVmZmb/DYiI/q9C+3sARESBptVqodVq+3sYROQn3LkhooB7//49cnJyoNVqodPpcODAAZ92r9cLo9GImJgYREZGYurUqbBarUp7RUUFoqKiUFtbi6SkJGi1WixYsAAej0epsVqtmDJlCiIjIxEVFYWZM2eio6MDgO9lqZKSElRWVsJisUClUkGlUsFqtSI9PR0FBQU+43r27BnUarXPrg8RDTwMN0QUcCaTCVevXoXFYkFdXR2sViuam5uV9oKCAtjtdpw6dQpOpxMrVqzAggUL0N7ertR8+PAB5eXlOHHiBK5duwa32w2j0QgA+PLlCzIzM5GWlgan0wm73Y78/HyoVKpeYzEajcjKylLCkcfjwYwZM5CXl4fq6mp4vV6ltqqqCjExMUhPT/fj6hDRr+JlKSIKqHfv3uHYsWOoqqrCnDlzAACVlZUYOXIkAMDtdsNsNsPtdmPEiBEAvgaQmpoamM1m7N27FwDQ1dWFI0eOID4+HsDXQFRaWgoAePPmDV6/fo1FixYp7UlJSX2OR6vVYtCgQfB6vRg+fLhyfNmyZSgoKIDFYkFWVhaArztGubm5fYYkIho4GG6IKKAePnyIz58/Y+rUqcqx6OhoJCYmAgBu376N7u5uGAwGn+d5vV4MHjxY+Vmj0SjBBQB0Oh06OzuV18vNzcX8+fMxd+5cZGRkICsrCzqd7rvHGRERgbVr1+L48ePIyspCc3Mz7ty5g/Pnz//UvIkocBhuiGhAeffuHUJCQtDU1ISQkBCftm9vAg4LC/NpU6lUEBHlZ7PZjG3btqGmpganT5/Grl27cPHiRUybNu27x5KXl4fk5GQ8efIEZrMZ6enp0Ov1PzkzIgoU3nNDRAEVHx+PsLAw3Lx5Uzn28uVL3L9/HwAwYcIEdHd3o7OzEwkJCT6Pby8bfY8JEyagqKgI169fx7hx41BdXd1nnVqtRnd3d6/j48ePx+TJk3H06FFUV1dj/fr1P9Q/EfUPhhsiCiitVosNGzbAZDKhvr4ed+7cQW5uLn777evbkcFgwJo1a5CTk4Nz587B5XLh1q1b2LdvHy5cuPBdfbhcLhQVFcFut6OjowN1dXVob2//y/tuRo0aBafTiba2Njx//hxdXV1KW15eHsrKyiAiWLp06a8vABH5HcMNEQXc/v37MWvWLCxevBgZGRlISUnBpEmTlHaz2YycnBwUFhYiMTERmZmZaGhoQGxs7He9vkajQWtrK5YvXw6DwYD8/Hxs3boVmzZt6rN+48aNSExMxOTJkzF06FDYbDalbdWqVQgNDcWqVasQERHxaxMnooBQybcXqYmIyMfjx48RHx+PhoYGTJw4sb+HQ0TfgeGGiKgPXV1dePHiBYxGI1wul89uDhENbLwsRUTUB5vNBp1Oh4aGBhw5cqS/h0NEP4A7N0RERBRUuHNDREREQYXhhoiIiIIKww0REREFFYYbIiIiCioMN0RERBRUGG6IiIgoqDDcEBERUVBhuCEiIqKg8geWxQd909Tn8gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJKElEQVR4nOzdd1RU19rH8e/QQRFBFCzYe8OOii2xd00sSUw0/WrsJVbEil1jEls0xdybZovYey/YBRv2AhbEBihInXn/OO/lxlgCOLCnPJ+1Zi0dzpzzw+PRh7PP3o/OYDAYEEIIIYSwIjaqAwghhBBC5DQpgIQQQghhdaQAEkIIIYTVkQJICCGEEFZHCiAhhBBCWB0pgIQQQghhdaQAEkIIIYTVkQJICCGEEFZHCiAhhBBCWB2rK4AMBgNxcXHIAthCCCGE9VJaAO3du5f27dtTqFAhdDodwcHB//iZ3bt3U6NGDRwdHSldujRLly7N1DEfP36Mm5sbjx8/zlpoIYQQQpg9pQVQfHw8vr6+zJ8/P0PbX7t2jbZt2/LGG28QGhrKoEGD+PTTT9myZUs2JxVCCCGEJdGZSjNUnU7H6tWr6dSp00u3GTFiBBs2bODMmTPp773zzjvExMSwefPmDB0nLi4ONzc3YmNjyZMnz+vGFkIIIUQOMBgM6HQ6o+3PrJ4BCgkJoVmzZs+817JlS0JCQl76maSkJOLi4p55ATxOTMnWrEIIBc6uhqXtIDFOdRIhhJGtubLGqPszqwIoKioKLy+vZ97z8vIiLi6Op0+fvvAzU6dOxc3NLf3l4+MDwKwtF7I9rxAiB8XehLUD4Po+2BqgOo0Qwoii4qOYfmS6UfdpVgVQVowaNYrY2Nj0V2RkJACrTtxi14VoxemEEEZhMMCafuCQG5pNgBM/w6VtqlMJIYzAYDAQeCAQF3sXo+7XrAogb29v7t69+8x7d+/eJU+ePDg7O7/wM46OjuTJk+eZF0D90vkYueoUsQkyFCaE2Tv2I1zdBR2/Bf+BUKoprO0PTx+pTiaEeE0rLq4g5E4IE+tPNOp+zaoAqlevHjt27HjmvW3btlGvXr1M72tih0okJKcxft1ZY8UTQqjw8BpsHQs1P4LSzUCngw7fQnICbBqhOp0Q4jVEPo5k1rFZdCnbBf/C/kbdt9IC6MmTJ4SGhhIaGgpo09xDQ0OJiIgAtOGrnj17pm/fu3dvrl69yvDhwzl//jwLFixg+fLlDB48ONPH9nZzZnz7Sqw+eYvNZ6KM8v0IIXKYXg/BX0CufNBi0v/edysMrafDqWUQvk5dPiFElukNegL2B+Dh5MGwWsOMvn+lBdCxY8eoXr061atXB2DIkCFUr16dwMBAAO7cuZNeDAGUKFGCDRs2sG3bNnx9fZk9ezbff/89LVu2zNLx36pRmOYVvRiz+jQPniS9/jckhMhZhxdCxEHotBAcXZ/9mu87UK4trBsE8feVxBNCZN0v537hRPQJJvlPIpd9LqPv32TWAcopf18H6N7jJFp8tYe6JfOxoEcNo64xIITIRvcuwncNtaGv1tNevM2TaJjvB8UbQLd/a8NjQgiTdzX2Kt3WdaNr2a6MqJM9Q9lm9QxQdsjv6sjkTlXYdCaKtWG3VccRQmREWioE9wa3ItA08OXb5S4A7eZA+Fo4syrn8gkhsixVn0rA/gC8c3kzoMaAbDuO1RdAAG2rFqRd1YIErjnL3bhE1XGEEP/k4Ndw+yR0WgQO/zA1tlJnqPQWbBgKj+V5PyFM3dKzSzn74CyT/SfjbPfiGd7GIAXQ/5vUsTL2tjaM+vO0dIoXwpRFnYFdU7Xp7j61M/aZtrPB1kFbKFGubyFM1oWHF5gfOp8PK31ItQLVsvVYUgD9P/dcDkx7qwo7z0ez4thN1XGEEC+SmqwNfXmWgSajMv45Fw/o8A1c2gKhv2ZfPiFElqWkpRBwIIDieYrTt1rfbD+eFEB/0ayiF11qFmHi+nPcfJSgOo4Q4u/2zoTocG3Wl51j5j5brjVU6wGbRkJMZPbkE0Jk2XenvuPyo8sENQjCwdYh248nBdDfBLaviKuTHSNWnUKvl1vlQpiMWydg32xo9CUUqpa1fbSaCk55YG0/bQ0hIYRJOHv/LN+f/p7Pq35OxXwVc+SYUgD9TR4ne6a/XZUDlx/w6+EbquMIIQBSEmF1b/CuDA2HZn0/Tm7aKtFXd8OxH4wWTwiRdUlpSYzeP5qy7mX5tOqnOXZcKYBeoFHZ/PTwK8qUjee5fj9edRwhxK4geHQNOn8Htvavt6/STaHWx7AtEB5eNU4+IUSWzT85n8jHkQQ1CMLe5jWv70yQAuglRrepgKerA1+uDCNNhsKEUCfiMBz8Ft4YDQUqGGefzSdBrvxaGw19mnH2KYTItJPRJ1l6dil9q/WljHuZHD22FEAvkcvRjlldfDl24xE/7r+mOo4Q1ik5Xpv1VaQW1DfigmiOubUHqSMOwaGFxtuvECLDElISCNgfQJX8Vfiw0oc5fnwpgF7Br2Q+PvYvwcytF7gc/Vh1HCGsz/YJEHdHW/DQxta4+y7uD3W/gB0T4d4F4+5bCPGP5p6YS3RCNEH+Qdga+/rOACmA/sGXLctRxN2ZocvDSE2TWSNC5Jire+DId9BsPHiWzp5jNB0LeYtqD1inpWbPMYQQzzl85zC/n/+dQTUHUdytuJIMUgD9Ayd7W2Z39eX0rVgW7bmiOo4Q1iExDtb0g+INoc7n2Xcce2fovAjuhMKBr7LvOEKIdE+SnzD2wFhqe9fm3fLvKsshBVAGVC/qTu/Gpfh6xyXO3Y5THUcIy7d1DDx9CB3ngU02/zNVpBb4D4Ld0yHqdPYeSwjBrGOziE2KZWL9idjo1JUhUgBl0MBmZSiVPzdDloeSnCpDYUJkm0vb4MS/ocVkcC+eM8dsMhI8y2pDYanJOXNMIazQ3pt7WXVpFcNqD6OIaxGlWaQAyiBHO1tmd/PlcvQTvtlxSXUcISzT00ewtj+Uago1P8y549o5akNh987D3hk5d1whrEhsUizjD47Hv5A/Xcp0UR1HCqDMqFTIjQFNy7BwzxVCI2NUxxHC8mwaAckJ2mrNOl3OHrtgVWg0HPbNgVvHc/bYQliBqUemkpiayPj649Hl9PX9AlIAZVKfJqWoWDAPQ5eHkpgiC6gJYTTh6+DUMmgzA9wKq8nQcAh4V4HVfSDlqZoMQlig7Te2s+HqBkb5jcI7l7fqOIAUQJlmb2vD7G6+RD58yuytsnaIEEYRfx/WDYJybaFqd3U5bO21obBH12DnZHU5hLAgDxMfMunQJN7weYN2JdupjpNOCqAsKOvlytAWZfl+/zWOXHuoOo4Q5s1ggPWDwaCH9nNzfujr7wpUgDcDIGQ+3AhRm0UIM2cwGJgUMgm9QU9gvUCTGPr6LymAsujThiWpUdSdYSvCiE+SBdSEyLIzqyB8LbSbA7kLqE6jqdcPfOpAcB+tHYcQIks2XtvI9ojtBNQNwNPZU3WcZ0gBlEW2NjpmdfUl+nEi0zadVx1HCPMUdwc2DIXKb0OlzqrT/I+NrdYr7HEUbBunOo0QZik6IZoph6fQunhrWhZvqTrOc6QAeg0lPHMxslV5/nPoBvsv3VcdRwjzYjDAuoHaFPQ2s1SneV6+UtB8AhxdAld3q04jhFkxGAyMPzgeB1sHRvuNVh3nhaQAek096xWnXsl8DF8ZRlxiiuo4QpiPk7/ApS3Q/mtw8VCd5sVqf6a141jTT2vPIYTIkODLwey7tY9x9caR1ymv6jgvJAXQa7Kx0TGjS1Vin6Ywef051XGEMA8xEbB5FFTrAeVaq07zcjY20HG+tkDjFtP8KVYIU3P7yW2mH51Ox1IdaeLTRHWcl5ICyAh8PFwY264iy4/dZOf5u6rjCGHa9HrtjoqTG7SaqjrNP3MvBi2nwMn/wMUtqtMIYdL0Bj2BBwJxdXBlRJ0RquO8khRARtK9tg9NyuVnxKrTxCRILyEhXurYD3BtD3T8ViuCzEGNnlC6OawdAAmy9IUQL7PswjIORx1mQv0JuDq4qo7zSlIAGYlOp2PaW1VJSklj3NqzquMIYZoeXIFtgVDrEyj1puo0GafTQYdvIPUpbBquOo0QJikiLoKvjn9F93LdqV+ovuo4/0gKICPydnNiQsdKrAm9zabTd1THEcK06NNgTV9trZ/mE1Wnybw8haD1TDi9As6tUZ1GCJOSpk8j4EAA+ZzyMaTmENVxMkQKICPrVK0wLSt5MSb4DPefJKmOI4TpOLQAIg5BxwXgmFt1mqyp2g3Kt9NWrn5yT3UaIUzGL+G/EBodyiT/SbjYu6iOkyFSABmZTqcjqHMVAMasPo3BYFCcSAgTcO8C7JgEdb+A4v6q02SdTgft5mq/3jBYW8tICCt3JeYK35z4hvcrvk8t71qq42SYFEDZwDO3I5M7VWbL2busCb2tOo4QaqWlwurekLcoNB2rOs3ry50f2s7RutefXqE6jRBKpepTGbN/DIVyF2JA9QGq42SKFEDZpE2VgnTwLUTgmjNExSaqjiOEOge+gjuhWpd1e2fVaYyjUieo3AU2DtPaeQhhpX44/QPhD8MJahCEk52T6jiZIgVQNprYsRKO9raM/POUDIUJ6xR1GnZPhwaDoYj53BrPkDYzwc4J1vaXoTBhlc4/PM+iU4v4uPLHVM1fVXWcTJMCKBvldXFg+ttV2H3hHsuORqqOI0TOSk3Whr48y0Jj014QLUtcPKDDt3B5m7ZIohBWJCUthTH7x1DCrQR9fPuojpMlUgBlszfLe9GtVhEmrT9H5MME1XGEyDl7psO989rQl52j6jTZo2xLqP4+bB6ttfcQwkosDFvI1ZirTGkwBQdbB9VxskQKoBwQ0K4ibs72DF95Cr1ebpULK3DzOOz/SrvzU9D8bo1nSssp2orWa/pqbT6EsHCn753mhzM/8C/ff1Heo7zqOFkmBVAOyONkz4wuvoRcfcB/Dt1QHUeI7JXyFIJ7a4VPg8Gq02Q/JzfoOA+u7YWj36tOI0S2SkxNZMyBMZT3KM8nVT5RHee1SAGUQxqU8eSDusWYuimca/fjVccRIvvsnAyPbkCnRWBrrzpNzij1BtT+FLaP09p9CGGhvj35Lbce3yLIPwh7G/O+vqUAykEjW5fHK48Tw1aEkSZDYcIS3TgIIfPhzQAoYL63xrOk2QTI7QXBfbS2H0JYmON3j/Ofc/+hX/V+lHYvrTrOa5MCKAflcrRjVldfTkQ84vt9V1XHEcK4kp5o//n7+EG9vqrT5DzH3NBpIUQe0YpAISxIQkoCAfsD8M3vS8+KPVXHMQopgHJY7eIefNqgBLO3XuTi3ceq4whhPNvHwZNo6LQAbGxVp1GjWD2t+Ns5GaLPq04jhNHMOT6H+0/vM7nBZGwt5PqWAkiBoS3K4ePhzNDlYaSkyawRYQGu7tYeAG42AfKVUp1GrTcDwL2Y9iB4WorqNEK8tpDbISy7sIzBNQdTLE8x1XGMRgogBZzsbZndrRrn7sSxcLc8MCnMXGIsrOkHJRppDwJbO3tn7QHwO6e0pQCEMGOPkx8TeDCQOt51eKf8O6rjGJUUQIpU88lLn8al+GbHJc7cilUdR4is2zIansZAx/lgI/+kAFCkprYEwJ7pWiEkhJmacXQGj5MfM9F/IjY6y7q+Leu7MTMDmpahdIHcDFsRRlKqzBoRZujiFjj5C7SaonV7F//TeATkL6+1A0lNUp1GiEzbE7mH4MvBfFnrSwrnLqw6jtFJAaSQg50Nc7pV48q9J3y9/ZLqOEJkTsJDrRFomRZQ/QPVaUyPnYPWBuT+Re1OkBBmJCYxhvEh42lQuAFvlXlLdZxsIQWQYhUL5WFg0zIs2nOFkxGPVMcRIuM2DdfubLT/BnQ61WlMk3cVaDJCexbo5jHVaYTIsClHppCUlsSE+hPQWej1LQWQCejduBRVCrsxdEUYiSkyFCbMwLk1cHoFtJkJeQqqTmPa/AdDwWraUFjKU9VphPhHW69vZdO1TYz2G00BlwKq42QbKYBMgJ2tDbO7+XLz0VNmbrmgOo4Qr/bkHqwfDBXaQ5WuqtOYPls7bSgsJgJ2TFKdRohXuv/0PpMPTaZp0aa0LdFWdZxsJQWQiShdwJUvW5TjxwPXOHz1geo4QryYwQDrB2m/bvuVDH1lVP5y0HQsHFoA1w+oTiPECxkMBiaFaEX62LpjLXbo67+kADIhHzcoQa1i7gxbGUZ8UqrqOEI87/QKOL8e2s2F3PlVpzEvdb+AonW1diFJT1SnEeI566+uZ2fkTsbWG0s+53yq42Q7KYBMiK2Njlldfbn/OJkpG8NVxxHiWXG3YeMwbdirYgfVacyPja3WJiT+HmwLVJ1GiGfcjb/L1MNTaVOiDc2LNVcdJ0dIAWRiiuXLxeg25fn1cAR7L95THUcIjcEAaweAnTO0nqE6jfnyKAnNJ8KxH+DKTtVphAC0oa9xIeNwsnNitN9o1XFyjBRAJqiHXzH8S+djxKpTxD6VXkLCBJz4N1zeBh2+BRcP1WnMW61PoERjrX1IoqwCL9RbdWkVB24dYHz98bg5uqmOk2OkADJBNjY6ZnTx5XFiKpPWn1MdR1i7Rze0dhfVP4CyLVSnMX82NlrbkMQ42DxKdRph5W49ucXMozPpXLozjYo0Uh0nR0kBZKIK53UmsF1FVh6/ybZzd1XHEdZKr4c1fcHZHVpOUZ3GcuT1gVZTIfRXuLBJdRphpfQGPWMPjMXN0Y3htYerjpPjpAAyYV1rFeHN8gUY9edpHsUnq44jrNHR7+H6Pug4D5zyqE5jWaq/D2Vaas9WJTxUnUZYod/P/87RqKNM9J9IbofcquPkOCmATJhOp2PaW1VISdMzds0Z1XGEtXlwRZutVPszKNlEdRrLo9NBh28gLVmbXSdEDroee525x+fyTrl3qFuwruo4SkgBZOIK5HFiYsdKrD91h/WnbquOI6yFPk1br8bVG5pPUJ3Gcrl6Q9vZcGYVnF2tOo2wEmn6NAIOBJDfJT+Daw5WHUcZKYDMQAffQrSu7M3Y4DPce5ykOo6wBiHzIPKI1sLBIZfqNJat8ttQoQOsHwJPolWnEVbg53M/c+reKSb7T8bF3kV1HGWkADIDOp2OyZ0qY6PTMerP0xgMBtWRhCWLDoedk6F+P23lYpG9dDpo9xXobGDdIG3NJSGyyeVHl5l3ch49K/akhlcN1XGUUl4AzZ8/n+LFi+Pk5ISfnx9Hjhx55fZz586lXLlyODs74+Pjw+DBg0lMTMyhtOrky+1IUOfKbA+/y58nbqmOIyxVWorWtdy9BLwRoDqN9cjlCe3nwoUNcGqZ6jTCQqXoUxi9fzQ+rj70r9FfdRzllBZAy5YtY8iQIYwbN44TJ07g6+tLy5YtiY5+8W3g3377jZEjRzJu3DjCw8P54YcfWLZsGaNHW8fKla0qF6RTtUKMX3eWO7FPVccRlmj/VxB1GjovBHsn1WmsS4X2ULU7bBwOsfJDjjC+709/z8VHFwlqEISjraPqOMopLYDmzJnDZ599xkcffUTFihVZtGgRLi4u/Pjjjy/c/uDBg/j7+/Pee+9RvHhxWrRowbvvvvuPd40syYQOlXFxsGX4ylMyFCaM604Y7JkODYdA4Zqq01in1tPBwQXW9pehMGFU5x6cY3HYYj6p8gmVPSurjmMSlBVAycnJHD9+nGbNmv0vjI0NzZo1IyQk5IWfqV+/PsePH08veK5evcrGjRtp06bNS4+TlJREXFzcMy9z5uZiz7S3q7Lv0n1+PxKpOo6wFKlJsLoP5K8AjaxvQTST4eyutRu5sgOOL1WdRliI5LRkxuwfQ6m8pehdtbfqOCZDWQF0//590tLS8PLyeuZ9Ly8voqKiXviZ9957j4kTJ9KgQQPs7e0pVaoUTZo0eeUQ2NSpU3Fzc0t/+fj4GPX7UOGNcgV4p7YPkzecI/Jhguo4whLsngb3L2qzvuwcVKexbmWaQ42esDUAHl1XnUZYgAWhC7ged52gBkHY29qrjmMylD8EnRm7d+9mypQpLFiwgBMnTvDnn3+yYcMGJk2a9NLPjBo1itjY2PRXZKRl3DUZ07YC7i4ODFsRhl4vt8rFa7h5DA7MhSYjwVtujZuEFkHg7AHBfbV2JEJkUdi9MH46+xN9fPtQzqOc6jgmRVkB5Onpia2tLXfvPtvn6u7du3h7e7/wM2PHjuWDDz7g008/pUqVKnTu3JkpU6YwdepU9C/5R8LR0ZE8efI887IErk72zOxSlcPXHrL04HXVcYS5SnmqzfoqVB38B6lOI/7LKQ90mg839sORxarTCDP1NPUpAfsDqOhRkY8rf6w6jslRVgA5ODhQs2ZNduzYkf6eXq9nx44d1KtX74WfSUhIwMbm2ci2trYAVvlAcP3SnvSqV4wZW85z9d4T1XGEOdoxCWIjodMisLVTnUb8VYlGUOdfsH083L+sOo0wQ9+c+IbbT24T1CAIOxu5vv9O6RDYkCFDWLJkCT///DPh4eH06dOH+Ph4PvroIwB69uzJqFGj0rdv3749Cxcu5I8//uDatWts27aNsWPH0r59+/RCyNqMaF0e7zxODF0RRpoMhYnMuH4ADi2AN8dC/rKq04gXaTYO8hSE4N5aexIhMuho1FF+Cf+FATUGUDJvSdVxTJLSkrB79+7cu3ePwMBAoqKiqFatGps3b05/MDoiIuKZOz4BAQHodDoCAgK4desW+fPnp3379gQFBan6FpRzcbBjVldfun4XwuK9V+nTpJTqSMIcJD3Ren0VrQt1+6hOI17GIZd2d+6nVnDwG2hgvX2bRMYlpCQw9sBYahSowfsV3lcdx2TpDFY2dhQXF4ebmxuxsbEW8zwQwNSN4fx04Drr+jegnLer6jjC1K0fDGF/QJ8D4CE/HZq8rWPh8CL4fA94VVSdRpi4SSGTWHd1Havar8Inj/nPfM4uZjULTLzc4OZlKZbPhSHLQ0lJk1kj4hUu74BjP0LziVL8mIs3xmjnavW/tHYlQrzEwVsHWX5xOUNqDpHi5x9IAWQhnOxtmd3Nl/NRj5m/Sx6YFC/xNEZbZbhkE6j1ieo0IqPsnbQ1mu6ehX2zVacRJiouOY7Ag4H4FfSjW7luquOYPCmALEjVInnp26QU83Ze5sytWNVxhCnaMhqSHkOHeWAjl79ZKVQdGg2DvTPhdqjqNMIETT8ynScpT5hUfxI2Orm+/4n8CVmYfm+WoayXK0OWh5KUKrNGxF+c3wihv0LLKZBXbo2bpYbDoEAFbe2m1CTVaYQJ2RWxi7VX1jKi9ggK5i6oOo5ZkALIwjjY2TCnuy/X7sfz1bZLquMIU5HwENYNhLKtoLrMCjFbdg7Q+Tt4cBl2TVGdRpiImMQYJoRMoFGRRnQq3Ul1HLMhBZAFKu+dh0HNyrJ47xWO33ikOo4wBRuGQloytP8adDrVacTr8KoEb4zSpsVHHlGdRpiAoMNBpOhTGF9vPDq5vjNMCiAL9a9GJalSJC/DVoTxNFmGwqzamT/h7J/Qdja4vrjNjDAz9QdCoRraUFiyNES2Zpuvb2bz9c2M8RtDfpf8quOYFSmALJSdrQ2zu/pyO+YpM7acVx1HqPIkWrv7U7EjVH5bdRphLLZ22qywuFuwY6LqNEKR+0/vE3QoiObFmtO6RGvVccyOFEAWrHSB3HzZshw/HbhOyJUHquOInGYwaM/96Gyg7RwZ+rI0nmWg6Tg4vBCu7VOdRuQwg8HAhJAJ2OhsCKgbIENfWSAFkIX72L8EdUp48OXKMJ4kpaqOI3JS2B9wYaP23E8uT9VpRHbw6w3F/GHNF9ryBsJqrLu6jt2RuwmsG4iHk4fqOGZJCiALZ2OjY1YXXx7GJxO0IVx1HJFTYm/BphFQtTtUaKc6jcguNjbQcT7EP4CtAarTiBwSFR/FtMPTaFeyHU2LNVUdx2xJAWQFiuZzYXSbCvx+JII9F++pjiOym8EAa/uBgwu0nq46jchuHiWgxSQ4vhQub1edRmQzg8HAuIPjcLZzZmSdkarjmDUpgKxED7+iNCzjyYiVp4h9Kr2ELNrxpXBlp7bas7O76jQiJ9T6GEq+AWv6a+1OhMVacXEFB28fZHz98bg5uqmOY9akALISOp2O6W9XJT4plQnrzqqOI7LLo+uwZQzU6AVlmqlOI3KKTgcd50HyE9gsdwUsVeTjSGYdm8XbZd6mYZGGquOYPSmArEihvM4Etq/InydusfVslOo4wtj0egjuCy75oGWQ6jQip7kV0YY8w36H8xtUpxFGpjfoCTwQiLujO8NqDVMdxyJIAWRlutQsQrMKBRi9+jQP45NVxxHGdOQ7uLEfOs0HR1fVaYQKvu9C2dba8gfxsvSFJfkt/DeO3T3GJP9J5HbIrTqORZACyMrodDqmvFWFVL2BscFnVMcRxnL/EmwfD3X+BSUaqU4jVNHptGUP9KmwYYjqNMJIrsVeY+6JubxX/j3qFKyjOo7FkALIChVwdWJSx8psOH2HdWG3VccRr0ufBsF9IE9haDZedRqhmquX1vbkXDCcWaU6jXhNqfpUAg4E4OXixcAaA1XHsShSAFmp9r6FaFulIGPXnCH6caLqOOJ1HPwGbh2HTgu1qe9CVH4bKnbS2qA8vqs6jXgNS88u5cz9MwQ1CMLFXq5vY5ICyIpN6lQZOxsdo1adxmAwqI4jsuLuOdg1Ber3h6J+qtMIU9J2DtjYwboB2tpQwuxcenSJBaEL6FWxF9UKVFMdx+JIAWTFPHI5MKVzFXacj2bl8Zuq44jMSkuB1f8Cj5LQZLTqNMLU5MqnPQ90cTOE/qY6jcikFH0KY/aPoahrUfpW76s6jkWSAsjKtajkzVs1CjNx3TluxzxVHUdkxt5ZcPes1hXc3kl1GmGKyrfVZoZtHgmx8kOOOVlyagkXH10kqGEQjraOquNYJCmABOPaVyKXox0jVp2SoTBzcfsk7JsFjYZBoeqq0whT1moaOOSGNf1kKMxMnH1wliWnlvBZ1c+olK+S6jgWSwoggZuzPdO7VGXfpfv8ejhCdRzxT1KTYHUfKFARGsqCaOIfOOeFjt/C1V1w7EfVacQ/SE5LJmB/AKXdS/N5lc9Vx7FoUgAJABqXzc+7dYoyZWM4EQ8SVMcRr7JrCjy4rA192TmoTiPMQelmUPND2DoWHl5TnUa8wvzQ+VyPu05QgyDsbe1Vx7FoUgCJdGPaVsAjlwPDVoSh18utcpMUeUSb9v7GaPCSW+MiE1pM1h6MDv5Ca5siTE5odChLzy6lb7W+lHUvqzqOxZMCSKTL7WjHzC6+HLn+kB8PyE+JJic5AVb3hkI1oP4A1WmEuXF0hY4LIOIgHF6oOo34m6epTwk4EEDlfJX5sNKHquNYBSmAxDPqlcrHR/7FmbnlApejn6iOI/5qxwSIu6UNfdnaqU4jzFGJhuDXB3ZMhHsXVacRf/H1ia+Jio9icoPJ2NnI9Z0TpAASzxnesjyF8jozdEUYqWlyq9wkXNsLhxdB03HgWUZ1GmHOmgZqbVOCe0Naquo0Ajhy5wi/hv/KwBoDKeFWQnUcqyEFkHiOs4Mts7r6cvpmDN/tvao6jkh6DGv6QrEG4NdbdRph7hxctLuIt0/Cwa9Vp7F68SnxBB4MpKZXTXpU6KE6jlWRAki8UM1i7nzeqBRzt18k/E6c6jjWbWsAxD+AjvPARi5ZYQQ+dbTnyHZNhagzqtNYtVnHZvEw8SGT/Cdho5PrOyfJn7Z4qcHNy1DCMxdDl4eRnCpDYUpc2g7Hl0LLyeAht8aFEb0xGvKV1obCUpNVp7FK+2/tZ+XFlQyrNQwfVx/VcayOFEDipRztbJnTrRoX7z5m3s5LquNYn6ePYG1/KPUm1PxIdRphaewctaGw6HDYO1N1GqsTmxTLuIPjqFewHl3LdlUdxypJASReqXJhN/q9WZr5u69w6maM6jjWZdNISI6HDt+CTqc6jbBEhapBoy9h32y4dUJ1Gqsy/ch0ElISmOg/EZ1c30pIAST+Ud83SlOhoCtDl4eRmJKmOo51CF8Pp/6A1tPArYjqNMKSNRwK3pW1NaZSElWnsQo7Inaw7uo6RtYZiXcub9VxrJYUQOIf2dvaMLtrNW48SOCrbbJ2SLaLfwDrB0G5NlonbyGyk609dFoEj67BriDVaSzeo8RHTAyZSJMiTehQqoPqOFZNCiCRIeW8XRncvCyL913l+I2HquNYLoMBNgwGfSq0mytDXyJneFXUHoo++C1EHFKdxmIZDAYmHZpEmiGNcfXHydCXYlIAiQz7vFFJqvnkZejyMBKSZQG1bHFmFZxbA23ngKuX6jTCmtQfAEVqQXAf7dkzYXSbr29m241tBPgF4OnsqTqO1ZMCSGSYrY2O2V19iYpLZMbmC6rjWJ7HUbBxGFTqDJXfUp1GWBsbW20oLO4ObB+vOo3FuZdwj6DDQbQs3pJWJVqpjiOQAkhkUsn8uRnesjxLD17n4OX7quNYDoMB1g0EG3toM1t1GmGtPEtDs/FwZDFc3aM6jcUwGAxMCJmArc6WMX5jVMcR/08KIJFpH9Yvjl8JD75ceYrHiSmq41iG0N/g4mZo/zXkyqc6jbBmdT6H4g219iuJsgq8May5soY9N/cwvt543J3cVccR/08KIJFpNjY6ZnX1JSYhmaAN4arjmL/Ym7B5JPi+B+XbqE4jrJ2NjdZ25ekj2Cp3K15XVHwU049Mp0OpDrxR9A3VccRfSAEkssTHw4UxbSvyx9FIdl2IVh3HfBkM2k/aDrmh1VTVaYTQuBeHFpPhxL/h4lbVacyWwWAg8EAgLvYujKgzQnUc8TdSAIkse7eOD43K5mfkqlPEJshQWJYc+wGu7tZ+4nbOqzqNEP9T80Mo1VRrx5IgS19kxYqLKwi5E8LE+hPJ45BHdRzxN1IAiSzT6XRMf7sKCclpjF93VnUc8/PwKmwN1Pp8lW6qOo0Qz9LptDYsKU9hk9y9yKzIx5HMOjaLrmW74l/YX3Uc8QJSAInXUtDNmfHtK7H65C02n4lSHcd86PUQ3BdyeUKLSarTCPFiboWhzQw4vRzOrVWdxmzoDXoC9gfg4eTB0FpDVccRLyEFkHhtb9UoTPOKXoxZfZoHT5JUxzEPhxdCxEHotAAcXVWnEeLlqnaHcm1h/WCIl6UvMuKXc79wIvoEk/wnkcs+l+o44iWkABKvTafTMaVzFfQGAwHBZzAYDKojmbZ7F2H7BKj7BRRvoDqNEK+m00H7uWDQaz3q5Pp+pauxV/nm5De8X+F9anvXVh1HvIIUQMIo8rs6MrlTFTadiWJt2G3VcUxXWioE94a8PtA0UHUaITImdwFoNwfC18HplarTmKxUfSoB+wMomKsgA2oMUB1H/AMpgITRtK1akHZVCxK45ix34xJVxzFNB+bC7ZNaywF7Z9VphMi4Sp2h8ttau5a4O6rTmKSlZ5dy9sFZJjeYjLOdXN+mTgogYVSTOlbG3taGUX+elqGwv4s6A7ungf9A8JFb48IMtZkFdo6wboAMhf3NhYcXmB86n48qfYRvfl/VcUQGSAEkjMo9lwPT3qrCzvPRrDh2U3Uc05GaDKt7g2cZaDJKdRohssbFQ2vXcmkrnPxFdRqTkZKWQsCBAIrnKc4X1b5QHUdkkBRAwuiaVfSiS80iTFx/jpuPElTHMQ17Z8K9cOi0UPsJWghzVa41VOsBm0dBTITqNCbhu1PfcfnRZYIaBOFg66A6jsggKYBEtghsXxFXJztGrDqFXm/lt8pvHYd9s6HRl1Comuo0Qry+VlPByU1r46LXq06j1Nn7Z/n+9Pd8XvVzKuarqDqOyAQpgES2yONkz/S3q3Lg8gN+PXxDdRx1UhJhdR/wrgwNZUE0YSGc3KDjt3Btr9bOxUolpSUxev9oyrqX5dOqn6qOIzJJCiCRbRqVzU8Pv6JM2Xie6/fjVcdRY9dkeHQNOn8Htvaq0whhPKXehFofw7ZAeHBFdRol5p+cT+TjSKY0mIK9jVzf5kYKIJGtRrepgKerA1+uDCPN2obCIg7BwXnwxhgoUEF1GiGMr/kkyJUfgr8AfZrqNDnqZPRJlp5dSr/q/SjtXlp1HJEFUgCJbJXL0Y5ZXXw5duMRP+6/pjpOzkmO12Z9FakN9furTiNE9nDMrT3YH3kYDi1QnSbHJKQkELA/gKr5q9KrYi/VcUQWSQEksp1fyXx87F+CmVsvcDn6seo4OWP7eHgcpf3nYGOrOo0Q2ae4v9bWZcckiD6vOk2OmHtiLtEJ0Uz2n4ytXN9mSwogkSO+bFmOIu7ODF0eRmqahc8aubobjiyGZuPBU26NCyvQdCzkLQrBfbR2Lxbs8J3D/H7+dwbVHERxt+Kq44jXIAWQyBFO9rbM7urL6VuxLNpjwQ9MJsbBmn5QvCHU+Vx1GiFyhr0zdF4Ed0LhwFeq02SbJ8lPGHtgLLW9a/Nu+XdVxxGvSQogkWOqF3Wnd+NSfL3jEudux6mOkz22jIanj6DjfLCRy0tYkSK1wH8Q7J4OUadVp8kWs47NIjYplkn+k7DRyfVt7pSfwfnz51O8eHGcnJzw8/PjyJEjr9w+JiaGvn37UrBgQRwdHSlbtiwbN27MobTidQ1sVoZS+XMzZHkoyakWNhR2cSuc/A+0DAL3YqrTCJHzmowEz7LaBIDUZNVpjGrvzb2surSKL2t/SeHchVXHEUaQ5QJox44dtGvXjlKlSlGqVCnatWvH9u3bM7WPZcuWMWTIEMaNG8eJEyfw9fWlZcuWREdHv3D75ORkmjdvzvXr11m5ciUXLlxgyZIlFC4sfxnNhaOdLbO7+XI5+gnf7LikOo7xJDyEtf2hdDOoIbNChJWyc9SGwu6dhz3TVacxmtikWMYfHI9/YX/eLvO26jjCSLJUAC1YsIBWrVrh6urKwIEDGThwIHny5KFNmzbMnz8/w/uZM2cOn332GR999BEVK1Zk0aJFuLi48OOPP75w+x9//JGHDx8SHByMv78/xYsXp3Hjxvj6Suddc1KpkBsDmpZh4Z4rhEbGqI5jHJtGQOpT6PAt6HSq0wihTsGq0HgE7P8Kbh5XncYoph6ZSmJaIhPqTUAn17fF0BkMhkyvTlekSBFGjhxJv379nnl//vz5TJkyhVu3bv3jPpKTk3FxcWHlypV06tQp/f1evXoRExPDmjVrnvtMmzZt8PDwwMXFhTVr1pA/f37ee+89RowYga3ti6ciJiUlkZSUlP77uLg4fHx8iI2NJU+ePBn8joWxpaTpeWvBQRKSU9kwoCFO9mY8lfTcWlj+gbbas+87qtMIoV5aCnzfDFIS4F97tYekzdSOGzsYtHsQUxpMoX2p9qrjCCOyy8qHYmJiaNWq1XPvt2jRghEjRmRoH/fv3yctLQ0vL69n3vfy8uL8+RevJXH16lV27txJjx492LhxI5cvX+aLL74gJSWFcePGvfAzU6dOZcKECRnKJHKOva0Ns7v50u7b/czacoGAdmbaRDD+PqwfDOXbQdXuqtNkicFgIDXVsqcumzNbW1tszO2Belt77QeC7xrBzsnac3Fm6GHiQyYemsibPm/SrmQ71XGEkWWpAOrQoQOrV6/myy+/fOb9NWvW0K5d9v0l0ev1FChQgMWLF2Nra0vNmjW5desWM2fOfGkBNGrUKIYMGZL++//eARLqlfVyZWjzskzbfJ4WlbypU8JDdaTMMRhg/SAw6KHdV2Y59JWamsq9e/fIwo1gkYNcXFxwc3Mzr+GXAuXhzTGwbRyUbwvF6qtOlCkGg4HJhyajN+gZW2+sef3ZiwzJUgFUsWJFgoKC2L17N/Xq1QPg0KFDHDhwgKFDh/LNN9+kbztgwIAX7sPT0xNbW1vu3r37zPt3797F29v7hZ8pWLAg9vb2zwx3VahQgaioKJKTk3FwcHjuM46Ojjg6Omb6exQ549OGJdl67i7DVoSxaWBDcjlm6a+kGqdXQvg66Poz5C6gOk2mGQwGYmJisLGxwd3dXf6BN0EGg4Hk5GTi4rRlI/Lmzas2UGbV6wfnN2gLJPY+oLXOMBObrm1i241tzG48G09nT9VxRDbI0jNAJUqUyNjOdTquXr360q/7+flRp04dvv32W0C7w1O0aFH69evHyJEjn9t+9OjR/Pbbb1y9ejX9lvDXX3/N9OnTuX37doYyxcXF4ebmJs8AmZBr9+Np/fVeutb0YVKnyqrjZEzcHVhQF0o3hS4vfmjf1KWlpXH37l3c3d1xdjbfZzSswZMnT4iLi8Pb29v8hsMeXIGF/lC9B7SdrTpNhkQnRNN5TWf8C/kzo/EM1XFENsnSj9vXrhmnqeWQIUPo1asXtWrVok6dOsydO5f4+Hg++ugjAHr27EnhwoWZOnUqAH369GHevHkMHDiQ/v37c+nSJaZMmfLSu0zCPJTwzMWo1hUYt/YsLSt506CMif+0ZTDAugHalN82s1SnyTK9XluH6WUTCITp+O/d7bS0NPMrgPKVguYTYdOX2rNypd5QneiVDAYDE0Im4GDrwGi/0arjiGykdLyhe/fu3Lt3j8DAQKKioqhWrRqbN29OfzA6IiLimYvdx8eHLVu2MHjwYKpWrUrhwoUZOHBghh+8Fqbrg7rF2HwmiuErw9g8uBF5nOxVR3q5k7/Apa3w7jJwMbPnll5Ahr5Mn9mfo9qfQvharU3MFwfByU11opcKvhzM3pt7mffmPPI65VUdR2SjDA+BDRkyhEmTJpErV65nHip+kTlz5hglXHaQITDTFfkwgdZf76NNFW9mdDHRtZ1iImBBfajYETplfM0rU5SSksK9e/fInz8/9vYmXHAKyzhXj25oQ2GVOmqtYkzQ7Se3eWvtWzQv1pxJ/pNUxxHZLMN3gE6ePElKSkr6r1/G7H9SEcr4eLgQ0LYCI/88TavK3rxZ3uufP5ST9HpY01f76bXVFNVphDAv7sW06fDrBkD59lDu+aVUVNIb9AQeDMTVwZXhtYerjiNyQIYLoF27dr3w10IYU/faPmw+G8WIVafZNtidvC7Pz+xT5tgPcG0vfBBs0rfwLV2TJk2oVq0ac+fOVR1FZFaNntrMyXUDwOeQSQ0hL7+wnMN3DrO4+WJcHVxVxxE5wMyephOWTqfTMf3tqiSlpDFu7VnVcf7nwRXYFgi1PjH5hziFMFk6ndYuJjURNn75z9vnkIi4COYcn0P3ct2pV6ie6jgih2SpAIqPj2fs2LHUr1+f0qVLU7JkyWdeQrwOrzxOTOxYmTWht9l0+o7qOKBPg+AvtLV+mk9UnUYI85anoDZ78sxKOBusOg1p+jTGHhhLPqd8DKn56udbhWXJ0iywTz/9lD179vDBBx9QsGBBee5HGF3HaoXYdOYOY4LPULuEB565FS5meWgBRB6Gjzaa1UJu1uDRo0cMHDiQdevWkZSUROPGjfnmm28oU6YMBoOBAgUKsHDhQrp06QJAtWrVuHv3LnfuaIX1/v37adq0KY8ePcLFxUXlt2JdqnSFc2tgwxAo5g+58yuL8kv4L5yMPslPrX7CxV7+DliTLBVAmzZtYsOGDfj7+xs7jxCANhQW1LkKLb7ay5jVp1n0fk01hXb0edgxCer1Nbul/LPiaXIaV+49yfHjlsqfG2eHzK9H9OGHH3Lp0iXWrl1Lnjx5GDFiBG3atOHcuXPY29vTqFEjdu/eTZcuXXj06BHh4eE4Oztz/vx5ypcvz549e6hdu7YUPzlNp4N2c2GBn9ZOpvsvSlrJXI25yjcnvuGDih9Q06tmjh9fqJWlAsjd3R0PD9N5eE1YJs/cjgR1qkyfX0+wJvQ2naoXztkAaanaEv7uxeDNgJw9tiJX7j2h3bf7c/y46/s3oHLhzD1Y/t/C58CBA9SvrxWnv/76Kz4+PgQHB9O1a1eaNGnCd999B8DevXupXr063t7e7N69m/Lly7N7924aN25s9O9HZEDu/FoPveU94dRy8M3ZZsKp+lTG7B9DYdfC9K/eP0ePLUxDlgqgSZMmERgYyM8//yw/OYls1bpKQTpWK0TgmjPULZkPbzennDv4/q/gTih8sh3sraNVRKn8uVnfv4GS42ZWeHg4dnZ2+Pn5pb+XL18+ypUrR3h4OACNGzdm4MCB3Lt3jz179tCkSZP0AuiTTz7h4MGDDB8uU56VqdhRGw7b9CWUaAh5CuXYoX888yPnHp7jl9a/4GSXg/+uCJOR4QKoevXqzwxBXL58GS8vL4oXL/7cwlwnTpwwXkJh9SZ0qETIlQeM/PMUP31YO2eGwu6cgj3TocFgKGI9t8adHWwzfSfGlFWpUgUPDw/27NnDnj17CAoKwtvbm+nTp3P06FFSUlLS7x4JRVrPgGv7YG1/6LEyR4bCLjy8wMKwhXxS+ROq5K+S7ccTpinDBVCnTp2yMYYQL5fXxYFpb1fh46XHWHY0knfqFM3eA6Yma0Nf+ctBY2mzYqoqVKhAamoqhw8fTi9iHjx4wIULF6hYsSKgPUvWsGFD1qxZw9mzZ2nQoAEuLi4kJSXx3XffUatWLXLlyqXy2xAuHtDhG/itG5z4N9Tsla2HS0lLYfT+0ZR0K0lv397Zeixh2jJcAI0bNy47cwjxSm+W96JbrSJMWn8O/9Ke+Hhk49Drnulw7zx8tktreCpMUpkyZejYsSOfffYZ3333Ha6urowcOZLChQvTsWPH9O2aNGnC0KFDqVWrFrlza0NtjRo14tdff+XLL01nLRqrVrYlVH8ftoyGkk205+6yycKwhVyNucrv7X7HwdaEFloVOS5L6wBFRkZy8+bN9N8fOXKEQYMGsXjxYqMFE+LvxrarSF4XB4avPIVen6EWdpl38zjsnwONR0LBqtlzDGE0P/30EzVr1qRdu3bUq1cPg8HAxo0bnxmWb9y4MWlpaTRp0iT9vSZNmjz3nlCs5VRwdtfazej12XKI0/dO8+OZH+nt25vyHuWz5RjCfGS4GepfNWzYkM8//5wPPviAqKgoypYtS+XKlbl06RL9+/cnMDAwO7IahTRDNW8HLt+nx/eHmdChEr3qFzfuzlOewneNwCGX9uCzbZbmCJgNi2iwaSWs5lxd3Q3/7qg9F+T3L6PuOjE1kW7ru+Fi58IvbX7Bzsayr2/xz7J0B+jMmTPUqVMHgOXLl1OlShUOHjzIr7/+ytKlS42ZT4hn+Jf2pGe9YkzdFM61+/HG3fnOyVrH6k6LLL74EcIklWwCtT+DbeO09jNGNO/kPG49vkVQgyApfgSQxQIoJSUFR0ft2Yjt27fToUMHAMqXL5++wqoQ2WVk6/J45XFi2Iow0ow1FHbjIITM19b7KSC3xoVQpvkEcPWG1b21NjRGcPzucf597t/0r96fUnlLGWWfwvxlqQCqVKkSixYtYt++fWzbto1WrVoBcPv2bfLly2fUgEL8nYuDHbO6+nIi4hHf77v6+jtMeqLN+vLx01Z8FkKo45ALOi2Em0chZN5r7y4hJYGA/QFUK1CNDyp+YISAwlJkqQCaPn063333HU2aNOHdd9/F19cXgLVr16YPjQmRnWoX9+DTBiWYvfUiF+8+fr2dbR8HT6Kh0wKwyXw7BiGEkRWrp/0wsnMyRIe/1q7mHJ/Dg8QHTPafjK1c3+IvMj0QajAYKFmyJBEREaSmpuLu7p7+tc8//1xWhhY5ZmiLcuy6cI+hy8P484v62NtmoZ6/sguOfq91p84nt8aFMBlvjoVL27ShsE+3g23mH/4OuR3CsgvLGO03mqJ5snn9MGF2Mv0/hsFgoHTp0kRFRT1T/AAUL16cAgUKGC2cEK/iZG/L7K6+nLsTx8LdWXhgMjEW1vSDEo2g1ifGDyiEyDp7J+i8EKJOw745mf744+THBB4MxM/bj+7lcrbPmDAPmS6AbGxsKFOmDA8ePMiOPEJkiq9PXr5oUopvdlzizK3YzH1482itCOo4H2yyNBoshMhOhWtCwyGwdwbcCcvUR2cencnj5MdM9J+IjU6ub/G8LP2tmDZtGl9++SVnzpwxdh4hMq3/m2Uo4+XKsBVhJKVmcNbIhc0Q+gu0mgJ55da4ECar0XDIX0EbCktNytBH9kTuYfXl1QyvPZxCuXOuwaowL1kqgHr27MmRI0fw9fXF2dkZDw+PZ15C5CQHOxtmd/Xlyr0nfL390j9/IOEhrBsAZVpAdZkVIoRJs3PQhsLuX4Ld0/5x85jEGMaHjKdh4YZ0Lt05BwIKc5Wl1aDmzp1r5BhCvJ6KhfIwsGkZ5my7SPOKXlQv6v7yjTd+qf0k2f6bHOk8LYR4Td5VoMkI2DUFyreFIrVeuumUI1NITktmfP3x6OT6Fq+QpQKoV6/s7dYrRFb0blyKbefuMnRFGBsHNMTJ/gVTXs8Gw5mV8Nb3kKdgjmcUQmSR/2A4v1EbCuu9D+ydn9tk6/WtbLq2iWkNp1HARSbkiFfL8pNhV65cISAggHfffZfo6GgANm3axNmzZ40WTojMsLO1YXY3X24+esrMLRee3+BJNGwYAhXaQ5UuOR9QmK20tDT02dSgU2SQrR10XgQxEbBj0nNffvD0AZMPTaZZ0Wa0KdFGQUBhbrJUAO3Zs4cqVapw+PBh/vzzT548eQJAWFgY48aNM2pAITKjdAFXhrcsx48HrnH46l9mKhoMsH4woIO2X8nQl5nbvHkzDRo0IG/evOTLl4927dpx5Yq2FEL9+vUZMWLEM9vfu3cPe3t79u7dC0BSUhLDhg2jcOHC5MqVCz8/P3bv3p2+/dKlS8mbNy9r166lYsWKODo6EhERwdGjR2nevDmenp64ubnRuHFjTpw48cyxzp8/T4MGDXBycqJixYps374dnU5HcHBw+jaRkZF069aNvHnz4uHhQceOHbl+/Xq2/FlZlPzloGkgHFoA1w+kv20wGJgYMhGdTkdA3QAZ+hIZkqUCaOTIkUyePJlt27bh4OCQ/v6bb77JoUOHjBZOiKz4yL8EtYq5M2xlGPFJqdqbp5bD+fXQ7ivInV9tQFOWnAC3Q3P+lZyQqZjx8fEMGTKEY8eOsWPHDmxsbOjcuTN6vZ4ePXrwxx9/YDD8r0/csmXLKFSoEA0bNgSgX79+hISE8Mcff3Dq1Cm6du1Kq1atuHTpfw/RJyQkMH36dL7//nvOnj1LgQIFePz4Mb169WL//v0cOnSIMmXK0KZNGx4/1lYjT0tLo1OnTri4uHD48GEWL17MmDFjnsmekpJCy5YtcXV1Zd++fRw4cIDcuXPTqlUrkpOTM/XnYJXq9oGidbX2NUnaD9/rr65nZ+ROxtYdSz5nacckMkZn+Ou/EhmUO3duTp8+TYkSJXB1dSUsLIySJUty/fp1ypcvT2JiYnZkNYq4uDjc3NyIjY0lT548quOIbHLjQTyt5u7jrRqFCWqaD+bXhbIt4e0lqqOZjJSUFO7du0f+/Pmxt///VXZvh8Lixjkf5vM9UKhalj9+//598ufPz+nTp/Hy8qJQoULs3LkzveCpX78+jRo1Ytq0aURERKSvZl+o0P+mSDdr1ow6deowZcoUli5dykcffURoaGh6q58X0ev15M2bl99++4127dqxefNm2rdvT2RkJN7e3oDWMLp58+asXr2aTp068csvvzB58mTCw8PT71QkJyeTN29egoODadGixXPHeeG5smYPr8JCf/B9h7tvjKTz2s40KtKIaQ3/eZaYEP+VpYeg8+bNy507dyhRosQz7588eZLChQsbJZgQr6NYvlyMblOesWvOMDR6NB72ztBmhupYps+zrFaMqDhuJly6dInAwEAOHz7M/fv305/PiYiIoHLlyrRo0YJff/2Vhg0bcu3aNUJCQvjuu+8AOH36NGlpaZQt++wxk5KSnmnm7ODgQNWqVZ/Z5u7duwQEBLB7926io6NJS0sjISGBiIgIAC5cuICPj0968QM81x8xLCyMy5cv4+rq+sz7iYmJ6cN44h94lITmEzFsHMa4tJs42Toxqs4o1amEmclSAfTOO+8wYsQIVqxYgU6nQ6/Xc+DAAYYNG0bPnj2NnVGILOnhV4ykwz/hcWcv8V1+J5fzK6bGC42Dy2vdickp7du3p1ixYixZsoRChQqh1+upXLly+hBSjx49GDBgAN9++y2//fYbVapUoUqVKgA8efIEW1tbjh8/jq3tszMFc+fOnf5rZ2fn554l6dWrFw8ePODrr7+mWLFiODo6Uq9evUwNXT158oSaNWvy66+/Pve1/PlleDbDan3Cn+G/cSDmPPMbzsDN0U11ImFmslQATZkyhb59++Lj40NaWhoVK1YkLS2N9957j4CAAGNnFCJLbGIj+Dh+CasMbxISXphZlVUnEsbw4MEDLly4wJIlS9KHuPbv3//MNh07duTzzz9n8+bN/Pbbb8/8YFa9enXS0tKIjo5O/3xGHThwgAULFtCmjTbLKDIykvv376d/vVy5ckRGRnL37l28vLwAOHr06DP7qFGjBsuWLaNAgQIyDP8abiXcYYZtPG/FJdHo1Doo2Vp1JGFmsvQQtIODA0uWLOHKlSusX7+eX375hfPnz/Of//znuZ+ohFBCr4c1fbFx8UDXagorj99k27m7qlMJI3B3dydfvnwsXryYy5cvs3PnToYMGfLMNrly5aJTp06MHTuW8PBw3n333fSvlS1blh49etCzZ0/+/PNPrl27xpEjR5g6dSobNmx45bHLlCnDf/7zH8LDwzl8+DA9evTA2fl/69E0b96cUqVK0atXL06dOsWBAwfSfyj8792kHj164OnpSceOHdm3bx/Xrl1j9+7dDBgwgJs3bxrrj8mi6Q16Ag8E4uaUly/rjIDQX7U1goTIhNfqEFe0aFFat25N165dKVOmjLEyCfH6ji6B6/ug43w61y1P0/IFGPXnaR7Fyywbc2djY8Mff/zB8ePHqVy5MoMHD2bmzJnPbdejRw/CwsJo2LAhRYs+2+/tp59+omfPngwdOpRy5crRqVMnjh49+tx2f/fDDz/w6NEjatSowQcffMCAAQMoUOB/C+7Z2toSHBzMkydPqF27Np9++mn6LDAnJycAXFxc2Lt3L0WLFuWtt96iQoUKfPLJJyQmJsodoQz6/fzvHIk6wiT/SeSu+TGUbQXrBmptboTIoCzNAgPtH4KvvvoqfdpomTJlGDRoEJ9++qlRAxqbzAKzAvcvw6IGUOMDaKP9xxgdl0jzr/bSsIwn896roTigaZCZRTnjwIEDNGjQgMuXL1OqVKks7UPO1f/ciLtBl7Vd6FymM6P9RmtvPo6C+X5Q6k3o+pPagMJsZOkZoMDAQObMmUP//v2pV68eACEhIQwePJiIiAgmTpxo1JBCZJg+TVsfJE9BaDY+/e0CeZyY2LESA/8IpVXl27SrKh2iRfZYvXo1uXPnpkyZMly+fJmBAwfi7++f5eJH/E+aPo0x+8dQwKUAg2oM+t8XXL2h7WxY9Ym20nvlt5RlFOYjSwXQwoULWbJkyTPj6h06dKBq1ar0799fCiChzsFv4eZR+HgzOOR65ksdfAux5WwUY4PP4FciH/ldHRWFFJbs8ePHjBgxgoiICDw9PWnWrBmzZ89WHcsi/Pvcvzl17xQ/t/4ZF3uXZ79Y+W0IXwsbhkLxBpBbeoGJV8vSM0ApKSnUqvV8N96aNWuSmpr62qGEyJLocNgVBPX7aSvF/o1Op2NSx8rY6HSM+vM0WRz9FeKVevbsycWLF0lMTOTmzZssXbr0mfWFRNZcfnSZb09+S69KvaheoPrzG+h00HYO6Gy054Hk+hb/IEsF0AcffMDChQufe3/x4sX06NHjtUMJkWlpKbD6X+BeAt54+VIM+XI7MuWtKmwPv8ufJ27lYEAhRFal6FMYc2AMPq4+9Kve7+Ub5vKE9l/DhY0Q9kfOBRRmKcNDYH+dZqrT6fj+++/ZunUrdetqP2kfPnyYiIgIWQhRqLFvDkSdgU+3g73TKzdtWcmbztULM37dWeqXzkdBN+dXbi+EUOv7099z4eEFfm3zK462/zB0XaEdVO0Om0ZAiUbgJt0JxItluAA6efLkM7+vWbMmQPrS7Z6ennh6enL27FkjxhMiA26Hwt4Z0HAoFM7YDK/x7Stx8Mp9Rqw6zc8f1Zbu0UKYqPAH4SwOW8ynVT6lkmeljH2o9XS4thfW9oP3/9SGx4T4myxPgzdXMg3ewqQmweImYGMLn+4EO4cMf3T3hWg+/OkoUzpX4T2/V6//YolkarX5sNZzlZyWTPf13bGzseO3Nr9hb5uJ7/3Sdvj1bWg3F2p9lG0Zhfl6rYUQhVBu91S4fwk6LcpU8QPQpFwB3q3jQ9CGc0Q+TMimgEKIrFoYtpDrcdeZ7D85c8UPQJlmUKMXbBkDj65nSz5h3rJUACUmJjJz5kzatGlDrVq1qFGjxjMvIXJE5FE48DU0GQneWWv0NaZtRfK6ODBsRRh6vVXdDBXCpIXdC+PHMz/yhe8XlPMol7WdtAwCl3wQ3FdrjyPEX2SpAPrkk0+YMWMGxYoVo127dnTs2PGZlxDZLjkBgntDoergPyjLu8ntaMfMrlU5fO0hP4dcN1o8kX2aNGnCoEGDXvp1nU5HcHBwhve3e/dudDodMTExr51NGMfT1KcE7A+gUr5KfFT5NYavHF2h03y4sR+OfGe8gMIiZGkhxPXr17Nx40b8/f2NnUeIjNk5CWJvwju/g22W/hqnq1/Kkw/rF2f65vM0LpufkvlzGymkUOHOnTu4u7urjiFewzcnvuFO/B2+fvNr7Gxe7/qmRCOo8y/YPh5KNwNP6VspNFm6A1S4cGFcXV2NnUWIjLm+Hw4tgKaBkL+sUXY5olV5Cro5M3RFGGkyFGbWvL29cXSUVb7N1dGoo/wa/isDqg+gpFtJ4+y02XjIU1hrk6NPM84+hdnLUgE0e/ZsRowYwY0bN4ydR4hXS3oMwV9A0frg18dou3V2sGVW16qERcaweO9Vo+1XZA+9Xs/w4cPx8PDA29ub8ePHp3/t70NgBw8epFq1ajg5OVGrVi2Cg4PR6XSEhoY+s8/jx49Tq1YtXFxcqF+/PhcuXMiZb0akS0hJYOyBsVQvUJ33K75vvB07uECnhXDrOBz8xnj7FWYtS/cWa9WqRWJiIiVLlsTFxeW5aZkPHz40SjghnrN1LMTfh57BYGPcSYw1i3nwWaOSfLXtIm+WL0A5b+u7y/k09SnXYq/l+HFLuJXA2S7jC1L+/PPPDBkyhMOHDxMSEsKHH36Iv78/zZs3f2a7uLg42rdvT5s2bfjtt9+4cePGS58fGjNmDLNnzyZ//vz07t2bjz/+mAMHDrzOtyUyafax2TxMfMiS5kuw0Rl5knJRP6jfH3ZNgTItwauicfcvzE6WCqB3332XW7duMWXKFLy8vGQROZEzLm+H4z9pXZ89jHRr/G8GNyvLzvBohiwPJbivP/a21rVSxLXYa3Rf3z3Hj7us3TIq5sv4f0hVq1Zl3LhxAJQpU4Z58+axY8eO5wqg3377DZ1Ox5IlS3BycqJixYrcunWLzz777Ll9BgUF0bhxYwBGjhxJ27ZtSUxMxMnp1SuLC+M4eOsgyy8uJ8AvAJ88PtlzkCaj4eIWrW3OZzshs1PrhUXJUgF08OBBQkJC8PX1NXYeIV7saQys6Q8l34Ban2TbYZzsbZnTrRqdFhxg/q7LDGpmnGeMzEUJtxIsa7dMyXEzo2rVqs/8vmDBgkRHRz+33YULF6hateozRUydOnX+cZ8FCxYEIDo6mqJFrW+RzJwWlxxH4MFA6hWsR7dy3bLvQPZO0HkRLGkKe2fBG6Oy71jC5GWpACpfvjxPnz41dhYhXm7zKEh+Ah3nZfuy9lWKuNH3jdLM23mZZhW8qFzYLVuPZ0qc7ZwzdSdGlb8Pu+t0OvSvuc7LX/f537var7tPkTHTj0wnPiWeif4Ts39EoVB1aDQM9s2Ccq2hULXsPZ4wWVm6vz9t2jSGDh3K7t27efDgAXFxcc+8hDCq8xsh7DdoNQ3ciuTIIfu9UZpy3q4MWR5KUqrMGjFX5cqV4/Tp0yQlJaW/d/ToUYWJxN/titjF2itrGVFnBN65vHPmoA2HQYGKsLq31k5HWKUsFUCtWrUiJCSEpk2bUqBAAdzd3XF3dydv3ryy/oYwrvgHsG4glG0F1d7LscM62Nkwu5sv1+7H89W2Szl2XGFc7733Hnq9ns8//5zw8HC2bNnCrFmzAOTZRRMQkxjDhJAJNC7SmI6lcnARXTsHbSjswWXtoWhhlbI0BLZr1y5j5xDixTYOBX0KtP86xzs6l/fOw+DmZZm15QLNK3pRs5gU9+YmT548rFu3jj59+lCtWjWqVKlCYGAg7733njzcbAKCDgeRakhlXL1xOV+QelWCN0Zri6qWbws+L342TFgu6QYvTNeZVbDyY3j7B6jSRUmE1DQ9XRaFEPs0hY0DGuLsYKskR3aw1g7jv/76Kx999BGxsbE4O2d86r1KlniuNl/fzJd7vmRGoxm0LtFaTYi0VPixJTx9BL33a+sFCauR5Tm++/bt4/3336d+/frcunULgP/85z/s37/faOGEFXt8FzYMhYqdoPLbymLY2WpDYbdjnjJjy3llOUTW/fvf/2b//v1cu3aN4OBgRowYQbdu3cym+LFE95/eJ+hQEC2KtaBV8VbqgtjaaUNhcbdgx0R1OYQSWSqAVq1aRcuWLXF2dubEiRPpDxjGxsYyZYqMp4rXZDDA+kFgYwdt5+T40Nfflcqfm+GtyvPTgeuEXHmgNIvIvKioKN5//30qVKjA4MGD6dq1K4sXL1Ydy2oZDAYmhEzARmdDQN0A9c9ieZaBpuPg8EK4tk9tFpGjslQATZ48mUWLFrFkyZJnbsf6+/tz4sQJo4UTVirsd7iwEdrNhVz5VKcB4KP6xfEr4cGXK8N4kpSqOo7IhOHDh3P9+nUSExO5du0aX331FS4uMtShyrqr69gduZvAeoG4O5nIc3V+vaFYA1jzhdZuR1iFLBVAFy5coFGjRs+97+bmRkxMzOtmEtYs9iZsGglV34EK7VSnSWdjo2NmF18exicTtCFcdRwhzFJUfBTTDk+jfcn2NC3aVHWc/7Gx0dYYi38AWwNUpxE5JEsFkLe3N5cvX37u/f3791OyZPa0KBBWwGCAtf3BIRe0nqY6zXOK5nNhdJsK/H4kgj0X76mOYzRWNg/CLFnCOTIYDIw7OA5ne2dG1BmhOs7zPEpAy8lwfKnWdkdYvCxNg//ss88YOHAgP/74Izqdjtu3bxMSEsKwYcMYO3assTMKa3H8J7iyE3qsAmcTuTX+Nz38irLlbBQjVp5iy+BGuDmb74wcW1tbdDodjx8/xtXVVf2zGOI5BoOBtLQ04uLi0Ol02Nll6Z9sk7Di4goO3j7IwmYLcXM00dXVa34E4eu0tjtfhIBzXtWJRDbK0jR4g8HAlClTmDp1KgkJCQA4OjoybNgwJk2aZPSQxiTT4E3Uw2uw0B+qdtXW/DFht2Oe0vKrvTSv5MWcbtVUx3ktSUlJPHz40CLuMFgyBwcH8ubNa7YFUOTjSN5e+zZtS7ZlXL1xquO8WuxNWFAfyrfRZogJi/Va6wAlJydz+fJlnjx5QsWKFcmdO7cxs2ULKYBMkF4PP7eD2EjocxAcXVUn+kcrj99k2IowFn9QkxaVcmj5/myi1+tJS5N2H6bKxsYGGxsbs71Dpzfo+WTLJ9yJv8OqDqvIZZ9LdaR/FvobBPeBd37TFkkUFilTP058/PHHGdruxx9/zFSI+fPnM3PmTKKiovD19eXbb799acfmv/rjjz9499136dixI8HBwZk6pjAhhxfBjQPQa71ZFD8Ab9cozOYzdxi9+jS1invgkctBdaQs++9/sEJkh9/Cf+PY3WP82PJH8yh+AHzf1YbC1g0En7omMxtVGFem/tVbunQpu3btIiYmhkePHr30lRnLli1jyJAhjBs3jhMnTuDr60vLli2Jjo5+5eeuX7/OsGHDaNiwYaaOJ0zM/UuwY4I2DbWE+ZxLnU7HlLeqkKo3MDb4jOo4Qpika7HXmHtiLj0q9KC2d23VcTJOp9OW4dCnwYYhqtOIbJKpIbC+ffvy+++/U6xYMT766CPef/99PDw8XiuAn58ftWvXZt68eYB2O97Hx4f+/fszcuTIF34mLS2NRo0a8fHHH7Nv3z5iYmJeegcoKSnpmU7QcXFx+Pj4yBCYKbCAZejXhd2m/+8n+fbd6rT3LaQ6jhAmI1WfSq/NvYhNimVF+xU425nhyttn/oSVH0GXH5WuSC+yR6buAM2fP587d+4wfPhw1q1bh4+PD926dWPLli1ZeogyOTmZ48eP06xZs/8FsrGhWbNmhISEvPRzEydOpECBAnzyySf/eIypU6fi5uaW/vLx8cl0TpFNDn4Dt09oDxqaYfED0N63EG2rFmTsmjNEP05UHUcIk7H07FLO3D/DZP/J5ln8AFR+Cyp11tryPL6rOo0wskwP/Ds6OvLuu++ybds2zp07R6VKlfjiiy8oXrw4T548ydS+7t+/T1paGl5eXs+87+XlRVRU1As/s3//fn744QeWLFmSoWOMGjWK2NjY9FdkZGSmMopscvcs7JoC9QeYfRfmSR0rY2ejY9Sq0zKbSgjg4qOLLAhdwIeVPqRagWqq47yeNrPBxh7WDdDWKhMW47WefPzvzIT/rlWR3R4/fswHH3zAkiVL8PT0zNBnHB0dyZMnzzMvoVhqMqzuDflKwxujVad5bR65HJj6VlV2nI9m5fGbquMIoVSKPoWA/QEUy1OMvtX6qo7z+nLl05bmuLhZmx0mLEamC6CkpCR+//13mjdvTtmyZTl9+jTz5s0jIiIi09PgPT09sbW15e7dZ28t3r17F2/v56cWX7lyhevXr9O+fXvs7Oyws7Pj3//+N2vXrsXOzo4rV65k9tsRKuybBdHnoPNCsHNUncYomlf04q0ahZm47hy3Y56qjiOEMktOLeHSo0tMbjAZB1vznR35jPJtwPc92DxSWydIWIRMFUBffPEFBQsWZNq0abRr147IyEhWrFhBmzZtsjSN1sHBgZo1a7Jjx4709/R6PTt27KBevXrPbV++fHlOnz5NaGho+qtDhw688cYbhIaGyvM95uD2Sdg7CxoOg0LVVacxqnHtK5HbyY4Rq07JUJiwSmcfnGXxqcV8VvUzKuWrpDqOcbWaCg65YU0/GQqzEJmaBWZjY0PRokWpXr36Kxfl+vPPPzMcYNmyZfTq1YvvvvuOOnXqMHfuXJYvX8758+fx8vKiZ8+eFC5cmKlTp77w8x9++OErZ4H9nSyEqFBKIixuDLYO8NlOsDXfNhIvs+fiPXr9eITJnSrzft1iquMIkWOS0pJ4Z/072NvY82vbX7G3sbzrm8s74Je3oO0cqP3Pk3CEacvUQog9e/Y0+mqk3bt35969ewQGBhIVFUW1atXYvHlz+oPRERERskibpdg9BR5ehc/3WGTxA9C4bH7e8yvKlI3hNCqTn6L5zHN2mxCZNT90PjfibrCs3TLLLH4ASjfV+oVtHQul3tQaqAqz9VqtMMyR3AFSJOKwtuZPs3HQYLDqNNnqSVIqrebupZCbM398XhcbG/NsYSBERoVGh9Jrcy8GVB/AJ1Us/M5I0mOtb2GewvDhBpAf0M2WnDmR/ZLjIbg3FKmlTXu3cLkd7ZjV1Zcj1x/y44FrquMIka2epj4l4EAAlT0r82GlD1XHyX6OrtBpAUQchMMLVacRr0EKIJH9tk+AuDvQaRHY2KpOkyPqlszHR/7FmbnlApejM7c+lhDm5OsTX3M3/i5B/kHYWsn1TfEGUPcL2DER7l1UnUZkkRRAIntd2wtHvtOGvjxLq06To4a3LE/hvM4MXRFGappedRwhjO7InSP8Gv4rA2sMpLhbcdVxclbTQHArot3dTktVnUZkgRRAIvskxkFwXyjWAOr8S3WaHOfsYMusbr6cvhnDd3uvqo4jhFHFp8Qz9sBYannV4r0K76mOk/PsnbW72rdPwsGvVacRWSAFkMg+WwPg6UPoNN9qHxSsUdSdfzUuxdztFwm/E6c6jhBGM/PoTGKSYpjkPwkbnXVe3/jUBv+BsGsqRJ1RnUZkkpX+rRXZ7tJ2OPEztJgM7sVVp1FqULMylPTMzdDlYSSnylCYMH/7b+1n1aVVDKs9jCKuRVTHUavJKPAsow2FpSarTiMyQQogYXxPH8HaflCqKdT8UHUa5RztbJndzZeLdx8zb+cl1XGEeC2xSbGMOzAO/0L+dCnTRXUc9ewcofMiiA6HvTNVpxGZIAWQML5NIyE5ATp8C0ZeONNcVS7sRr83SzN/9xVO3YxRHUeILJt+ZDpPU58yvv54oy+Ma7YK+kKj4bBvNtw6oTqNyCApgIRxha+HU39A6+ngVlh1GpPS943SVCjoypDlYSSmpKmOI0Sm7YjYwbqr6xjpNxLvXM83rLZqDYeAdxVY3Vtr+yNMnhRAwnji78P6QVCuDfi+ozqNybG3tWFOt2pEPEjgq22ydogwLw8THzIxZCJv+LxB+5LtVccxPbb22lDYo2uwK0h1GpEBUgAJ4zAYYMMQ0KdBu7ky9PUSZb1cGdKiLIv3XeXY9Yeq4wiRIQaDgcmHJqM36AmsFyhDXy9ToAK8MQYOfgsRh1SnEf9ACiBhHGdWwbk10HY2uHqpTmPSPmtYkuo+eRm2IoyEZFlATZi+zdc3s+3GNgLqBuDp7Kk6jmmr3x+K1IbgPlobIGGypAASr+9xFGwYCpXegspvqU5j8mxtdMzq6ktUXCLTN51XHUeIV7qXcI/JhybTqngrWhZvqTqO6bOx1YbC4u7A9vGq04hXkAJIvB6DAdYNBFsH7e6PyJCS+XMzolV5fg65wcHL91XHEeKFDAYDE0ImYG9jzxi/MarjmI98paD5BDiyGK7uUZ1GvIQUQOL1hP4KFzdD+6/BxUN1GrPSq15x6pb04MuVp3icmKI6jhDPCb4czJ6bexhffzx5nfKqjmNean8GxRvCmr5aWyBhcqQAElkXEwmbR4Hve1C+jeo0ZsfGRsfMLr7EJCQTtCFcdRwhnnHnyR1mHJ1Bx1IdaeLTRHUc82NjAx3nawvDbpW7Z6ZICiCRNQaDttqzoyu0mqo6jdny8XAhoF1F/jgaya7z0arjCAFoQ1+BBwPJZZ+LEXVGqI5jvtyLQcsgOPFvuLhVdRrxN1IAiaw59gNc3a2t9uycV3Uas/ZObR8al83PiFWniEmQXkJCveUXlnPoziEm1p+Iq4Or6jjmrUYvKN0M1vaHBFn6wpRIASQy7+FV2DoWan0MpZuqTmP2dDod09+uSmJKGuPXnlUdR1i5yLhIZh+fTbey3ahfuL7qOOZPp9N+UEx9CpvkbpopkQJIZI4+DYL7Qq780HyS6jQWw9vNifEdKhEcepvNZ+6ojiOslN6gJ+BAAB5OHgytNVR1HMuRpxC0ngGnl8O5tarTiP8nBZDInEMLISIEOi0Ax9yq01iUztUL06KiF2NWn+HBkyTVcYQV+uXcL5yMPslk/8m42LuojmNZqnaH8u1g/WCtbZBQTgogkXH3LsCOiVC3DxRvoDqNxdHpdAR1roLeYGDM6jMYDAbVkYQVuRp7la9PfE2PCj2o5V1LdRzLo9NBu6/AoNd6Jsr1rZwUQCJj0lK1Lsd5i0LTQNVpLFZ+V0eCOldh89ko1obdVh1HWIlUfSoB+wMolLsQA2sMVB3HcuUuoBVB4evg9ErVaayeFEAiYw7MhTuh2hLv9s6q01i0NlUK0t63EIFrznI3LlF1HGEFfjrzE2cfnCWoQRBOdk6q41i2Sp2g8tuwcZjWLkMoIwWQ+GdRp2H3NPAfBEXk1nhOmNihEg52NoxcdUqGwkS2uvDwAgvCFvBx5Y+pmr+q6jjWoc0ssHOEdQNkKEwhKYDEq6Umw+o+4FkWmoxUncZquOdyYNpbVdh14R4rjt1UHUdYqJS0FMbsH0MJtxL08e2jOo71cPGA9t/Apa1w8hfVaayWFEDi1fbOgHvh0Hmh9hOLyDFNK3jRtWYRJq4/x81HCarjCAv03anvuBJzhSD/IBxsHVTHsS7lWkG197V2QjERqtNYJSmAxMvdOg775kCj4VDQV3UaqzS2fUXyONkxfOUp9Hq5VS6M58z9M3x/+ns+9/2cCvkqqI5jnVpNASc3rWGqXq86jdWRAki8WEqiNvTlXQUaDlGdxmrlcbJnRhdfDl55wC+Hb6iOIyxEUloSY/aPoZxHOT6t8qnqONbLyQ06zoNre7X2QiJHSQEkXmzXZHh0TZv1ZWuvOo1Va1DGk/frFmXqxvNcvx+vOo6wAPNOziPycSRB/kHY28j1rVSpN6DWJ7AtEB5cUZ3GqkgBJJ53IwQOzoM3A6CA3Bo3BaNaVyC/qyPDVoSRJkNh4jWcjD7Jz2d/pn/1/pR2L606jgBoPlFbIyj4C63dkMgRUgCJZyXHQ3Af8KkD9fqpTiP+Xy5HO2Z19eV4xCN+3H9NdRxhphJSEhizfwy++X3pWbGn6jjivxxzQ6eFEHkYDi1QncZqSAEknrVtHDyO0i5GG1vVacRf1CnhwSf+JZi59QKX7j5WHUeYobkn5nIv4R6TG0zGVq5v01KsPtTrCzsmQfR51WmsghRA4n+u7oajS6D5BMhXSnUa8QLDWpbDx92ZoSvCSE2TWSMi4w7dOcTv539nUM1BFMtTTHUc8SJvBoB7MQjurbUfEtlKCiChSYyDNf2geEOo/ZnqNOIlnOxtmd2tGmduxbJwtzwwKTLmSfITAg8EUse7Du+Wf1d1HPEy9s7QaRHcCYP9X6lOY/GkABKaLaPh6SPoOB9s5K+FKavmk5c+TUrxzc5LnL0dqzqOMAMzj80kNimWif4TsdHJ9W3SitSEBoNhz3S4c0p1GosmV4KAi1vg5H+g5RTt9qsweQOalqFU/twMXR5GcqoMhYmX23tzL39e+pPhtYdTOHdh1XFERjQeAfnLaRNSUpNVp7FYUgBZu4SHsHYAlG4ONWRWiLlwtLNldjdfLkc/4Zsdl1THESYqNimW8QfH06BwA94q85bqOCKj7By1iSj3zmt3gkS2kALI2m0aDqlPocM3oNOpTiMyoVIhNwY2LcOC3ZcJjYxRHUeYoKlHppKYlsj4euPRyfVtXgpWhcYjYf8cuHlcdRqLJAWQNTu3Bk6vgNYzIU8h1WlEFvRpUorKhd0YujyUxBRZQE38z/Yb29lwdQOj6ozCK5eX6jgiKxoM1vowBveGlKeq01gcKYCs1ZN7sH4wlG8HVbupTiOyyM7WhtldfYl89JRZWy6ojiNMxIOnD5h0aBJNizalXcl2quOIrLK102aFPboBOyerTmNxpACyRgYDbBis/brdVzL0ZebKeLkyrEVZfjhwjSPXHqqOIxQzGAxMPjQZg8HA2LpjZejL3BUor60PFDIfbhxUncaiSAFkjU6vgPB10HaO1n9GmL1PGpSkZlF3hq0IIz5JFlCzZhuvbWR7xHYC6gaQzzmf6jjCGOr1BR8/bVZY0hPVaSyGFEDWJu4ObBwGlbtApU6q0wgjsbXRMaurL/ceJzFtkyyjb62iE6IJOhxE6xKtaVG8heo4wlhsbKHTAngSDdvHqU5jMaQAsiYGA6ztD3ZO0Gam6jTCyIp75mJUm/L859AN9l+6rzqOyGEGg4HxB8fjaOvIGL8xquMIY8tXSusaf/R7uLJLdRqLIAWQNTn5H7i8Ddp/Ay4eqtOIbPC+XzHql8rH8JVhxCWmqI4jctDqy6vZd2sfE+pPwM3RTXUckR1qfQIlGmltixJlFfjXJQWQtYiJgM2jodr7UK6V6jQim9jY6JjRpSpxialMWndOdRyRQ24/uc2MozPoXLozjYo0Uh1HZBcbG61dUWKs9u+5eC1SAFkDvR7W9AUnN2g1RXUakc2KuLswtl0FVhy/yY7wu6rjiGymN+gJPBCIq4MrX9b+UnUckd3yFtX+HQ/9BS5sVp3GrEkBZA2Ofg/X9kLHeVoRJCxet1o+vFEuPyP/PM2jeOklZMmWXVjG4ajDTKw/EVcHV9VxRE6o/gGUaQHrBmjtjESWSAFk6R5c0WYN1P4USr2hOo3IITqdjmlvVyU5Vc+4tWdVxxHZJCIugq+Of0X3ct2pV6ie6jgip+h02rOcqUmwUe76ZZUUQJZMn6atG5G7ADSboDqNyGFeeZyY2LESa8Nus/H0HdVxhJGl6dMIOBCAp7MnQ2oOUR1H5LQ8BaHNLDizEs4Gq05jlqQAsmQh8yHyiNZV2DG36jRCgQ6+hWhVyZuA4DPce5ykOo4wov+c+w+h0aFM9p+Mi72L6jhChSpdoEJ72DBEWyNIZIoUQJYq+rzWO6ZeXyhWX3UaoYhOp2Ny58rogDGrT2MwGFRHEkZwJeYK3578lp4Ve1LDq4bqOEIVnQ7afgXotN6Ocn1nihRAligtRese7F5M6yEjrJpnbkeCOldm67m7BIfeUh1HvKZUfSpj9o+hsGth+lXvpzqOUC13fq2n4/n1cGq56jRmRQogS7T/K7gTpnURtndWnUaYgFaVC9KpWiEC15wlKjZRdRzxGn44/QPnH54nyD8IJzsn1XGEKajYAap00x6IjrutOo3ZkALI0tw5BXumQ4MhUKSm6jTChEzoUBlne1tGrDolQ2Fm6vzD8ywKW8THlT+mSv4qquMIU9JmhvYD79r+MhSWQVIAWZLUJFjdG/KXh8YjVKcRJsbNxZ7pb1dlz8V7/HE0UnUckUnJacmM2T+GknlL0se3j+o4wtQ4u0OHb+Hydjjxs+o0ZkEKIEuyZzrcvwidF4Gdg+o0wgS9Ub4A3Wv5MHn9OSIfJqiOIzJhUdgirsZeZUqDKdjb2quOI0xR2RbaIolbxsCjG6rTmDwpgCzFzWPasz+NR4C33BoXLxfQrgJ5XRz4cmUYer3cKjcHp+6d4oczP9DHtw/lPMqpjiNMWcsp2t2gNX21NkjipaQAsgQpT7Whr4LVoMFg1WmEiXN1smdml6ocuvqQf4dcVx1H/IPE1ETG7B9DRY+KfFz5Y9VxhKlzyqM1TL2+D44uUZ3GpEkBZAl2TNK6vXdeBLZ2qtMIM1C/tCe96hVj2ubzXL33RHUc8QrfnvyW209uE9QgCDsbub5FBpRsDLU/g23j4P5l1WlMlhRA5u7GQTi0AJqOhfxya1xk3IjW5fHO48SwFWGkyVCYSTp+9zj/OfcfBtQYQMm8JVXHEeak+QRw9dbaIenTVKcxSSZRAM2fP5/ixYvj5OSEn58fR44ceem2S5YsoWHDhri7u+Pu7k6zZs1eub1FS3qiDX35+EHdL1SnEWbGxcGOWV19ORkZw5J9V1XHEX+TkJJAwP4AqhWoxvsV3lcdR5gbh1zaqMDNo3DwW9VpTJLyAmjZsmUMGTKEcePGceLECXx9fWnZsiXR0S/ua7J7927effdddu3aRUhICD4+PrRo0YJbt6xwhdttgRB/DzotABtb1WmEGapV3IPPGpZkztaLXLz7WHUc8Rdzjs/hQeIDJvtPxlaub5EVRetC/X6wKwiiw1WnMTk6g+IV0fz8/Khduzbz5s0DQK/X4+PjQ//+/Rk5cuQ/fj4tLQ13d3fmzZtHz549/3H7uLg43NzciI2NJU+ePK+dX5krO+E/nbVuwHU+U51GmLHElDTafbsfJ3sbVn/hj72t8p+LrN7B2wf517Z/MdpvNO+Wf1d1HGHOUhLhu0Zg7wSf7gBZQiGd0n/pkpOTOX78OM2aNUt/z8bGhmbNmhESEpKhfSQkJJCSkoKHh8cLv56UlERcXNwzL7OXGAtr+kGJxlDrE9VphJlzsrdlTjdfwu88ZsGuK6rjWL3HyY8JPBCIX0E/upfrrjqOMHf2TtB5IUSdgX1zVKcxKUoLoPv375OWloaXl9cz73t5eREVFZWhfYwYMYJChQo9U0T91dSpU3Fzc0t/+fj4vHZu5TaPgsQ4baqjjfy0Ll5f1SJ56dukFN/uvMSZW7Gq41i1GUdn8CTlCZPqT8JGJ9e3MILCNaHhENg7A26Hqk5jMsz66po2bRp//PEHq1evxsnpxU0BR40aRWxsbPorMtLMWwBc2AShv0KrqZDXAoo5YTL6vVmGsl6uDF0eRlKqzBpRYU/kHoIvBzOi9ggK5i6oOo6wJI2GQ/4K2qyw1CTVaUyC0gLI09MTW1tb7t69+8z7d+/exdvb+5WfnTVrFtOmTWPr1q1UrVr1pds5OjqSJ0+eZ15mK+EhrB0AZVpAdZkVIozLwc6G2d18uXr/CV9vv6Q6jtWJSYxhfMh4GhZuSKfSnVTHEZbGzkGbFXb/EuyeqjqNSVBaADk4OFCzZk127NiR/p5er2fHjh3Uq1fvpZ+bMWMGkyZNYvPmzdSqVSsnopqGjcMgLRnafwM6neo0wgJVKJiHQc3KsmjPFU5EPFIdx6pMOTyF5LRkxtcfj06ub5EdvCtDk5Fw4GuIPKo6jXLKh8CGDBnCkiVL+PnnnwkPD6dPnz7Ex8fz0UcfAdCzZ09GjRqVvv306dMZO3YsP/74I8WLFycqKoqoqCiePLHw1WzProYzq7RZX3nk1rjIPv9qVJIqRfIybHkYT5NlKCwnbLm+hU3XNzHabzQFXAqojiMsmf8gKFQdgntDsnU3RFZeAHXv3p1Zs2YRGBhItWrVCA0NZfPmzekPRkdERHDnzp307RcuXEhycjJdunShYMGC6a9Zs2ap+hay35NoWD8EKnSAKl1UpxEWzs7WhtldfbkV85SZWy6ojmPx7j+9z+RDk2lerDltSrRRHUdYOls76LQIYm/Czkmq0yilfB2gnGZ26wAZDPBHD4g8DH0PQy5P1YmElfh+31WCNobz+2d1qVsyn+o4FslgMDBo1yBC74WyuuNqPJxevJyHEEZ3cB5sHQMfboDiDVSnUUL5HSDxD04tgwsboN1XUvyIHPWxfwlqF/Pgy5VhxCelqo5jkdZfXc/OyJ2MrTtWih+Rs+r2gaL1IfgLSLLOVeClADJlsbdg43Co0g0qdlCdRlgZGxsdM7tW5cGTZKZslGX0jS0qPoqph6fStmRbmhV78TpmQmQbG1voNF9rp7R1rOo0SkgBZKoMBljbHxxcoM0M1WmElSqWLxej2lTg18MR7L14T3Uci2EwGBh/cDzOds6MqjPqnz8gRHbwKAktJsHxn+DydtVpcpwUQKbq+FK4sgM6fAvO7qrTCCv2vl9RGpbxZMSqU8Q+TVEdxyKsurSKA7cPML7+eNwc3VTHEdas1idQsgms6Q9PY1SnyVFSAJmiRzdgawDU6AllmqtOI6ycTqdj+ttVeZKYysR151THMXu3ntxi5tGZvF3mbRoWaag6jrB2Oh10mAfJT7Q2S1ZECiBTo9fDmr7aXZ8WQarTCAFAobzOBLavyKoTN9l27u4/f0C8kN6gZ+yBsbg5ujGs1jDVcYTQ5PXR2iuF/QbnN6pOk2OkADI1RxbD9X1ao1MnM5imL6xGl5pFaFq+AKP+PM2j+GTVcczS7+d/52jUUSb5TyK3Q27VcYT4n2o9oGwrWDcQ4h+oTpMjpAAyJfcvw/bxUOdzKNlYdRohnqHT6Zj6VhVS9XrGrjmjOo7ZuR57nbnH5/Ju+XfxK+inOo4Qz9LpoP3XWruljUNVp8kRUgCZCn2a1qU3T0FoNl51GiFeqEAeJyZ2rMz6U3dYf+q26jhmI02fRsCBAAq4FGBQjUGq4wjxYq7e0Hb2/1ovWTgpgEzFwW/h5lHotBAccqlOI8RLta9akLZVCjI2+AzRjxNVxzELP5/7mVP3TjG5wWRc7F1UxxHi5Sq/DRU7woah8Niyn/eTAsgU3D0Hu4Kgfj8oWld1GiFeSafTMalTZWxtdIz+8wxW1k0n0y49usS8k/P4sNKHVC9QXXUcIV5Np4O2c8DGDtYP0taks1BSAKmWlqJ15XUvAW8EqE4jRIZ45HIgqHMVtoff5c8Tt1THMVkp+hTG7B9DUdei9K3eV3UcITImlye0mwsXNkLYH6rTZBspgFTbNxuizkDnRWDvpDqNEBnWspI3b1UvzPh1Z7kT+1R1HJP0/anvufjoIkENgnC0dVQdR4iMq9AOqr4Dm0ZobZkskBRAKt0Ohb0zoeFQKFxDdRohMm1c+0rkcrBj+MpTMhT2N+cenGPxqcV8WuVTKnlWUh1HiMxrPU1rx7S2n0UOhUkBpEpqEqzuDQUqQKMvVacRIkvcXOyZ9nYV9l26z29HIlTHMRnJacmM2T+G0u6l+VfVf6mOI0TWOLtrq0Rf2an1C7MwUgCpsnsqPLgMnRaBnYPqNEJkWZNyBXi3TlGCNoQT8SBBdRyTsCB0AdfjrhPUIAh7W3vVcYTIujLNoEYv2BIAD6+pTmNUUgCpEHkUDnwNTUaCd2XVaYR4bWPaVsAjlwNfrgxDr7e8W+WZEXYvjJ/O/kTfan0p615WdRwhXl/LIMiVD9b009o1WQgpgHJacoI266tQdfAfpDqNEEaR29GOmV18OXztIUsPXlcdR5mnqU8J2B9ApXyV+LDSh6rjCGEcjq5ae6Yb++HId6rTGI0UQDltx0SIvakNfdnaqU4jhNHUK5WPD+sXZ/rm81y590R1HCW+OfENd+LvMLnBZOxs5PoWFqREI/DrrbVrun9JdRqjkAIoJ13bB4cXQtNAyC+3xoXlGdGqPIXyOjNsRRipaZZzqzwjjkYd5ZfwXxhQfQAl3UqqjiOE8TUdB3kKa22b0lJVp3ltUgDllKTHsOYLKFof/PqoTiNEtnB2sGVWV1/CImNYvO+q6jg5Jj4lnrEHxlLTqybvV3xfdRwhsoeDi9au6dZxOPiN6jSvTQqgnLJ1LMQ/gE7zwUb+2IXlqlnMnc8blWLutkucj4pTHSdHzD42m4eJD5nkPwkbnVzfwoIV9YP6/bWZzHfPqk7zWuRKzQmXt2trKLSYCB5ya1xYvsHNy1Dc04Why8NIsfChsAO3DrDi4gqG1RqGj6uP6jhCZL8mo8GjlLaWXVqK6jRZJgVQdnsaA2v6Q8k3oNYnqtMIkSMc7WyZ3bUaF6IeM2/nZdVxsk1cchyBBwOpV7AeXct2VR1HiJxh7wSdF2p3gPbOUp0my6QAym6bR0LyE+g4T+uyK4SVqFLEjb5vlGbersucvhmrOk62mH5kOgkpCUz0n4hOrm9hTQpV17oY7J0Jt0+qTpMlUgBlp/MbIOx3aDUN3IqoTiNEjuv3ZmnKe7sydEUoiSlpquMY1c6Inay9spYRdUbgnctbdRwhcl6jYeBVCVb3gZRE1WkyTQqg7BL/ANYNhLKtoNp7qtMIoYS9rQ1zulXj+v0Evtp+UXUco3mU+IgJIRNoUqQJHUt1VB1HCDVs7aHzInh4BXZPUZ0m06QAyi4bh4I+Fdp/LUNfwqqV83ZlcPOyLNl7leM3HqqOYxRBh4NIM6Qxrv44GfoS1s2rEjQZBQe/hYjDqtNkihRA2eHMKji7GtrMAle5NS7E541K4uuTl2ErTvE02byHwjZf28yW61sY4zcGT2dP1XGEUK/+AChcU1sgMdl8GiJLAWRsj+/ChqFQsRNUflt1GiFMgq2NjtldfbkT+5Tpm8+rjpNl95/eZ/LhybQo1oJWxVupjiOEabC10xZIjLsFOyaoTpNhUgAZk8GgPfdjYwdt58jQlxB/UTJ/boa3LM/Sg9c5eOW+6jiZZjAYmBAyAVudLQF1A2ToS4i/8iwDzcbD4UVwba/qNBkiBZAxhf0OFzdBu7mQK5/qNEKYnA/rF8evhAdfrjjFkyTz6iW09spadkfuJrBeIO5O7qrjCGF66vwLijWA4L5a+ycTJwWQscTehE0joOo7UKGd6jRCmCQbGx2zuvoSk5BM0IZzquNkWFR8FNOPTKd9yfY0LdpUdRwhTJONjdbuKeEBbBmjOs0/kgLIGAwGWNMPHHJD62mq0whh0nw8XBjTtiK/H4lk94Vo1XH+kcFgYNzBcTjbOzOizgjVcYQwbe7FoeVkOPEzXNquOs0rSQFkDMd+hKu7oMO34Cy3xoX4J+/W8aFR2fyMWHWK2ATT7iW04uIKDt4+yIT6E3BzdFMdRwjTV/MjKPUmrO0HTx+pTvNSUgC9rofXtE7vNT+EMs1UpxHCLOh0Oqa/XYWE5DQmrDPdjtKRjyOZdWwWXcp2oUHhBqrjCGEedDroME+bEr9ppOo0LyUF0OvQ62FNX+2B5xaTVacRwqwUdHNmfPtK/HnyFlvORqmO8xy9Qc/YA2PxcPJgWK1hquMIYV7cCkPr6XDqDwhfrzrNC0kB9DoOL4IbB6DjAnB0VZ1GCLPzVo3CNK/oxZjVp3nwJEl1nGf8Gv4rx+8eZ5L/JHLZ51IdRwjz4/sOlGsD6wdBvOktfSEFUFbdv6Qt+OTXG0o0VJ1GCLOk0+mY0rkKaXoDY9ecwWAwqI4EwLXYa3x94mt6VOhBbe/aquMIYZ50Om1ZGH0abBiiTRgyIVIAZUVaKqzuDXkKQ9NxqtMIYdbyuzoyuVMVNp6OYt2pO6rjkKpPJWB/AN65vBlYY6DqOEKYN1cvaDsbzq3R2kSZECmAsuLg13D7hNYF18FFdRohzF7bqgVpV7UgY4PPEB2XqDTL0rNLOfPgDJP9J+Ns56w0ixAWofJbUOktrU3UY9N53k8KoMy6exZ2TdWav/nUUZ1GCIsxqWNl7G1tGPXnaWVDYRcfXWR+6Hw+rPQh1QpUU5JBCIvUdjbYOmjtokxkKEwKoMxITYbV/4J8peGN0arTCGFR3HM5MO2tKuw4H83K4zdz/PgpaSkE7A+geJ7i9K3WN8ePL4RFc/GA9l/Dxc0Q+qvqNIAUQJmzbxZEh0PnhWDnqDqNEBanWUUvutQswsR157gd8zRHj7349GIuPbrE5AaTcbB1yNFjC2EVyrcB3/dg8yiIiVSdRgqgDLt1AvbOgobDoFB11WmEsFiB7SuS28mO4StP5dhQ2NkHZ1lyagmfVf2MSvkq5cgxhbBKraZqy8as7ad8KEwKoIxISYTgPuBVCRrJgmhCZKc8TvZMf7sq+y/f55fDEdl+vKS0JMbsG0NZ97J8VvWzbD+eEFbNOa/WNurqbjj2g9IoUgBlxK4geHgVOn8Htvaq0whh8RqVzU8Pv6JM3RjOjQfx2Xqs+aHziXgcQVCDIOxt5PoWItuVbgq1PtbaSD28qiyGFED/JOIwHPxWe+jZq6LqNEJYjdFtKpAvtwNfrjiFXp89t8pDo0NZemYpfav1pYx7mWw5hhDiBZpPglz5IbivtlCiAlIAvUpyPAT3hiK1tGnvQogck8vRjlldfDl64yE/Hrhm9P0npCQwZv8YquSvwoeVPjT6/oUQr+CYGzotgIgQOLRQSQQpgF5l+wSIuwOdFoGNreo0Qlgdv5L5+Ni/BDO2XOBy9BOj7vvrE18TnRBNkH8QtnJ9C5HzijeAun1gx0S4dyHHDy8F0Mtc2wtHvoNm48CztOo0QlitL1uWo4i7M0NXhJGapjfKPo/cOcJv539jYI2BFHcrbpR9CiGyoGkg5C2qtZdKS83RQ0sB9CKJcdq4ZLEGUOdfqtMIYdWc7G2Z3dWX0zdj+G7v6z8w+ST5CWMPjKWWVy3eq/CeERIKIbLM3llrK3UnFA7MzdFDSwH0IlsD4OlD6DQfbOSPSAjVqhd1p3fjUszdfpHwO3Gvta9Zx2YRkxTDJP9J2Ojk+hZCuSK1wH8Q7J4GUadz7LBy9f/dpW1w4mdoMRnci6tOI4T4fwOblaFU/twMWR5GcmrWhsL23dzHqkurGFZ7GEVcixg5oRAiy5qMBM+ysLqP1nYqB0gB9FdPH8Ha/lCqKdT8UHUaIcRfONrZMrubL5fuPmbezkuZ/nxsUizjD47Hv5A/Xcp0yYaEQogss3PU2kzdC4e9M3LkkFIA/dWmEZCcoK1SqdOpTiOE+JtKhdwY0LQM83dfISwyJlOfnXZkGk9TnzK+/nh0cn0LYXoK+kKj4bBvDtw6nu2HkwLov8LXwall0Ho6uBVWnUYI8RJ9mpSiYsE8DF0RRmJKxhZQ23FjB+uvrmek30i8c3lnc0IhRJY1HALeVbShsJTEbD2UFEAA8fdh3SAo1xZ831GdRgjxCva2Nszu5kvEwwTmbLv4j9s/THzIxEMTecPnDdqXbJ8DCYUQWWZrr80Ke3QNdk3O1kNJAWQwwPrBYNBD+7ky9CWEGSjr5crQ5mVZsu8qx64/fOl2BoOByYcmozfoCawXKENfQpiDAhXgzQA4OA9uhGTbYaQAOrMKwtdCuzmQu4DqNEKIDPq0YUlqFHVn6IowEpJfvIDapmub2HZjGwF1A/B09szhhEKILKvXD3zqQHAfrS1VNrDuAuhxFGwYCpXegkqdVacRQmSCrY2OWV19uRuXyPRN55/7+r2EewQdDqJV8Va0LN5SQUIhRJbZ2EKnhdr/09vGZc8hsmWv5sBggLUDwNYB2s5WnUYIkQUlPHMxqnUFfg65wYHL99PfNxgMjA8Zj72NPWP8xihMKITIsnyloPkEOLoEru42+u5NogCaP38+xYsXx8nJCT8/P44cOfLK7VesWEH58uVxcnKiSpUqbNy4MfMHPbUcLm2BDt+Ai0cWkwshVPugbjHqlczH8JWneJyYAkDw5WD23tzL+PrjyeuUV21AIUTW1f4MijeENf20NlVGpLwAWrZsGUOGDGHcuHGcOHECX19fWrZsSXR09Au3P3jwIO+++y6ffPIJJ0+epFOnTnTq1IkzZ85k7sDbxkG1HlCutRG+CyGEKjY2OmZ0qUrs0xQmrw/nzpM7TD86nY6lOtLEp4nqeEKI12FjAx3nawsVbxlt1F3rDAaDwah7zCQ/Pz9q167NvHnzANDr9fj4+NC/f39Gjhz53Pbdu3cnPj6e9evXp79Xt25dqlWrxqJFi/7xeHFxcbi5uREbVJY8Q46Ak5vxvhkhhDJ/HIlg5J9h1PJbSUzqLVZ3XI2rg6vqWEIIYzj+M6wbAONjjbZLO6PtKQuSk5M5fvw4o0aNSn/PxsaGZs2aERLy4qlvISEhDBky5Jn3WrZsSXBw8Au3T0pKIikpKf33sbHaH159F1ts/93oNb8DIYQpyVVMz7m7aSTf6kW1w1tVxxFCGE0uvrWtTIO4OFxdXY2ypIXSAuj+/fukpaXh5eX1zPteXl6cP//8rA6AqKioF24fFRX1wu2nTp3KhAkTnnv/7ODwLKYWQpi+5+8eCyHMW1uAGW5ER0eTP3/+196f0gIoJ4waNeqZO0YxMTEUK1aMiIgI3Nxk+EuluLg4fHx8iIyMJE+ePKrjWD05H6ZDzoXpkHNhOv57LhwcHIyyP6UFkKenJ7a2tty9e/eZ9+/evYu394v79Xh7e2dqe0dHRxwdHZ97383NTf4ym4g8efLIuTAhcj5Mh5wL0yHnwnQYa0V3pbPAHBwcqFmzJjt27Eh/T6/Xs2PHDurVq/fCz9SrV++Z7QG2bdv20u2FEEIIIf5O+RDYkCFD6NWrF7Vq1aJOnTrMnTuX+Ph4PvroIwB69uxJ4cKFmTp1KgADBw6kcePGzJ49m7Zt2/LHH39w7NgxFi9erPLbEEIIIYQZUV4Ade/enXv37hEYGEhUVBTVqlVj8+bN6Q86R0REYGPzvxtV9evX57fffiMgIIDRo0dTpkwZgoODqVy5coaO5+joyLhx4144LCZylpwL0yLnw3TIuTAdci5Mh7HPhfJ1gIQQQgghcprylaCFEEIIIXKaFEBCCCGEsDpSAAkhhBDC6kgBJIQQQgirY7EF0NSpU6lduzaurq4UKFCATp06ceHChWe2SUxMpG/fvuTLl4/cuXPz9ttvP7fIonh9CxcupGrVqukLidWrV49Nmzalf13OgzrTpk1Dp9MxaNCg9PfkfOSM8ePHo9PpnnmVL18+/etyHnLWrVu3eP/998mXLx/Ozs5UqVKFY8eOpX/dYDAQGBhIwYIFcXZ2plmzZly6dElhYstVvHjx564NnU5H3759AeNdGxZbAO3Zs4e+ffty6NAhtm3bRkpKCi1atCA+Pj59m8GDB7Nu3TpWrFjBnj17uH37Nm+99ZbC1JapSJEiTJs2jePHj3Ps2DHefPNNOnbsyNmzZwE5D6ocPXqU7777jqpVqz7zvpyPnFOpUiXu3LmT/tq/f3/61+Q85JxHjx7h7++Pvb09mzZt4ty5c8yePRt3d/f0bWbMmME333zDokWLOHz4MLly5aJly5YkJiYqTG6Zjh49+sx1sW3bNgC6du0KGPHaMFiJ6OhoA2DYs2ePwWAwGGJiYgz29vaGFStWpG8THh5uAAwhISGqYloNd3d3w/fffy/nQZHHjx8bypQpY9i2bZuhcePGhoEDBxoMBrkuctK4ceMMvr6+L/yanIecNWLECEODBg1e+nW9Xm/w9vY2zJw5M/29mJgYg6Ojo+H333/PiYhWbeDAgYZSpUoZ9Hq9Ua8Ni70D9HexsbEAeHh4AHD8+HFSUlJo1qxZ+jbly5enaNGihISEKMloDdLS0vjjjz+Ij4+nXr16ch4U6du3L23btn3mzx3kushply5dolChQpQsWZIePXoQEREByHnIaWvXrqVWrVp07dqVAgUKUL16dZYsWZL+9WvXrhEVFfXM+XBzc8PPz0/ORzZLTk7ml19+4eOPP0an0xn12rCKAkiv1zNo0CD8/f3TV4yOiorCwcGBvHnzPrOtl5cXUVFRClJattOnT5M7d24cHR3p3bs3q1evpmLFinIeFPjjjz84ceJEenuZv5LzkXP8/PxYunQpmzdvZuHChVy7do2GDRvy+PFjOQ857OrVqyxcuJAyZcqwZcsW+vTpw4ABA/j5558B0v/M/9uh4L/kfGS/4OBgYmJi+PDDDwHj/hulvBVGTujbty9nzpx5Znxd5Kxy5coRGhpKbGwsK1eupFevXuzZs0d1LKsTGRnJwIED2bZtG05OTqrjWLXWrVun/7pq1ar4+flRrFgxli9fjrOzs8Jk1kev11OrVi2mTJkCQPXq1Tlz5gyLFi2iV69eitNZtx9++IHWrVtTqFAho+/b4u8A9evXj/Xr17Nr1y6KFCmS/r63tzfJycnExMQ8s/3du3fx9vbO4ZSWz8HBgdKlS1OzZk2mTp2Kr68vX3/9tZyHHHb8+HGio6OpUaMGdnZ22NnZsWfPHr755hvs7Ozw8vKS86FI3rx5KVu2LJcvX5brIocVLFiQihUrPvNehQoV0ock//tn/veZRnI+steNGzfYvn07n376afp7xrw2LLYAMhgM9OvXj9WrV7Nz505KlCjxzNdr1qyJvb09O3bsSH/vwoULREREUK9evZyOa3X0ej1JSUlyHnJY06ZNOX36NKGhoemvWrVq0aNHj/Rfy/lQ48mTJ1y5coWCBQvKdZHD/P39n1sm5eLFixQrVgyAEiVK4O3t/cz5iIuL4/Dhw3I+stFPP/1EgQIFaNu2bfp7Rr02jPywtsno06ePwc3NzbB7927DnTt30l8JCQnp2/Tu3dtQtGhRw86dOw3Hjh0z1KtXz1CvXj2FqS3TyJEjDXv27DFcu3bNcOrUKcPIkSMNOp3OsHXrVoPBIOdBtb/OAjMY5HzklKFDhxp2795tuHbtmuHAgQOGZs2aGTw9PQ3R0dEGg0HOQ046cuSIwc7OzhAUFGS4dOmS4ddffzW4uLgYfvnll/Rtpk2bZsibN69hzZo1hlOnThk6duxoKFGihOHp06cKk1uutLQ0Q9GiRQ0jRox47mvGujYstgACXvj66aef0rd5+vSp4YsvvjC4u7sbXFxcDJ07dzbcuXNHXWgL9fHHHxuKFStmcHBwMOTPn9/QtGnT9OLHYJDzoNrfCyA5Hzmje/fuhoIFCxocHBwMhQsXNnTv3t1w+fLl9K/LechZ69atM1SuXNng6OhoKF++vGHx/7V39yDJ7QEcx3/nsbfByN6QoMIhioKil6WarEBoCCKoaBBqaIiQHGpsiWeoIcj1aammlqaIcogMiV4JAiEMBIcgi8ilGgr1TleQ7rPculefzvczHc/x6P8vePhyPAd//crYnkwmU/Pz8ym73Z4qLCxM9fX1pcLhcJZG+/35/f6UpH/8jL/qu2GkUqnUp89TAQAA/EG+7TVAAAAAv0MAAQAA0yGAAACA6RBAAADAdAggAABgOgQQAAAwHQIIAACYDgEEAABMhwACAACmQwAByBlOp1NerzfbwwBgAgQQAAAwHQIIQE4YHx/X4eGhfD6fDMOQYRiKRqMKhULq7++X1WqV3W6X2+3W4+Njej+n0ymPxyOv16vS0lLZ7Xatrq7q5eVFExMTKi4uVl1dnXZ3d9P7BAIBGYahnZ0dtbS0qKioSJ2dnQqFQtmYOoAsIIAA5ASfz6euri5NTk7q7u5Od3d3Ki4uVm9vr9ra2nRxcaG9vT3d399rZGQkY9/19XVVVFTo7OxMHo9HU1NTGh4eVnd3ty4vL+VyueR2u/X6+pqx39zcnJaXl3V+fq7KykoNDAzo/f39/5w2gCzh3+AB5Ayn06nW1latrKxIkn7+/KlgMCi/359+zu3trWpqahQOh1VfXy+n06lEIqFgMChJSiQSKikp0dDQkDY2NiRJsVhMVVVVOj4+VmdnpwKBgHp6erS5uanR0VFJ0tPTk6qrq7W2tvYhsAB8P3nZHgAA/M7V1ZUODg5ktVo/bItEIqqvr5cktbS0pNdbLBaVl5erubk5vc5ut0uSHh4eMl6jq6srvVxWVqaGhgZdX19/6RwA5CYCCEDOen5+1sDAgJaWlj5sq6qqSi/n5+dnbDMMI2OdYRiSpGQy+R+NFMCfhgACkDMKCgqUSCTSj9vb27W1tSWHw6G8vK8/XJ2cnKi2tlaSFI/HdXNzo8bGxi9/HwC5h4ugAeQMh8Oh09NTRaNRPT4+anp6Wk9PTxobG9P5+bkikYj8fr8mJiYyQunfWlhY0P7+vkKhkMbHx1VRUaHBwcHPTwRAziOAAOSM2dlZWSwWNTU1qbKyUm9vbzo6OlIikZDL5VJzc7O8Xq9sNpt+/Pj84WtxcVEzMzPq6OhQLBbT9va2CgoKvmAmAHIdd4EBMJ2/7wKLx+Oy2WzZHg6ALOAMEAAAMB0CCAAAmA4/gQEAANPhDBAAADAdAggAAJgOAQQAAEyHAAIAAKZDAAEAANMhgAAAgOkQQAAAwHQIIAAAYDp/AeXZkLXpcuNAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "from skfuzzy import control as ctrl\n", "import skfuzzy as fuzz\n", "\n", "al = ctrl.Antecedent(np.arange(0, 0.3, 0.005), \"al\")\n", "ti = ctrl.Antecedent(np.arange(0, 0.3, 0.005), \"ti\")\n", "density = ctrl.Antecedent(np.arange(1.03, 1.22, 0.00001), \"density\")\n", "temp = ctrl.Consequent(density_train[\"T\"].sort_values().unique(), \"temp\")\n", "# temp = ctrl.Consequent(np.arange(20, 70, 5), \"temp\")\n", "\n", "al.automf(3, variable_type=\"quant\")\n", "al.view()\n", "ti.automf(3, variable_type=\"quant\")\n", "ti.view()\n", "density.automf(3, variable_type=\"quant\")\n", "density.view()\n", "temp.automf(3, variable_type=\"quant\")\n", "temp.view()" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [], "source": [ "# from skfuzzy.control.fuzzyvariable import FuzzyVariable\n", "# from skfuzzy.control.rule import Rule as FuzzyRule\n", "# from skfuzzy.control.term import Term\n", "# from typing import List, Tuple\n", "\n", "# from functools import reduce\n", "# from operator import and_\n", "\n", "# from src.rules import RuleAtom\n", "\n", "# def gfa(\n", "# fuzzy_variable: FuzzyVariable, value: float\n", "# ) -> Tuple[Term, float]:\n", "# values = {}\n", "# for term in fuzzy_variable.terms:\n", "# mval = np.interp(value, fuzzy_variable.universe, fuzzy_variable[term].mf)\n", "# values[term] = mval\n", "# best_value = sorted(values.items(), key=lambda x: x[1], reverse=True)[0]\n", "# return (fuzzy_variable[best_value[0]], best_value[1])\n", "\n", "\n", "# def dsfr(\n", "# rules: List[Tuple[List[RuleAtom], Term, float]]\n", "# ) -> List[Tuple[List[RuleAtom], Term, float]]:\n", "# same_rules: List[int] = []\n", "# for rule1_index, rule1 in enumerate(rules):\n", "# for rule2_index, rule2 in enumerate(rules):\n", "# if rule1_index >= rule2_index:\n", "# continue\n", "# # Remove the same rules\n", "# if str(rule1[0]) == str(rule2[0]) and str(rule1[1]) == str(rule2[1]):\n", "# same_rules.append(rule1_index)\n", "# break\n", "# # If antecedents is equals, but consequents is not equals then\n", "# # Remove rule with the higher antecedent weight\n", "# if str(rule1[0]) == str(rule2[0]) and str(rule1[2]) <= str(rule2[2]):\n", "# same_rules.append(rule2_index)\n", "# break\n", "# if str(rule1[0]) == str(rule2[0]) and str(rule1[2]) > str(rule2[2]):\n", "# same_rules.append(rule1_index)\n", "# break\n", "# return [rule for index, rule in enumerate(rules) if index not in same_rules]\n", "\n", "# display(rules)\n", "\n", "# fuzzy_variables = {\"Al2O3\": al, \"TiO2\": ti, \"Density\": density, \"consequent\": temp}\n", "# fuzzy_rules: List[Tuple[List[RuleAtom], Term, float]] = []\n", "# for rule in rules:\n", "# tmp_rule = []\n", "# for atom in rule.get_antecedent():\n", "# if fuzzy_variables.get(atom.get_varaible(), None) is None:\n", "# continue\n", "# variable = gfa(fuzzy_variables[atom.get_varaible()], atom.get_value())\n", "# tmp_rule.append(variable)\n", "# # if tmp_rule.get(variable[0].parent, None) is None:\n", "# # tmp_rule[variable[0].parent] = variable\n", "# # else:\n", "# # if tmp_rule[variable[0].parent][1] > variable[1]:\n", "# # tmp_rule[variable[0].parent] = variable\n", "# consequent = gfa(\n", "# fuzzy_variables[\"consequent\"], rule.get_consequent()\n", "# )[0]\n", "# fuzzy_rules.append(\n", "# (\n", "# # FuzzyRule(reduce(and_, [atom[0] for atom in antecedent]), consequent),\n", "# [atom[0] for atom in tmp_rule],\n", "# consequent,\n", "# sum([atom[1] for atom in tmp_rule]),\n", "# )\n", "# )\n", "# fuzzy_rules = dsfr(fuzzy_rules)\n", "# frules = [FuzzyRule(reduce(and_, item[0]), item[1]) for item in fuzzy_rules]\n", "# display(len(frules))\n", "# display(frules)\n", "\n", "# # fuzzy_cntrl = ctrl.ControlSystem(frules)\n", "\n", "# # sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)" ] }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[IF density[average] AND al[high] THEN temp[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (density[low] AND ti[low]) AND al[low] THEN temp[average]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF (density[low] AND ti[low]) AND al[high] THEN temp[high]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF density[low] AND ti[high] THEN temp[high]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF density[average] THEN temp[average]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF density[average] AND al[low] THEN temp[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF density[low] THEN temp[high]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF density[high] AND al[low] THEN temp[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", " IF density[high] AND al[high] THEN temp[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax]" ] }, "execution_count": 109, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from src.rules import get_fuzzy_rules\n", "\n", "fuzzy_variables = {\"Al2O3\": al, \"TiO2\": ti, \"Density\": density, \"consequent\": temp}\n", "fuzzy_rules = get_fuzzy_rules(rules, fuzzy_variables)\n", "\n", "fuzzy_cntrl = ctrl.ControlSystem(fuzzy_rules)\n", "\n", "sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)\n", "\n", "display(len(fuzzy_rules))\n", "fuzzy_rules" ] }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=============\n", " Antecedents \n", "=============\n", "Antecedent: density = 1.0569013636039\n", " - low : 0.716812846952748\n", " - average : 0.283187153047252\n", " - high : 0.0\n", "Antecedent: al = 0.0\n", " - low : 1.0\n", " - average : 0.0\n", " - high : 0.0\n", "Antecedent: ti = 0.0\n", " - low : 1.0\n", " - average : 0.0\n", " - high : 0.0\n", "\n", "=======\n", " Rules \n", "=======\n", "RULE #0:\n", " IF density[average] AND al[high] THEN temp[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[average] : 0.283187153047252\n", " - al[high] : 0.0\n", " density[average] AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " temp[low] : 0.0\n", "\n", "RULE #1:\n", " IF (density[low] AND ti[low]) AND al[low] THEN temp[average]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[low] : 0.716812846952748\n", " - ti[low] : 1.0\n", " - al[low] : 1.0\n", " (density[low] AND ti[low]) AND al[low] = 0.716812846952748\n", " Activation (THEN-clause):\n", " temp[average] : 0.716812846952748\n", "\n", "RULE #2:\n", " IF (density[low] AND ti[low]) AND al[high] THEN temp[high]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[low] : 0.716812846952748\n", " - ti[low] : 1.0\n", " - al[high] : 0.0\n", " (density[low] AND ti[low]) AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " temp[high] : 0.0\n", "\n", "RULE #3:\n", " IF density[low] AND ti[high] THEN temp[high]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[low] : 0.716812846952748\n", " - ti[high] : 0.0\n", " density[low] AND ti[high] = 0.0\n", " Activation (THEN-clause):\n", " temp[high] : 0.0\n", "\n", "RULE #4:\n", " IF density[average] THEN temp[average]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[average] : 0.283187153047252\n", " density[average] = 0.283187153047252\n", " Activation (THEN-clause):\n", " temp[average] : 0.283187153047252\n", "\n", "RULE #5:\n", " IF density[average] AND al[low] THEN temp[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[average] : 0.283187153047252\n", " - al[low] : 1.0\n", " density[average] AND al[low] = 0.283187153047252\n", " Activation (THEN-clause):\n", " temp[low] : 0.283187153047252\n", "\n", "RULE #6:\n", " IF density[low] THEN temp[high]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[low] : 0.716812846952748\n", " density[low] = 0.716812846952748\n", " Activation (THEN-clause):\n", " temp[high] : 0.716812846952748\n", "\n", "RULE #7:\n", " IF density[high] AND al[low] THEN temp[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[high] : 0.0\n", " - al[low] : 1.0\n", " density[high] AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " temp[low] : 0.0\n", "\n", "RULE #8:\n", " IF density[high] AND al[high] THEN temp[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", " - density[high] : 0.0\n", " - al[high] : 0.0\n", " density[high] AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " temp[low] : 0.0\n", "\n", "\n", "==============================\n", " Intermediaries and Conquests \n", "==============================\n", "Consequent: temp = 47.897027582440735\n", " low:\n", " Accumulate using accumulation_max : 0.283187153047252\n", " average:\n", " Accumulate using accumulation_max : 0.716812846952748\n", " high:\n", " Accumulate using accumulation_max : 0.716812846952748\n", "\n" ] }, { "data": { "text/plain": [ "np.float64(47.897027582440735)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLOUlEQVR4nOzdd3xT9f7H8VfSvfempXRAKaNsZKOyl3jd1+1VrxsFr8hWUUDFeUVRBPFecaGCKLJENgXKaNm70NLd0r2b5PdHfrf3IqBtSfNNms/z8chDSU/OeZeQ5JPv1BgMBgNCCCGEEDZEqzqAEEIIIYS5SQEkhBBCCJsjBZAQQgghbI4UQEIIIYSwOVIACSGEEMLmSAEkhBBCCJsjBZAQQgghbI4UQEIIIYSwOVIACSGEEMLm2FwBZDAYKCkpQRbAFkIIIWyX0gJo69atjB07ltDQUDQaDStXrvzTx2zevJlu3brh5ORETEwMS5cubdQ1S0tL8fLyorS0tGmhhRBCCGH1lBZA5eXlJCQksGDBggYdn5qayujRo7n++utJTk7m2Wef5eGHH2bdunXNnFQIIYQQLYnGUjZD1Wg0rFixgvHjx1/1mMmTJ7N69WoOHz5cf9+dd95JUVERa9eubdB1SkpK8PLyori4GE9Pz2uNLYQQQggzMBgMaDQak53PqsYAJSYmMmTIkEvuGz58OImJiVd9THV1NSUlJZfcAEqraps1qxBCgSMrYOkYqCpRnUQIYWI/nvnRpOezqgIoOzuboKCgS+4LCgqipKSEysrKKz5m7ty5eHl51d/Cw8MBmL/uRLPnFUKYUfEFWPUMnNsG66erTiOEMKHs8mxe3/O6Sc9pVQVQU0yZMoXi4uL6W3p6OgDf789g04lcxemEECZhMMCPT4GjOwx5GfZ/Dqc2qE4lhDABg8HAzB0zcXVwNel57U16tmYWHBxMTk7OJffl5OTg6emJi4vLFR/j5OSEk5PTZff3jfHjxe8Psv7ZQXi5OjRLXiGEmexdAmc3wT3fQ/SNkLoVVj0NTySCi4/qdMKC6PV6dDqd6hjiKuzt7S8b57P85HISsxJZOGShaa9l0rM1sz59+vDLL79cct+GDRvo06dPo8/1yrgO3LI4mZd+OsI7d3QxUUIhhNldTIX1M6D7gxDz/2MEx/0TPuwDaybDXz5Rm09YBIPBQHFxMRUVFaqjiD+g0WgICAjA3t5YnqSXpjN/73xubXsr/cL6mfRaSgugsrIyTp8+Xf/n1NRUkpOT8fX1JSIigilTppCRkcG//vUvAB577DE++OADXnjhBR566CF+++03vv32W1avXt3oawd7ufDS2A5MWp7C8A7BjOgYbLLfSwhhJno9rHwC3Pxg2Oz/3u8VBiNfh5WPQfuxxpuwaf8pfjw9PXF0dDTpbCJhGgaDgcLCQoqKivDz88OAgenbp+Pr7MvzPZ43+fWUFkB79+7l+uuvr//zxIkTAbj//vtZunQpWVlZpKWl1f+8TZs2rF69mueee4733nuPVq1a8emnnzJ8+PAmXf8v3cJYeySbaSsO0TPSBz/3y7vKhBAWbPdHkLYTHlgNTh6X/izhTjj2E/z0LET0ATd/JRGFenq9vr74cXd3Vx1H/AFPT08KCwvR6/UsO76M/bn7WTJ8CW4Obia/lsWsA2Quv18HKK+0mmHvbOG6KD8+vLubfCsQwlrknYSPBxi7vkbOu/IxZbmwoDdE9ofb/wXy+rZJtbW15OXl4e/vj6Ojo+o44g/U1NSQn59PhVMFd665k9va3sbkXpOb5VotfhbYnwnwcOLV8Z1YczibVSmZquMIIRpCV2fs3vJqBTfOvPpx7oEw5m04tgoOf2++fMIiyRdcy6fRaNAb9Ly+53WC3YJ5ptszzXYtmy+AAEZ3DmFM5xBm/niEnJIq1XGEEH9m53uQeQDGLwTHP5ka2+Fm6PAXWD0JSrPNk08I0WRnis5wovAEr/Z7FRf7K8/wNgUpgP7f7Js64mCnZcoPh2SneCEsWfZh2DQX+k2A8J4Ne8zot8DO0bhQory+hRUZPHgwzz77rOoYZlNQWcCxi8e4o90ddAns0qzXkgLo//m4OTLvL5347Xguy/deUB1HCHEldTXGri//WBg8peGPc/WFce/DqXWQvKz58gkhmkyn17EjYwfuDu480OGBZr+eFED/Y0h8ELd2b8UrPx/lQqGsFSGExdn6JuQeg/EfgX0jZ222Gwld7oY1L0JRevPkE0I02b6cfRRVF9EtsBuOds0/WF0KoN+ZOTYeD2d7Jn9/EL1emsqFsBgZ+2HbWzDwHxDapWnnGDEXnD1h1VPGNYSEsCKFhYXcd999+Pj44OrqysiRIzl16hRgXEMnICCA7777rv74Ll26EBISUv/n7du34+TkZJGLQeZW5LI/dz+dAzrj7extlmtKAfQ7ns4OvH5LZ3acLmDZ7vOq4wghAGqrYMVjENwRBkxq+nmcvYyrRJ/dDHsXmyyeEObwwAMPsHfvXlatWkViYiIGg4FRo0ZRW1uLRqNh4MCBbN68GTAWS8eOHaOyspLjx48DsGXLFnr27Imrq2n31LpWdfo6NqZtxM/Zj04Bncx2XavaCsNcBrYN4O7eEcz55TgDYgOI9Df9AkxCiEbY9BoUpsLft4LdNe7dF3Mj9HgINsw0/r9vlGkyCqtTWaPjTF6Z2a8bHeCOi6Ndox5z6tQpVq1axY4dO+jbty8Ay5YtIzw8nJUrV3LbbbcxePBgPv74YwC2bt1K165dCQ4OZvPmzcTFxbF582YGDRpk8t/nWiVlJ1FSXcKtbW/FTtO4v5drIQXQVUwd1Z6tp/L4x3cpfP1oH+y0sn6EEEqk7Yad/4QhsyCwvWnOOXQ2nN5o3EbjgdWgNd+brrAcZ/LKGPPP7Wa/7s9P96djmFejHnPs2DHs7e3p3bt3/X1+fn60a9eOY8eOATBo0CAmTJhAXl4eW7ZsYfDgwfUF0N/+9jd27tzJCy+8YNLf5VpllWeRnJtM75De+Ln4UVtba7ZrSwF0FW5O9sy/NYE7F+1iyfZUHhko3xKFMLuacuOsr1Y9oK8JF0RzcjcOpF46GnZ9BH2fMt25hdWIDnDn56f7K7luc+jUqRO+vr5s2bKFLVu28NprrxEcHMzrr79OUlIStbW19a1HlqBWV8tvab8R6BbY7FPer0QKoD/QO8qPh/q14c31J7g+LoCYQI8/f5AQwnR+fRlKsuCvy03fShPZD657Aja+ArFDIaCdac8vLJ6Lo12jW2JUad++PXV1dezevbu+iCkoKODEiRPEx8cDxlWUBwwYwI8//siRI0fo378/rq6uVFdX8/HHH9OjRw/c3CxnSMeurF2U15Yzus1otBrzD0mWQdB/4h/D29HKx4VJ36ZQp5NZI0KYzdktsOdjGPIS+Mc0zzVunAHeEcYB1rq65rmGECYQGxvLTTfdxCOPPML27dtJSUnhnnvuISwsjJtuuqn+uMGDB/PVV1/RpUsX3N3d0Wq1DBw4kGXLllnU+J8LpRc4lH+I60KuM9usr9+TAuhPODvY8dZtCRzKKGbhljOq4whhG6pK4MenIHIA9Hq0+a7j4AI3L4SsZNjxTvNdRwgT+Oyzz+jevTtjxoyhT58+GAwGfvnlFxwc/jsxYNCgQeh0OgYPHlx/3+DBgy+7T6UaXQ2b0jcR5h5GJ3/zzfr6PZvfDb6h3lh7nEXbzvLjk/2JD23444QQTbDqaTj8Azy+A3wim/96v75sHGj96CYIVveGLJrHf3aDDwgIuKRYEGpsTt/MqcJT3NHuDjydLv08NedzJS1ADTRhSCzRAe5M/DaZmjrpChOi2ZzaAPv/BcNeNU/xAzD4RfBva+wKq6sxzzWFsEHnS85ztOAofcP6Xlb8mJsUQA3kZG/HW7cncDq3jPc3nlIdR4iWqbLQ2PoTfSN0f8B817V3MnaF5R2HrW+Y77pC2JCquio2p28mwiOCeN941XGkAGqMDqFePHNjLB9tOUNyepHqOEK0PGsmQ02FcbVmjZnX3grpDANfgG1vQ8Y+815bCBuwPWM7dfo6BocPRmPu1/cVSAHUSI8PjiY+xJNJ3yZTVatTHUeIluPYT3DwGxj1BniFqckwYKJxDNCKx6G2Uk0GIVqgs0VnOVl4kv5h/XF3bJ51kBpLCqBGcrDT8tbtCaRfrOSt9SdUxxGiZSjPh5+ehXajofMd6nLYORi7wgpT4bdX1eUQogWprKtky4UttPFqQ1uftqrj1JMCqAnaBnkwaVhbPt2eyp7Ui6rjCGHdDAb4+Tkw6GHsu+bv+vq9wPZww3RIXADnE9VmEcLKGQwGtqRvwYCBQa0GWUTX139IAdREDw+IoluED88vT6G8WhZQE6LJDn8Px1bBmLfBPVB1GqM+T0F4L1j5uHE7DiFEk5wqOsXZ4rMMbDUQVwfL2oVeCqAmstNqmH9bArmlVcxbc1x1HCGsU0kWrJ4EHW+BDjerTvNfWjvjXmGl2bBhluo0Qlil8tpytl3YRqx3LDHezbSa+zWQAugatPF348URcfx713m2n8pXHUcI62IwwE8TjFPQR81XneZyftEw9GVIWgRnN6tOI4RVMRgMbE7fjJ3WjgGtBqiOc0VSAF2j+/pE0ifKjxe+S6GkqlZ1HCGsx4Ev4NQ6GPseuPqqTnNlPR8xbsfx41PG7TmEEA1y/OJxzpecZ3CrwTjbO6uOc0VSAF0jrVbDG7d2priylld/Pqo6jhDWoSgN1k6BLndDu5Gq01ydVgs3LTAu0Lhuquo0QliF0ppSdmTuIM43jkivSNVxrkoKIBMI93Vlxph4vt17gd+O56iOI4Rl0+uNLSrOXjBiruo0f86nNQyfAwf+DSfXqU4jRLPT6XTo9U3b8slgMLApbROOdo70C+tn4mSmJQWQidzRM5zB7QKY/P0hiipkLyEhrmrvYkjdAjf901gEWYNu90HMUFj1DFTI0hfCvNauXUv//v3x9vbGz8+PMWPGcObMGQD69u3L5MmTLzk+Ly8PBwcHtm7dCkB1dTXPP/88YWFhuLm50bt3bzZv3lx//NKlS/H29mbVqlXEx8fj5OREWloaSUlJDB06FH9/f7y8vBg0aBD79++/5FrHjx+nf//+ODs7Ex8fz6c/fMpNsTdRk1KDk50TAOnp6dx+++14e3vj6+vLTTfdxLlz55rvL6yBpAAyEY1Gw7y/dKa6VsesVUdUxxHCMhWcgQ0zocffIPoG1WkaTqOBce9DXSWseUF1GmFjysvLmThxInv37mXjxo1otVpuvvlm9Ho9d999N19//TUGg6H++G+++YbQ0FAGDDAOPn7qqadITEzk66+/5uDBg9x2222MGDGCU6f+u69lRUUFr7/+Op9++ilHjhwhMDCQ0tJS7r//frZv386uXbuIjY1l1KhRlJaWAsaWovHjx+Pq6sru3bt5+4O3mfPSHAD8XfwB4+7uw4cPx8PDg23btrFjxw7c3d0ZMWIENTVqGws0hv/9W7MBJSUleHl5UVxcjKen6XeiXXHgAs99k8JHd3djZKcQk59fCKul18HS0VCaBY/tACfLWA6/UVK+gRWPwu3/gvibVKcRDVRbW0teXh4BAQE4ODj89wc1FZB/0vyB/NuCY9PXxMnPzycgIIBDhw4RFBREaGgov/32W33B07dvXwYOHMi8efNIS0sjKiqKtLQ0QkND688xZMgQevXqxZw5c1i6dCkPPvggycnJJCQkXPW6er0eb29vvvzyS8aMGcPatWsZO3Ys6enpBAYF8uPpH9m9dTevP/w6K1asYPz48XzxxRe8+uqrHDt2rH4RxJqaGry9vVm5ciXDhg275BpXfa6agX2znt0Gje8SxtrD2UxbeZiebXzxd3dSHUkIy7DrQ0jbBQ+sts7iB6Dz7cZFG39+DiL6gnuA6kTiWuSfhE8Gmf+6j26B0C4NPvzUqVPMnDmT3bt3k5+fXz8+Jy0tjY4dOzJs2DCWLVvGgAEDSE1NJTExkY8//hiAQ4cOodPpaNv20i0oqqur8fPzq/+zo6MjnTt3vuSYnJwcpk+fzubNm8nNzUWn01FRUUFaWhoAJ06cIDw8nODgYJJzk8kuz+bBkQ/yOq/XnyMlJYXTp0/j4eFxybmrqqrqu/FUkQLIxDQaDa/d3Ilh72xl2opDLLynu0Ut/S2EEnknYONsuO4JiLTsgZF/SKOBMe/Ch71h9XNw+7/Vb90hms6/rbEYUXHdRhg7diytW7dm0aJFhIaGotfr6dixY30X0t13380zzzzDP//5T7788ks6depEp06dACgrK8POzo59+/ZhZ2d3yXnd3f/7RcTFxeWyz6r777+fgoIC3nvvPVq3bo2TkxN9+vS5rOvqYtVFdmftpnNAZ0LcL+35KCsro3v37ixbtuyy3ysgQO0XCCmAmoG/uxOvju/IE8v282NyJuO7KtrZWghLoKuDFY+BdwTcOEN1mmvnHgCj34bl98Oh5cZWIWGdHF0b1RKjQkFBASdOnGDRokX1XVzbt2+/5JibbrqJRx99lLVr1/Lll19y33331f+sa9eu6HQ6cnNz6x/fUDt27ODDDz9k1KhRgHEwc37+fxf9bdeuHenp6fyw/wc8fDzoHdKbLZsuLSi7devGN998Q2BgYLMMO7kWMgi6mYzqFMK4hFBm/niY7OIq1XGEUGfHO5CVbNxl3cFFdRrT6DAeffwt5H37HHlnD5OXl0deXl6Tpw4LcTU+Pj74+fnxySefcPr0aX777TcmTpx4yTFubm6MHz+eGTNmcOzYMe666676n7Vt25a7776b++67jx9++IHU1FT27NnD3LlzWb169R9eOzY2ln//+98cO3aM3bt3c/fdd+Pi8t/X8NChQwlrHcY7/3iHkJIQdifuZvr06QD1rUl33303/v7+3HTTTWzbto3U1FQ2b97MM888w4ULF0z119QkUgA1o1du6oCTgx0v/nAQGxtrLoRR9iHY/Dr0fw5a9VCdxqQKer9I4GuZBEZ3IjAwkMDAQAoKClTHEi2MVqvl66+/Zt++fXTs2JHnnnuON99887Lj7r77blJSUhgwYAARERGX/Oyzzz7jvvvuY9KkSbRr147x48eTlJR02XG/t3jxYgoLC+nWrRv33nsvzzzzDIGB/92wuLCmkAfmP4B9rT0jBo7g4YcfZtq0aQA4OxtXf3Z1dWXr1q1ERETwl7/8hfbt2/O3v/2Nqqoq5S1CMgusmf12PIeHlu5l3l86cWevP/7HJkSLUlcDi6437vn16Cbjnl8tSF5e3iUfBgC5ubnKxzWIy5lzZpGt0Ol1fHfqOwBujb0VO61xfNGOHTvo378/p0+fJjo6utHnlVlgLcgNcUHc3qMVs38+Sr8Yf8J9mz71UQirsuV1yDsOj7S84kcIW7c3Zy+FVYW4HHPht7TfiI2N5fTp00yYMIF+/fo1qfgxN+kCM4PpY+LxcnHghe8OotfbVIObsFUX9sH2d2DQZAjp/OfHtxQyBkjYgJzyHPbn7qdHUA80NRqefPJJ4uLieOCBB+jZsyc//vij6ogNIgWQGXg6O/DGrQkkni3g37vOq44jRPOqrYSVjxkLn/7PqU5jXge+UJ1AiGZVp6/jt/Tf8Hfxp2tQV+677z5OnjxJVVUVFy5cYOnSpZesL2TJpAAyk/6x/tx7XWvmrjlGan656jhCNJ/fXoXC8zB+IdjZ2HiLrW8Yt/sQooXanbWbkuoSbgy/ETuN3Z8/wIJJAWRGL46MI8jTmeeXp6CTrjDREp3fCYkL4IbpEBinOo35uQXAyseN234I0cJklmVyMO8gvUJ64eviqzrONZMCyIzcnOyZf1sC+9MK+XTbWdVxhDCt6jLjh394b+jzpOo0aox8A9L3GItAIVqQWl0tv6X9RpBbEAkBV98vzJpIAWRmPSN9ebh/G95af5KTOaWq4whhOr/OgrJcGP8haK27abzJwnsai7/fXoXc46rTCGEyiVmJVNRVcEPEDWg1LaN0aBm/hZWZNKwd4b4uTPo2hVqdzBoRLcDZzZD0KQx5Gfwsf/prs7phOvi0Ng4E19WqTiPENUsvTedw/mH6hPTB28lbdRyTkQJIAWcHO966vQtHs0r4aLMMmBRWrqoYfnwK2gyEng+rTqOeg4txAHjWQeNSAEJYsWpdNZvSNxHmHkZH/46q45iUFECKdAn35vFB0by/8RSHM4pVxxGi6dZNhcoiuGkBaOUtBYBW3Y1LAGx53VgICdFEgwcP5tlnn73qzzUaDStXrmzw+TZv3oxGo6GoqKhBx+/I2EGNrobrI66/bLd4ayfvVgo9c2MsMYHuPL88heo6mTUirNDJdca1b0bMMe72Lv5r0GQIiIMVj0Fdteo0ooXKyspi5MiRzXLuc8XnOH7xOH1D++LpaFk7uZuCFEAKOdprefv2LpzJK+O9X0+pjiNE41RchFVPQ+ww6Hqv6jSWx94Rbl4I+SeNLUFCNIPg4GCcnEy/1UxVXRWbL2wmwjOC9r7tTX5+SyAFkGLxoZ5MuDGWhVvOcCCtUHUcIRpuzQvGlo2x70MLaxo3meBOMHiycSzQhb2q0wgrpdfreeGFF/D19SU4OJiXXnqp/me/7wLbuXMnXbp0wdnZmR49erBy5Uo0Gg3JycmXnHPfvn306NEDV1dX+vbty4kTJy75+baMbej0Oq4Pb3ldX/8hBZAFeGxQNJ3CvJi0PIWqWukKE1bg6I9waDmMehM8Q1SnsWz9noOQLsausNpK1WmEFfr8889xc3Nj9+7dvPHGG7zyyits2LDhsuNKSkoYO3YsnTp1Yv/+/cyePZvJkydf8ZzTpk3jrbfeYu/evdjb2/PQQw/V/+xM0RlOFZ5iQKsBuDm4NdvvpZrsBm8B7O20vHV7AqPe386b604wY0y86khCXF1ZHvz8HLQfC51uU53G8tnZG7vCFg6AjbON46WERaisqyS1ONXs123j1QYXe5cGH9+5c2dmzZoFQGxsLB988AEbN25k6NChlxz35ZdfotFoWLRoEc7OzsTHx5ORkcEjjzxy2Tlfe+01Bg0aBMCLL77I6NGjqaqqQm+nZ+uFrUR5RRHrHXsNv6XlkwLIQsQEevCPYe2Ys+YYw+KD6B1lHZvJCRtjMMDPzxr/f/Q70vXVUAHt4MYZsH4GxI2GyH6qEwkgtTiVO36+w+zX/WbMN8T7NfyLbufOnS/5c0hICLm5uZcdd+LECTp37oyzs3P9fb169frTc4aEGFtxc3JyOKo/CsDAVgNbbNfXf0gBZEEe6t+G9Uezef67FNZOGIibkzw9wsIcWg7Hf4bb/w3uAarTWJfrnoDjq43bhTy+E5zcVSeyeW282vDNmG+UXLcxHBwu3VRYo9Gg11/bIrr/e87/FDqnC0+TSirDI4fj6uB6Tee3BvIJa0HstBrm35bAiHe3MeeXY7x2cyfVkYT4r5JM+OV5Y7dX/DjVaayP1s64TchH/WDDTBjztupENs/F3qVRLTGWrl27dnzxxRdUV1fXzwxLSkpq8OP3Zu+lW/tuRHvbxmruMgjawrT2c2PqqDiW7U5j68k81XGEMDIYYNUzYO9i3PBTNI1vFAx9BfYuhjO/qU4jWpi//vWv6PV6Hn30UY4dO8a6deuYP38+wB92ZxkMBgDstHYMCBtglqyWQAogC3R379b0i/Fj8vcHKa6UvYSEBdj/Lzi9Acb9E1x9Vaexbj3+Bm0GGbcPqZJV4IXpeHp68tNPP5GcnEyXLl2YNm0aM2fOBLhkXNDvnS0+C8B1IdfhbH/141oajeE/pZ+NKCkpwcvLi+LiYjw9LXdly4yiSoa/s5URHYOZf1uC6jjClhWeh4/6Qoeb4aYPVKexGHl5eQQGBl5yX25uLgEBDRgbVZQOH/YxdiWO/7CZEor/qK2tJS8vj4CAgMvG07R0y5Yt48EHH6S4uBgXl8tnnpXUlPDN8W+I8Y7h+ojrFSS8lDmfK2kBslBh3i7MHBPPd/susOFojuo4wlbp9fDjk+DiA8Nl+rbJeIfDiLmQvAxOrFGdRrQg//rXv9i+fTupqamsXLmSyZMnc/vtt1+x+DEYDGxK24SzvTP9wmxvZqIUQBbsth6tuCEukCk/HKKwvEZ1HGGLkj6Fc9uMLT/OlttiapW63gOxw41jqyouqk4jWojs7Gzuuece2rdvz3PPPcdtt93GJ598csVjD+UfIqMsg+vDr8fRztHMSdWTAsiCaTQa5v2lE7U6PTN+PKw6jrA1BWeMs5V6PgJRg1WnaXk0Ghj3PuhqjLPrhDCBF154gXPnzlFVVUVqairvvPMOrq6XT2kvqipiV9YuOvp3pJVHKwVJ1ZMCyMIFejrzyk0d+PlgFj8fzFQdR9gKvc64Xo1HMAx9WXWalssjGEa/BYe/hyMrVKcRNkJv0PNb+m+4ObjRJ6SP6jjKSAFkBcYlhDKyYzAzVh4mr7RadRxhCxI/gPQ9xi0cHFvuXkAWoeMt0H4c/DwRyi5f3VeYjo3N+bmqlLwUcspzuCH8BhzsLGtQuDmfIymArIBGo+HV8R3RajRM+eGQvIhF88o9Br+9Cn2fgojrVKdp+TQaGPMOaLTw07PGNZeESdnZ2QFQUyNjKS9WXmRP1h4SAhIIcbe8jYx1OuOG4Fpt85cnygugBQsWEBkZibOzM71792bPnj1/ePy7775Lu3btcHFxITw8nOeee46qqiozpVXHz92J127uyK/Hcvhhf4bqOKKl0tUady33aQPXT1edxna4+cPYd+HEajho/q0ZWjqtVourqyslJSWUlZVRU1NDbW2tzd2qaqrYfG4zPg4+dPXvqjzP7281NTWUlJTg6OholgJI6VYY33zzDRMnTmThwoX07t2bd999l+HDh3PixInL1tcA4063L774IkuWLKFv376cPHmSBx54AI1Gw9tvt/xl5Ud0DGF8l1Be+ukIfWP8CPFq+G7CQjTI9ncg+xA8vAEcbGdBNIvQfix0vgN+eQEiB4BXmOpELYqXlxdgXAvOVp24eILcwlwGhA2gsKBQdZwr0mg0+Pn5mWUjVqULIfbu3ZuePXvywQfGxdX0ej3h4eE8/fTTvPjii5cd/9RTT3Hs2DE2btxYf9+kSZPYvXs327dvb9A1rWUhxKsprqhl2LtbaBvkwb8e6tXid+sVZpSVAotugP7PwQ3S+vNnrmkhxKupLDQukBgYD/d8b+weEyal1+vru1lsycmLJ3ly45PcGXcnf+v0N9Vxrsre3t5sn2vKWoBqamrYt28fU6ZMqb9Pq9UyZMgQEhMTr/iYvn378sUXX7Bnzx569erF2bNn+eWXX7j33nuvep3q6mqqq/87cNjaq38vVwfm3dKZBz9L4qs96fy1d4TqSKIlqKuGFY9DQHsY+ILqNLbLxce43ciyW2HfUujxoOpELY5WqzVL94olqdHVMH3XdPzd/flbwt8sbuCzKsr+FeTn56PT6QgKCrrk/qCgILKzs6/4mL/+9a+88sor9O/fHwcHB6Kjoxk8eDBTp0696nXmzp2Ll5dX/S08PNykv4cK17cL5M6e4by6+ijpFytUxxEtweZ5kH/SOOvL3vYWRLMosUOh232wfjoUnlOdRrQAHyZ/yLmSc7zW/zUpfv6HVZXBmzdvZs6cOXz44Yfs37+fH374gdWrVzN79uyrPmbKlCkUFxfX39LT082YuPlMG90eH1dHnl+egl4vs0bENbiwF3a8C4NfhOCOqtMIgGGvgYsvrHzSuB2JEE2UkpfCZ0c+4/GEx2nn2051HIuirADy9/fHzs6OnJxL97nKyckhODj4io+ZMWMG9957Lw8//DCdOnXi5ptvZs6cOcydOxf9Vd4knJyc8PT0vOTWEng4O/DmrZ3ZnXqRpTvPqY4jrFVtpXHWV2hX6Pes6jTiP5w9YfwCOL8d9lx5GwMh/kxlXSXTt08n3jeehzo+pDqOxVFWADk6OtK9e/dLBjTr9Xo2btxInz5XXpmyoqLisr7b/6zvYItr4/SN8ef+Pq15Y91xzuaVqY4jrNHG2VCcDuMXgp3SSaHi99oMhF5/h19fgvzTqtMIK/T+/vfJLMvktf6vYa+V1/fvKe0CmzhxIosWLeLzzz/n2LFjPP7445SXl/Pgg8aBf/fdd98lg6THjh3LRx99xNdff01qaiobNmxgxowZjB07tr4QsjWTR8YR7OnMpOUp6KQrTDTGuR2w60O4YQYEtFWdRlzJkFngGQIrHzNuTyJEAyVlJ/HFsS94ptszRHlHqY5jkZSWhHfccQd5eXnMnDmT7OxsunTpwtq1a+sHRqelpV3S4jN9+nQ0Gg3Tp08nIyODgIAAxo4dy2uvvabqV1DO1dGe+bclcNvHiXyy9SyPD45WHUlYg+oy415fEdfBdY+rTiOuxtHN2Dr32QjY+b5xiQIh/kRFbQUzdsygW2A37ml/j+o4FkvpOkAqWPs6QFcz95djfLbjHD893Z92wR6q4whL9/NzkPI1PL4DfOXbYVM0yzpAV7N+BuxeCI9ugaB4059ftCizE2fz09mf+H7s94R7Wv/M5+ZiVbPAxNU9N7Qtrf1cmfhtMrU6mTUi/sDpjbB3CQx9RYofa3H9NONzteLvxu1KhLiKnRk7+fbkt0zsPlGKnz8hBVAL4exgx1u3J3A8u5QFm2TApLiKyiJY9TREDYYelrsarPgdB2fjGk05R2DbW6rTCAtVUlPCzJ0z6R3Sm9vb3a46jsWTAqgF6dzKmycHR/PBb6c5nFGsOo6wROumQnUpjPsAbGw1XKsX2hUGPg9b34TMZNVphAV6fc/rlNWWMbvvbLQaeX3/GfkbamGeuiGWtkEeTPw2meo6mTUi/sfxXyB5GQyfA97SNG6VBjwPge2NazfVVf/58cJmbErbxKozq5jcczIh7iGq41gFKYBaGEd7LW/fkUBqfjnvbDilOo6wFBUX4acJ0HYEdJVZIVbL3hFu/hgKTsOmOarTCAtRVFXEy4kvM7DVQMbHjFcdx2pIAdQCxQV78uyQtnyy9Qz7zheqjiMswepJoKuBse/JDuPWLqgDXD/FOC0+fY/qNMICvLb7NWr1tbzU5yWz7aTeEkgB1EL9fWAUnVp58/zyFCprpCvMph3+AY78AKPfAo8rbzMjrEzfCRDazdgVViMbItuytefWsvbcWqb1nkaAazMswdCCSQHUQtnbaXnrtgQyiyp5Y91x1XGEKmW5xtaf+Jug4y2q0whTsbM3zgoryYCNr6hOIxTJr8zntV2vMbT1UEa2Gak6jtWRAqgFiwl05x/D2/HZjnMknilQHUeYm8FgHPej0cLot6Xrq6Xxj4UbZ8HujyB1m+o0wswMBgMvJ76MVqNl+nXTpeurCaQAauEe6teGXm18+cd3KZRV16mOI8wp5Ws48Ytx3I+bv+o0ojn0fgxa94MfnzAubyBsxk9nf2Jz+mZmXjcTX2df1XGskhRALZxWq2H+rQlcLK/htdXHVMcR5lKcAWsmQ+c7oP0Y1WlEc9Fq4aYFUF4A66erTiPMJLs8m3m75zEmagw3tr5RdRyrJQWQDYjwc2XqqPZ8tSeNLSfzVMcRzc1ggFVPgaMrjHxddRrR3HzbwLDZsG8pnP5VdRrRzAwGA7N2zsLF3oUXe72oOo5VkwLIRtzdO4IBsf5M/u4gxZWyl1CLtm8pnPnNuNqzi4/qNMIcejwEUdfDj08btzsRLdbyk8vZmbmTl/q+hJeTl+o4Vk0KIBuh0Wh4/ZbOlFfX8fJPR1THEc2l8Bysmwbd7ofYIarTCHPRaOCmD6CmDNZKq0BLlV6azvy987kl9hYGtBqgOo7VkwLIhoR6uzBzbDw/7M9g/ZFs1XGEqen1sPJJcPWD4a+pTiPMzauVscsz5Ss4vlp1GmFieoOemTtm4uPkw/M9nlcdp0WQAsjG3Nq9FUPaBzJ1xSEulteojiNMac/HcH47jF8ATh6q0wgVEu6CtiONyx+Uy9IXLcmXx75kb85eZvebjbuju+o4LYIUQDZGo9Ew5y+dqNMbmLHysOo4wlTyT8GvL0Gvv0ObgarTCFU0GuOyB/o6WD1RdRphIqnFqby7/13+GvdXeoX0Uh2nxZACyAYFejgz+6aOrD6UxU8pmarjiGul18HKx8EzDIa8pDqNUM0jyLjtydGVcPh71WnENarT1zF9x3SCXIOY0G2C6jgtihRANmpsQiijO4Uw48fD5JZWqY4jrsXO9yFjH4z/yDj1XYiOt0D8eOM2KKU5qtOIa7D0yFIO5x/mtf6v4eogr29TkgLIhs0e3xF7rYYp3x/CYDCojiOaIucobJoDfZ+GiN6q0whLMvpt0NrDT88Y14YSVudU4Sk+TP6Q++Pvp0tgF9VxWhwpgGyYr5sjc27uxMbjuXy374LqOKKxdLWw4u/gGwWDp6pOIyyNm59xPNDJtZD8peo0opFq9bVM2z6NCI8Inuz6pOo4LZIUQDZuWIdg/tItjFd+OkpmUaXqOKIxts6HnCPGXcEdnFWnEZYobrRxZtjaF6FYvuRYk0UHF3Gy8CSvDXgNJzsn1XFaJCmABLPGdsDNyZ7J3x+UrjBrkXkAts2Hgc9DaFfVaYQlGzEPHN3hx6ekK8xKHCk4wqKDi3ik8yN08OugOk6LZa86gFDPy8WB12/tzP1L9rBsdxr3XNdadSTxR+qqjV1f3q2hdX84n6g6kW0qKLz8vvQkqLDA7Uf6PGHcLHXvEuj5N9VpxB+o0dUwddtUQt1D6RnUk/05+1VHsijdgrqZ7FxSAAkABrUN4K5eEcz55RgDYwOI8JPZBhZr0xwoOAP9J8LFM6rT2K7CksvvKzgFek/zZ/kzju4Q0cdYBEXfYNxAVVikBckLOF9ynoc7Pcz50vOq41gcUxZA0gUm6k0b3R5fN0eeX56CXi9N5RYpfY9x2nvbEeAZqjqNsCbxN4GDK6x8zLhtirA4ybnJLD28lEHhgwhyC1Idp8WTAkjUc3ey581bE9hz7iJLdqSqjiN+r6bi/7u+Iow7fwvRGPbO0PkOSNsFuz9SnUb8TmVdJVO3G7u++ob2VR3HJkgBJC7RJ9qPB/tF8ua6E5zOLVMdR/yvjS9DcbpxVo/WTnUaYY38Y41bpfz6MuSdVJ1G/I/39r9Hdnk242LGodXIR7M5yN+yuMwLw+MI9XZh0vIU6nTSVG4RUrfC7oXQbjS4S9O4uAZxY8DFy9iaqKtTnUYAe7L2sOzYMq6PuB5/F3/VcWyGFEDiMi6Odsy/LYFDF4r4eOtZ1XFEdSmsfAL8YmWjU3Ht7ByNrYhZybDzPdVpbF55bTnTd0yntWdregfLau7mJAWQuKLurX14dGA07/56kmNZV5jtIsxn/XQozzWO35CmcWEKPm2M48g2zYHsw6rT2LT5e+dTUFXAuOhxaDQa1XFsirybiqt6bmgsbfzdmPRtCjV10hWmxKlfYd9SaD8O3KRpXJhQ25HgFmjsCqurUZ3GJm3P2M53J79jSMQQfJwtcP2oFk4KIHFVTvZ2vH17F07mlPLBb6dUx7E9lYWw6kkIiIMImRUiTMzOHrrcBbnHYOubqtPYnOLqYmbumEm0VzTdg7qrjmOTpAASf6hjmBdP3RDDgs1nOHihSHUc27JmMlSV/H/XlzSNi2bgFQ6xQ2HbW5AhKw6b07w98yitKWVM9Bjp+lJECiDxp568Pob2IR5M+jaFqlqd6ji24djPcPAbiB8PLtI0LppRzFDjopo/PAq1VarT2ISNaRv5+ezPDI8cjpeTl+o4NksKIPGnHOy0vHVbF84XVPDOBlk7pNmVF8BPz0BQR2jVU3Ua0dJp7SDhr1CYCpteU52mxSusKuTlnS/T1qctnQM6q45j06QAEg3SLtiD54a25ZNtZ9l3/qLqOC2XwQA/P2fc8LTT7dL1JczDM8S4vcrOfxpXihbNwmAwMHvXbKp11YyJkq4v1aQAEg326MAouoR7M+nbFCpqZAG1ZnH4ezj2I3S8BZwtcFNN0XJF3wA+kcZZYTXlqtO0SGvPrWXD+Q2MbDMSd0d31XFsnhRAosHstBreui2B7JIq3lh7QnWclqc0G1ZPgtCuxpsQ5qTRGhdILMmEX19SnabFyavI49Vdr9LBrwMd/DuojiOQAkg0UlSAOy8Mj2PpznPsPJ2vOk7LYTDAqmfAoDe2/gihgnsgxI2GPZ/A2S2q07QYBoOBl3a+hN6gZ2SbkarjiP8nBZBotAf6RtK7jS//+O4gpVW1quO0DMlfwql1xnE/0jQuVIocYNx2ZeXjxmUYxDX78cyPbM3Yyuio0bg6uKqOI/6fFECi0bRaDfNvS6CooobXVh9THcf6FV+ANS9Aq14Q3FF1GmHrNFpIuBMqCmDdNNVprF52eTbz9swjISCBdr7tVMcR/0MKINEk4b6uTBsdz9dJ6Ww6kas6jvUyGIwbndo5QIfxqtMIYeTqZ9x+5cC/4OR61WmslsFgYMaOGdhr7BkeOVx1HPE7UgCJJrurVzgD2wbw4vcHKa6QrrAm2bsYUrcYV3uWpnFhSSL6QEB743YsFbL0RVMsP7mcXVm7GB09Gmd7Z9VxxO9IASSaTKPR8Potnaio0fHST0dUx7E+F8/C+hnGfb4C4lSnEeJSGo2xMK8uM27LIholvTSdN5PepHtQd2K8Y1THEVcgBZC4JiFeLrw0tgMrDmSw9nC26jjWQ683DjJ1cIX4carTCHFlLt7Q4WY49C0cXaU6jdXQG/RM2z4NF3sXhrQeojqOuAopgMQ1+0u3MIbGBzFtxSEKyqpVx7EOuz8yrribcCdI07iwZGE9IKgT/PwslMvSFw3xxdEvOJB7gLHRY3Gyc1IdR1yFFEDimmk0Gubc3Am9wcD0lYcxGAyqI1m2vJPGhebaDAI/aRoXFk6jgc63G7dn+elZ48B9cVVni8/y3v736B3cm0ivSNVxxB+QAkiYRICHE6+O78Saw9msSslUHcdy6eqMWw24+BgXnBPCGjh5QMdb4fhPcOg71WksVp2+jmnbpuHp5MkNETeojiP+hBRAwmRGdw5hTOcQZv54hJySKtVxLNOOdyEr2bjlgJ2j6jRCNFxoFwjtBr9MgpIs1Wks0tIjSzlScIRx0eNwsHNQHUf8CSmAhEnNvqkjDnZapvxwSLrCfi/7MGyeC1HXGzedFMLa/GebllVPS1fY75y4eIIFBxbQN7QvrTxaqY4jGkAKIGFSPm6OzPtLJ347nsvyvRdUx7EcdTXww6PGvZbayl5Awko5ukGn2+D0Bjjwheo0FqNWV8vU7VPxc/FjUPgg1XFEA0kBJExuSHwQt3ZvxSs/H+VCYYXqOJZh65uQd/z/u77sVacRoumCOkJ4L1g7GYrSVKexCB8f/JjTRacZFz0Oe628vq2FFECiWcwcG4+Hsz2Tvz+IXm/jTeUZ+2DbWxA7FLzCVacR4trF3wx2TsZtXPR61WmUOpJ/hEWHFjEgbAAh7iGq44hGkAJINAtPZwdev6UzO04XsGz3edVx1Kmtgh/+Dp6hEDNUdRohTMPBxbhK9Lltxu1cbFS1rpop26YQ7BpM/7D+quOIRpICSDSbgW0DuLt3BHN+Oc65/HLVcdTY9CoUpkKXv4LWTnUaIUwnoB207mvczqXgjOo0Siw4sID00nTGxYzDTl7fVkcKINGspo5qj7+HI//4LgWdrXWFpe2CnR8YBz17SNO4aIHa32QcGL3ycdDrVKcxqwO5B1h6ZCmDwgcR6BqoOo5oAimARLNyc7Jn/q0J7D1fyJLtqarjmE9NubHryycSoq9XnUaI5mHvZBzYn74Hdn2oOo3ZVNRWMHXbVFp5tKJPaB/VcUQTSQEkml3vKD8e6teGN9ef4HRuqeo45vHrS1Caafxw0MjLTLRgftHQZiBsfAVyj6tOYxbv7n+XnIocxkWPQyuvb6slz5wwi38Mb0crHxcmfZtCna6Fzxo5uxn2fGLc6sJdmsaFDYgbbdzeZeVjxu1eWrDdWbv56vhX3BBxA34ufqrjiGsgBZAwC2cHO966LYFDGcUs3NKCB0xWlRinBvvFQuQA1WmEMA87R2NrZ1YK7HhHdZpmU1ZTxvTt04n0jKRXcC/VccQ1kgJImE3XCB8eGxTNextPcTSzRHWc5rFuKlQUQMKd0vUlbItPJETfAJvnQfYh1WmaxZtJb1JYXci46HFoNBrVccQ1Uv4OvWDBAiIjI3F2dqZ3797s2bPnD48vKiriySefJCQkBCcnJ9q2bcsvv/xiprTiWk0YEkt0gDsTv02mpq6FdYWdXA8H/m2cGeMqTePCBsWOAPcg47YvdTWq05jU1gtb+eH0DwxtPRRvZ2/VcYQJNLkA2rhxI2PGjCE6Opro6GjGjBnDr7/+2qhzfPPNN0ycOJFZs2axf/9+EhISGD58OLm5uVc8vqamhqFDh3Lu3Dm+++47Tpw4waJFiwgLC2vqryHMzMnejrduT+B0bhnvbzylOo7pVFyEVU9CYHuIuE51GiHUsLM3doXlnYAtr6tOYzLF1cXM3DmTGO8YugZ2VR1HmEiTCqAPP/yQESNG4OHhwYQJE5gwYQKenp6MGjWKBQsWNPg8b7/9No888ggPPvgg8fHxLFy4EFdXV5YsWXLF45csWcLFixdZuXIl/fr1IzIykkGDBpGQkNCUX0Mo0iHUi2dujOWjLWdITi9SHcc01kyG6jLodAdI07iwZV6tIHYYbH8HLuxTncYk5u6eS0VtBWOixkjXVwvSpAJozpw5vPPOO3z11Vc888wzPPPMM3z55Ze88847zJkzp0HnqKmpYd++fQwZMuS/YbRahgwZQmJi4hUfs2rVKvr06cOTTz5JUFAQHTt2ZM6cOeh0V1+Aq7q6mpKSkktuQr3HB0cTH+LJpG+Tqaq18gXUjq6CQ99Ch5vBxVt1GiHUixkCXmGw4lGorVSd5ppsPL+R1amrGR45HE8nT9VxhAk1qQAqKipixIgRl90/bNgwiouLG3SO/Px8dDodQUFBl9wfFBREdnb2FR9z9uxZvvvuO3Q6Hb/88gszZszgrbfe4tVXX73qdebOnYuXl1f9LTxcNqO0BA52Wt66PYH0wkrmrzuhOk7TlefDz89CcGcI66E6jRCWQWsHCX+FwvPw29Xfny3dxaqLvJT4EnE+cXTy76Q6jjCxJhVA48aNY8WKFZfd/+OPPzJmzJhrDnU1er2ewMBAPvnkE7p3784dd9zBtGnTWLhw4VUfM2XKFIqLi+tv6enpzZZPNE7bIA8mDW3L4h2p7Em9qDpO4xkM8NOzUFcNnW6Tri8h/pdHMLQbCYkL4PxO1WkazWAwMDtxNrW6WkZFjZKurxbIvikPio+P57XXXmPz5s306WNcBnzXrl3s2LGDSZMm8f7779cf+8wzz1zxHP7+/tjZ2ZGTk3PJ/Tk5OQQHB1/xMSEhITg4OGBn999N59q3b092djY1NTU4Ojpe9hgnJyecnJwa/TsK83h4QBTrj+bw/PIU1kwYgJtTk/5JqnHoOzj+E3R7AJw8VKcRwvJEDYacw7DiMXh8Jzi5q07UYGtS1/Br2q/c2vZW3B2tJ7douCa1AC1evBgfHx+OHj3K4sWLWbx4MUeOHMHb25vFixfzzjvv8M477/Duu+9e9RyOjo50796djRs31t+n1+vZuHFjfVH1e/369eP06dPo9f+dPn3y5ElCQkKuWPwIy2en1TD/tgRyS6uYt8aKltEvyYJfJkFoNwjtojqNEJZJo4XOd0FpFvw6S3WaBsutyOXV3a/S0a8j8X7xquOIZtKkr9upqabZ1HLixIncf//99OjRg169evHuu+9SXl7Ogw8+CMB9991HWFgYc+fOBeDxxx/ngw8+YMKECTz99NOcOnWKOXPmXLWVSViHNv5uTBnZnlmrjjC8QzD9Y/1VR/pjBgOsetr4/x1vUZtFCEvnHgBxYyHpU4gbY/GbAxsMBl7a+RIAI9pcPtZVtBxKF0K84447mD9/PjNnzqRLly4kJyezdu3a+oHRaWlpZGVl1R8fHh7OunXrSEpKonPnzjzzzDNMmDCBF198UdWvIEzk3uta0yfKjxe+S6GkqlZ1nD924As4vQE63Q6ObqrTCGH5IvuBf1v48QmoathEGVVWnl7JtoxtjI4ajauDq+o4ohlpDAaDoSEHTpw4kdmzZ+Pm5sbEiRP/8Ni3337bJOGaQ0lJCV5eXhQXF+PpKVMaLUn6xQpGvreNUZ2CeeNWC13bqSgNPrwOgjoaF3wTNiuvsITAYc9ecl/u+ncJ8JH3lSuqKICt842tpuMbvl6cOWWWZXLzjzfT1qct42LGqY4jruC2treZ7FwN7gI7cOAAtbW19f9/NTJSXjRVuK8r00e358UfDjGiYzA3xAX9+YPMSa83bnRq5wTx41WnEcK6uPpB/DhI/gLaj4V2ltW9pDfombFjBo52jgyLHKY6jjCDBhdAmzZtuuL/C2FKd/QMZ+2RbCZ/f4gNz/ng7WpBg9v3LoZz26D34+DgojqNENYn/DrjRqmrnoIn94Crr+pE9b498S17svdwT/t7cLZ3Vh1HmIHyzVCF+F8ajYbXb+lMda2OWauOqI7zXwVnYP0MaN0PAtqpTiOEddJooPMdUFMOv/xDdZp6aSVpvLX3LXoE9SDKO0p1HGEmTSqAysvLmTFjBn379iUmJoaoqKhLbkJciyBPZ165qSM/Jmey5lDWnz+guel1xnVMnNyhvYwLEOKaOHtBh7/A4e/gyErVadDpdUzbPg1XB1eGtB7y5w8QLUaTpsE//PDDbNmyhXvvvZeQkBAZ9yNM7qYuoaw5nMW0lYfp2cYXf3eFi1nu+hAuJEGfp8BeFtUU4pqFdYfsg/Dzc8ZWVfcAZVG+OPYFKXkp3NfhPhztLKjLXTS7JhVAa9asYfXq1fTr18/UeYQAjF1hr93ciWHvbGXaikMsvKe7mkI79zhsfAWiBoFftPmvL0RLpNEYt4/Z8gb8NAHuXKZkK5mzRWd5b/979A7pTWvP1ma/vlCrSV1gPj4++PpazuA10TL5uzvx2viOrDuSw4/JmeYPoKuDlY+Biy+0G2X+6wvRkjl5QKdb4cRqOPit2S9fp69j6vapeDt5c324ZS/OKJpHkwqg2bNnM3PmTCoqKkydR4hLjOwUwk1dQpn542Gyi6vMe/Ht70BWinG9H2kaF8L0QhKM3WG/PA8l5v2Ss+TwEo4WHGVc9Dgc7BzMem1hGRrcBda1a9dLuiBOnz5NUFAQkZGRODhc+o9n//79pksobN7L4zqQeKaAF384yGcP9DRPV1jWQdgyD6JvBB9pGhei2XT4C2x9E358Cu753ixdYScunuCj5I/oF9aPMI+wZr+esEwNLoDGjx/fjDGEuDpvV0fm3dKJh5bu5ZukdO7sFdG8F6yrgRV/B/cgiB3evNcSwtY5uhnHAyUtgv3/gu73N+vlanW1TNk2BX8Xfwa2Gtis1xKWrcEF0KxZ1rOTr2h5bogL4vYerZj981H6xfgT7tuMe/RseR3yTkD/58CuSfMEhBCNEdQBwnvD2ikQNbhZW10/SvmIM8VneLjTw9hr5fVty5o0Big9PZ0LFy7U/3nPnj08++yzfPLJJyYLJsTvzRgTj7erIy98dxC9vkFb2DXehX2w/W1oOxy8WjXPNYQQl4u/GRycjBum6vXNcolDeYdYfHgxA1sNJNgtuFmuIaxHkwqgv/71r/XbYWRnZzNkyBD27NnDtGnTeOWVV0waUIj/8HB24I1bO5N4toB/7zpv+gvUVsKKR8Er3Dj2RwhhPg7O0PlOOLfd2B1mYlV1VUzdPpUQtxD6h/U3+fmF9WlSAXT48GF69eoFwLfffkunTp3YuXMny5YtY+nSpabMJ8Ql+sX4c1+f1sxdc4zU/HLTnvy3V6HwvHHWl9bOtOcWQvw5/7bQuj9smGncfsaEPjjwARfKLjAuehxajewCJZpYANXW1uLkZFwR99dff2XcOOP2AHFxcWRlWcDWBaJFe3FkHEGezjy/PAWdqbrCzu+ExAXQbiR4SNO4EMq0H2tcI2jF343b0JjAvpx9/OvovxgcPpgAV3WrTgvL0qQCqEOHDixcuJBt27axYcMGRowYAUBmZiZ+fn4mDSjE77k62jP/tgT2pxXy6baz137C6jLjXl++bYwDMIUQ6tg7GVthL+yFxA+u+XQVtRVM2z6NcI9wrgu5zgQBRUvRpALo9ddf5+OPP2bw4MHcddddJCQkALBq1ar6rjEhmlPPSF8e7t+Gt9af5GRO6bWd7NdZUJptfNOVpnEh1PONMn4Z+W025B67plO9ve9t8irypOtLXKbRcwANBgNRUVGkpaVRV1eHj49P/c8effRRXF2bcXqyEP9j0rB2bDqRx6RvU/jhib442DXhze3MJkj6FDreAm7SNC6ExWg3CvKOG7vCHt4ITVitOTEzkW9OfMPINiPxdZHtm8SlGv2JYTAYiImJITs7+5LiByAyMpLAwECThRPijzg72PHWbQkczSrho81NGDBZVWyccuvf1rgjtRDCctg5GFtlsw/Btrcb/fDSmlJm7JhBG6829Ajq0QwBhbVrdAGk1WqJjY2loKCgOfII0SgJ4d48MTia9zee4nBGceMevHYKVBQap95K07gQlsc7AmKGwNY3jPvyNcKbSW9SVF3E2Oix5tk+R1idJr3rz5s3j3/84x8cPnzY1HmEaLSnb4glNsiD55enUF3XwFkjJ9ZC8jKIvwlcpWlcCIsVOwzcg+GHR6GuukEP2ZK+hRWnVzCs9TC8nbybN5+wWk0qgO677z727NlDQkICLi4u+Pr6XnITwpwc7bW8dVsCZ/LKeO/XU3/+gIqLsOopCIw3Lr8vhLBcWnvochcUnIbN8/708KKqImbtnEWsdyxdArs0fz5htZq0Ecq7775r4hhCXJv4UE8m3BjL2xtOMjQ+iK4RPlc/+JfnobYCOt9hlp2nhRDXyDPM2BK0412IGw2trj6mZ87uOVTWVTImeox0fYk/1KQC6P77m3e3XiGa4rFB0Ww4msOk5Sn88swAnB2usJrzkZVw+Hvoei84e5k9oxCiiaJvhJwjxq6wx3eAg8tlh6w/t54159Zwc8zNeDh6KAgprEmTR36eOXOG6dOnc9ddd5GbmwvAmjVrOHLkiMnCCdEY9nZa3ro9gQuFlby57sTlB5Tlws/PQXAChHYzf0AhRNNp7YyzworSYOPsy35cUFnAK7teob1vezr6d1QQUFibJhVAW7ZsoVOnTuzevZsffviBsrIyAFJSUpg1a5ZJAwrRGDGBHrwwvB1LdqSy++z/zFQ0GOCnZ0FfC51ula4vIayRRzDEjYJdH8K5HfV3GwwGXk58GZ1ex6ioUdL1JRqkSQXQiy++yKuvvsqGDRtwdHSsv/+GG25g165dJgsnRFM82K8NPVr78Px3KZRX1xnvPPgtnFgNHW817jMkhLBObQYZV4pe+ZhxGxvg57M/syl9EyPbjMTNwU1xQGEtmlQAHTp0iJtvvvmy+wMDA8nPz7/mUEJcCzuthvm3JZBfWsOcX45BSSb8MgnCukNIgup4QohrodEau8JKc2DDDHLKc5izew6d/DvR3q+96nTCijSpAPL29r7iru8HDhwgLCzsmkMJca1a+7kxdVQcy3af5+JXj4LGDjrcojqWEMIU3Pyh/VgMe5cw69en0Gq0jGgzQnUqYWWaVADdeeedTJ48mezsbDQaDXq9nh07dvD8889z3333mTqjEE1yd+/WTA9OwjdrG+XtbwdH2adOiBajdV9+CIlmR9FxbooYgov95bPChPgjTSqA5syZQ1xcHOHh4ZSVlREfH8/AgQPp27cv06dPN3VGIZpEW5zGQ+Wf8L1+ELMyZcFDIVqSjNpSXncxML6sgttO71EdR1ihJhVAjo6OLFq0iDNnzvDzzz/zxRdfcPz4cf79739jZ3eFtVeEMDe9HlY+gdbBGU2H8Xx33oUNmY5//jghhMXTGwzMyFiHk9aeoR5taZO6k5ALyapjCSvTpIUQ/yMiIoLw8HAAmXYoLEvSIji/Ha57gpv9NKzOrmbKPg96+F3Ex8mgOp0Q4hp8dTGZpIoL3OvbjRxHHzIL0+mx+3PWBcRQ4+SuOp6wEk1eCHHx4sV07NgRZ2dnnJ2d6dixI59++qkpswnRNPmnYcNMiBwA/m3RaGBut1Jq9RpmHJAp8EJYs/PVhbyTs5Werq1o4+QLGg37ovuh1dXQNWmZ6njCijSpAJo5cyYTJkxg7NixLF++nOXLlzN27Fiee+45Zs6caeqMQjScXmdcH8TJE+LG1N8d6KLnla6l/HzBmZ/TnRQGFEI0lc6gZ2rGWty1TtzoEVt/f5WjK/vbXEdEWhKtzicpTCisSZO6wD766CMWLVrEXXfdVX/fuHHj6Ny5M08//TSvvPKKyQIK0Sg7/wkX9kLfp8H+0kJnXHg16zKqmHHAg94BNQQ4S1eYENbkXwX7OFSZxf1+PXDUXjreNN0/irCL5+mW9AV5gW2pdpG9/sQfa1ILUG1tLT16XL4bb/fu3amrq7vmUEI0Se4x2PQqRA02rhT7OxoNzO5WilYDU/Z5YpD6Rwircboqn3/m7uA6t9ZEOHpffoBGw/6oPhgMerrv+RfyAhd/pkkF0L333stHH3102f2ffPIJd9999zWHEqLRdLXGXaJd/aHdqKse5udkYE63En7NcuKHNGczBhRCNFWtQcfUjLV427lwvcflX27+o8bBhX1RfQnLSKF1aqIZEwpr1OAusIkTJ9b/v0aj4dNPP2X9+vVcd911AOzevZu0tDRZCFGose1tyDkM/Z4FO4c/PHR4WA03R1TxUrI7fQNqCHHVmyejEKJJPs3bw4mqPB7y64m95o+XWsn0a835gGi67PuS3OA4Kl19zZRSWJsGF0AHDhy45M/du3cH4MyZMwD4+/vj7+/PkSNHTBhPiAbITIatb0DMEPCOaNBDXupSys5cXybv8+Dz/sWyObwQFupYZS4f5+2in3skoY6eDXrMgTbXEZi8kh67lrLt+ueQF7i4kgYXQJs2bWrOHEI0TV01rPg7eIRA7LAGP8zL0cDrPUp5YLs3X6U689eoqmYMKYRoihp9HVMy1hDo4M5A9zYNflytvRNJ0f0YeGw9bc5sJTVmUDOmFNaqyesACWERNs+FgtPG3aG1jZvUODi4hrvaVPLaQXfSy+WlIISl+ShvF+eqLzLOKx47TeNeozk+rTgb1JYu+77BtSyvmRIKa9akafBVVVX885//ZNOmTeTm5qLXXzqGYv/+/SYJJ8QfSk+CHe9B25HgGdqkU0zrXMbWHEeeT/Lkq0FFaKWlXAiLkFKRyZL8JAZ5RBHk0LQFTFMiexNUlEXPxM/YMuR5aGQRJVq2JhVAf/vb31i/fj233norvXr1km0whPnVVMCKR8ErAqJvaPJp3B0MvNmjhL9u9eHz0y48GFtpwpBCiKao1NcyNWMtoQ6e9HNr3eTz1Nk5kBTTn8FH1hBz4jdOxw0xYUph7ZpUAP3888/88ssv9OvXz9R5hGiY32ZD8QUYMAm017YBb9/AWh6IqeD1w+4MCq4hykNnopBCiKZ4P2cHWbUlPOLfG+01ttrkeYVwKjiezsnfkR3akTLPYBOlFNauSf+ywsLC8PCQPZWEIue2w64Pjev9uAeZ5JSTO5YR4qJjUpInOlk/TQhlksrTWXZxP9e7R+Nv72aScx5q3YMKJzd6JS4GvSx7IYyaVAC99dZbTJ48mfPnz5s6jxB/rLoUVj4OftHQZqDJTutiD/N7lJBy0Z5PTria7LxCiIar0NUwPWMdEY7e9HZr2JIWDaGzsycpuj++Bedod3ydyc4rrFuTCqAePXpQVVVFVFQUHh4e+Pr6XnITotmsnwFlOdD5LpMPaOzuX8cjbSt456gbJ4qvrVtNCNF4b+VsJb+unLFe8SYfW1rgGcSJ0I50OLgSz6IMk55bWKcmjQG66667yMjIYM6cOQQFBckgaGEep3+FfZ9Bx1vBzb9ZLvFch3J+y3ZiYpInK28oxEEmjQhhFjvLzvFt4UFGecbha988rbBHIroSUnSBXjs/ZeOIaRgauXSGaFma9Ozv3LmTxMREEhISTJ1HiCurLIIfn4SAOGjdfIPvne3g7Z4ljP/NhwXHXXk2vqLZriWEMCrRVTEjYz3RTn50dw1rtuvotfbsiRnAjYd+ov3h1RztfFOzXUtYviZ9v42Li6OyUqYLCzNa+yJUFUPnO5p9WftOPnU8GVfBB8fcOFwo3xCFaG6vZ22mRFfFGK/2zd6jUOTuz7GwBNofWY33RRnHasuaVADNmzePSZMmsXnzZgoKCigpKbnkJoRJHf8FUr6C+PHg4mOWSz7Vvpx2XnVMTPKkWmbFC9FsNpWcYVXxUYZ5tsXLztks1zzWKoFiV1967fwUra7WLNcUlqdJBdCIESNITEzkxhtvJDAwEB8fH3x8fPD29sbHxzwfUMJGlBfAT09DUEdo1ctsl3XUwls9S0gtteOdo6aZiiuEuFRRXSUvZa6nrZM/CS4hZruuQWvHnpj+eJTm0OHQj2a7rrAsTWrfl41RhdmsngS1VdDpNrPv6BznpeO5DuXMP+zG0NBquvvVmfX6QrR0r2ZtpMpQx2gzdH39XombL4fDu9Lp6DoywrpyMSDarNcX6jWpABo0SHbWFWZw+Hs4ugK63gfOXkoiPNq2gvWZTjyf5MkvQy7iIkOChDCJtcUnWFdykr94d8TDzklJhpNhnQgrTKdX4mI2jJqFzl5NDqFGkyf5btu2jXvuuYe+ffuSkWFcU+Hf//4327dvN1k4YcNKc+DniRDSBUK7Koth//9dYZkVdrxx2F1ZDiFakvzacl7N2ki8cxAdnE2zmntTGDRa9sQMwLWigI4pK5TlEGo0qQD6/vvvGT58OC4uLuzfv5/q6moAiouLmTNnjkkDChtkMMBPE8Cgh063mr3r6/eiPXS80KmMz067kpjroDSLENbOYDDwcuYGdAY9o7zaKV9HrszFi0MRPWh74lcCco4rzSLMq0kF0KuvvsrChQtZtGgRDg7//UDo168f+/fvN1k4YaNSvoKTa4zFj6NltLo8GFNJb/8a/rHXk7JaWfhTiKb6qfgYm8vOMsorDleto+o4AJwKiSfXM4SeiZ9hX1ulOo4wkyYVQCdOnGDgwMv3YfLy8qKoqOhaMwlbVnwB1rwArXpCcGfVaeppNfBmjxIuVmt47aBlFGVCWJvs2lLmZP1GZ5dg4pwDVcf5L42GvTH9cKouofOBb1WnEWbSpAIoODiY06dPX3b/9u3biYqKuuZQwkYZDPDjU6C1h/ibVae5TIS7nqmdy/gq1YUt2ZbxzVUIa2EwGJiZsQ57jZbhnu1Ux7lMubMnKa17En16K0GZh1XHEWbQpALokUceYcKECezevRuNRkNmZibLli3j+eef5/HHHzd1RmEr9n0GZzdBp9vB0TJ3ZL87qooBgTVM3udBcY10hQnRUMsLD5FYnsZozzhctJY5lu5sUDuyvcPosXspDjWyDU5L16QC6MUXX+Svf/0rN954I2VlZQwcOJCHH36Yv//97zz99NOmzihswcVUWDcNIvpAYHvVaa5Ko4HXe5RQXqvh5RTpChOiIdJringzezPdXMOIcW6ejYxNQqNhb3Q/7Gsr6LL3K9VpRDNrUgGk0WiYNm0aFy9e5PDhw+zatYu8vDxmz55t6nzCFuj1sPJxcHCFeMvfnDDUVc+sLmX8cN6F9ZnSFSbEH9EbDMzIWIeL1oGhHrGq4/ypSid3kiN7E3kukdALB1THEc2oUcu6PfTQQw06bsmSJY0KsWDBAt58802ys7NJSEjgn//8J716/fm2B19//TV33XUXN910EytXrmzUNYUF2b0Q0hLhuifB3jx7AV2rW1pXsTbDian7POnhV4Cvk0F1JCEs0pcXD7CvIoP7fLvhpLWOlUTPB8QQdvE83Xd/Tr5/DDXOHqojiWbQqBagpUuXsmnTJoqKiigsLLzqrTG++eYbJk6cyKxZs9i/fz8JCQkMHz6c3NzcP3zcuXPneP755xkwYECjricsTP4p+PUliBwI/pb/7fA/NBqY072UOgPMOCBvjkJcSWr1Rd7J2UYv13AinXxVx2k4jYZ9UX3R6OrolvSF6jSimTSqHH/88cf56quvSE1N5cEHH+See+7B1/fa/lG//fbbPPLIIzz44IMALFy4kNWrV7NkyRJefPHFKz5Gp9Nx99138/LLL7Nt27Y/nHpfXV1dv1AjILvVWxJdHaz4O7h4QfsxqtM0WqCzntldS3l6txcj0qsZG1795w8SwkbUGfRMy1iLh9aJGz1jVMdptGpHV/ZHXUefk5u5cH4PF1qbbzNmYR6NagFasGABWVlZvPDCC/z000+Eh4dz++23s27dOgyGxncB1NTUsG/fPoYMGfLfQFotQ4YMITEx8aqPe+WVVwgMDORvf/vbn15j7ty5eHl51d/Cw8MbnVM0k53vQ+YBSLgL7KxzLM3Y8GpGt6pixgEPcquavLOMEC3O0vy9HK7MZpx3PA4aO9VxmuSCfxTpfm3olvQFTpXFquMIE2v0O7aTkxN33XUXGzZs4OjRo3To0IEnnniCyMhIysrKGnWu/Px8dDodQUGX7gUTFBREdnb2FR+zfft2Fi9ezKJFixp0jSlTplBcXFx/S09Pb1RG0UxyjsCm1yDqevBpozrNNZndtRR7DUzZ50ETvgcI0eKcrMrjw7yd9HFrTbijt+o412R/VB8MBuix+3PkBd6yXNNXVq1Wi0ajwWAwoNPpTJXpqkpLS7n33ntZtGgR/v4Nm0rp5OSEp6fnJTehWF0N/PB3cAuEtiNVp7lmvk4G5nYvYWOWE9+dt45B3EI0l1qDjqkX1uJj58pgj2jVca5ZjYMze6P7Epp5kNapO1XHESbU6AKourqar776iqFDh9K2bVsOHTrEBx98QFpaGu7ujVsXxd/fHzs7O3Jyci65Pycnh+Dg4MuOP3PmDOfOnWPs2LHY29tjb2/Pv/71L1atWoW9vT1nzpxp7K8jVNg2H3KP/n/Xl3XMCvkzQ0Nr+EvrSl5JdiezQrrChO1alLebU9X5jPOOx17TMl4LWb4RnAuMpever3Apv6g6jjCRRv3rfOKJJwgJCWHevHmMGTOG9PR0li9fzqhRo9BqG/8P3dHRke7du7Nx48b6+/R6PRs3bqRPnz6XHR8XF8ehQ4dITk6uv40bN47rr7+e5ORkGd9jDTIPwNb5EDMEvFvW8zUroQx3BwOT93pKS7mwSUcqc/g4bzf93SMJdWhZre3Jkb2o1drRY9dn0hXWQjTq6/fChQuJiIggKiqKLVu2sGXLlise98MPPzT4nBMnTuT++++nR48e9OrVi3fffZfy8vL6WWH33XcfYWFhzJ07F2dnZzp27HjJ4729vQEuu19YoNoq+OFR8AyF2GGq05icl6OBed1LuX+7N8vOOnNPtOwqLWxHtb6OqRlrCHLwYIC7dY/ru5Jaeyf2xvRn4NF1RJ3ewtnYwaojiWvUqALovvvuQ6Mx7f5Hd9xxB3l5ecycOZPs7Gy6dOnC2rVr6wdGp6WlNal1SVigzXPg4lnoPwm01jkr5M8MCq7hr1GVzDnozsCgGiLc9aojCWEWC3J3klZdxMP+vbBrIV1fv5fjHcaZoHYk7P+WnJAOlLsHqI4kroHG0JT561aspKQELy8viouLZUC0OaXthiXDIW60sfurBSur1TBigy+hrjq+HlSEVvZMbZHyCksIHPbsJfflrn+XAB/be19Jrsjk/tRvuN4jmn7ukarjNCt7XS1DU36k0iOQzUNegBZa7Fmq29reZrJzyTMnml9NuXHBQ59IiL5BdZpm5+5gYH7PEvbkO7LklIvqOEI0q0p9LVMz1hLm4Ekft9aq4zS7OjsHkqL7EZB3mtgTv6qOI66BFECi+f36MpRkGGd92ci3pesCankwpoI3D7tzuqRldvcJAfBeznaya0sZ5x2P1sRDJCxVvlcIJ0M60Cn5BzyKs1THEU1kG59GQp3UrbDnY2g3GtwDVacxqxc6lhHmqmNSkid1MhRItEB7ytNYdvEAN3hE42fvpjqOWR2K6E6Fkxs9Exej0Tf/OnjC9KQAEs2nqgRWPg5+sdDG9jatdbGH+T1LOFRoz8cnXVXHEcKkynU1TLuwjkhHH3q5tqwlLRpCb2fPnpgB+F48T7tj61THEU0gBZBoPuunQ3k+JNxpM11fv9fNr46/t6vg3SNuHCuSrjDRcryZs4VCXQVjveJNPjvYWlz0COR4WCc6HPwRr0LZZsna2Oankmh+p36F/Z9D+3Hg6qc6jVLPxpcT5aFj0l5PaqQrTLQA20tT+b7wEEM8Y/Gxt+2B/kfDu1Lq4mXsCtPVqY4jGkEKIGF6lYXw4xMQ0B4iLl/R29Y42cFbPUs4WWzPB8dsa5yEaHmKdVXMyFxPjJMf3VzCVMdRTq+1Y0/MALyKM4k/8rPqOKIRpAASprdmMlSXQuc7wEabxn+vo08dT7UvZ8FxVw5ebBn7nwnbNC9rE2W6asZ4tbfZrq/fK3L342irBOKO/IJPwTnVcUQDSQEkTOvYz3DwG+gwHly8VaexKE/GVdDeq46JSZ5UyaQRYYU2lpzm5+JjDPdsi6eds+o4FuV4WAJFbr70SvwUra5WdRzRAFIACdMpz4efnoGgjhDWU3Uai+Oghbd7lpBWbsc7R6QrTFiXi3UVvJy5gXbOAXR2CVEdx+IYtFqSYgbgVppHh4MrVccRDSAFkDANgwF+ngh11dDpdun6uoq2Xjomdijnk5Ou7M13UB1HiAYxGAy8mrmRGkMdoz3jpOvrKkpcfTgS0ZV2x9bjl3dKdRzxJ6QAEqZx+Hs49iN0vAWcbW8vpMZ4pG0FXX3reH6vBxUyaURYgbUlJ9hQeoqRnnG42zmpjmPRToR2pMAjkJ6JS7Crq1YdR/wBKYDEtSvNhtUTIbQbhHZVncbi2WmMCyRmV9rx+iF31XGE+EN5tWXMztxIB+cg4l2CVMexfBotSTH9cakopFPy96rTiD8gBZC4NgYDrHrG+N+Ot6hOYzWiPHRM7ljG52dc2ZkrXWHCMhkMBl7K3ADASK92itNYjzIXLw617kHsyd8IyD6mOo64CimAxLVJXgan1hnH/TjKwN7GuD+mkusCavjHXk9Ka2VMhbA8K4uOsLUslVFecbhqHVXHsSqng9uT6xVCz11LsK+tVB1HXIEUQKLpitKNa/606gXBHVWnsTpaDbzZo4SiGg2vHZSuMGFZsmpKeD17M11cQmjnHKA6jvXRaEiK7o9jdRkJ+79VnUZcgRRAomkMBvjxSbBzMK75I5ok3E3P9M5lfJ3qwqYs+YYtLIPBYGBG5nrsNVqGeUrXV1NVOHuQEtmLqDPbCM44qDqO+B0pgETT7F0MqVuMqz07yE7n1+LONlUMCqpm8j4PimqkK0yo923hQXaXpzHGqz3OWlm5/FqkBrYly6cVPXYvxaG6THUc8T+kABKNd/EsrJsOrftCQJzqNFZPo4HXe5RSpdPwUrKH6jjCxqXXFDE/ewvdXcOIdrLtjYxNQqNhb1Q/7Oqq6br3K9VpxP+QAkg0jl4HKx83Dnhuf5PqNC1GsIuel7qUsTLNmbUZss6KUENvMDAtYy2uWgeGesSqjtNiVDm5cSCyN63P7yYsfZ/qOOL/SQEkGmfXR5C2GxLuBHv5oDalmyOqGBZazbT9HhRUS1eYML8vCvaTXJHJWK94HKXry6TSAqLJ8G1Ntz3/xrGqVHUcgRRAojHyTsDGl6HNQPCLUZ2mxdFo4LVuJegNMG2/BwaD6kTClpytvsi7udvp5RZOaycf1XFaHo2GfVF90ejq6L7n38gLXD0pgETD6Opgxd/BxRfiRqtO02IFOBt4rVspazOcWZUuLWzCPOoMeqZdWIO3nTM3eMiXm+ZS7ejCvqg+tLqwn/Dze1THsXlSAImG2fEuZKUYu77sZLp2cxrVqpqx4VXMPOBBTqW8REXz+yw/iSNVOYz1isdBY6c6TouW4d+GNP8ouiUtw7miSHUcmybvruLPZR+CzXMh+gbwiVSdxia80qUURzsDL+6TrjDRvE5U5fFhbiJ93SJp5eilOo5NONDmOnQa6LF7qXSFKSQFkPhjdTXww9/BPQhiR6hOYzN8nAzM61bKpmwnlp9zVh1HtFC1eh1TL6zB396VQR5RquPYjBoHZ/ZF9SUk6zCRZ3eojmOzpAASf2zrG5B3HBLuAjuZFWJON4bWcFtkJa+kuHOhXF6qwvQ+zt/F6eoCxnrHY6+Rf2PmlOUbQWpgLF32fYVreYHqODZJ/sWLq8vYB9vehtih4NVKdRqbNCOhDE8HAy/s9UQvLeXChA5XZrMobw8D3NsQ4uCpOo5NSo7sTa2dAz0SPwODXnUcmyMFkLiy2ipj15dXGMQMVZ3GZnk6GHijRwk78xz54oyL6jiihajW1zH1whqCHTzo7x6pOo7NqrN3JCm6H0G5x4k+tVl1HJsjBZC4sk2vQmGqsetLK7NCVOofVMs9URXMPeTOuTJ5LsS1+yB3B+k1xYzzisdOur6UyvUO43RQHJ0PfIdbaY7qODZF/uWLy51PhJ0fQLtR4BGiOo0ApnQuJ8BZz/NJHuikK0xcgwMVGXxesI/BHlEEOrirjiOAg5E9qXJwplfiEtBLV5i5SAEkLlVTDiseA982EDVYdRrx/9zsDczvUcK+AgeWnJKuMNE0Ffpapl5YS7iDN9e5tVYdR/w/nZ0DSTH98cs/Q9sTG1THsRlSAIlLbZgFpZnQ+S6QpnGL0iuglr/FVvLmYXdOlUhXmGi8d3O2kVNXxljveLQa2W/OkuR7BnMypAMdU1bgUZypOo5NkE848V9nN0PSIogbA+4BqtOIK3i+YxnhbjomJXlSJy3lohF2laXx1cVkbvSIxs/eVXUccQWHI7pT7uROr52L0eh1quO0eFIACaOqElj5BPi3hcj+qtOIq3C2g7d6lnC40J6PTsiHmGiYMl01MzLW0sbRh56u4arjiKvQ29mzJ2YAPoVpxB1dozpOi2ezK9utSs7A1b1EdQyL0S15BuFl+Rxreys16cWq44g/cXOIgfeO+nJDSA0dvOtUxxEW7o3sLRTqKrndJwGNdH1ZtEKPAI6HdSL+0E9khnWm2CdCdaQWy2YLoKo6Pdpa6UMACM3dSmTaD5wNHUO5nRcyzcjy3Rycz94iNybt8WDVkEIcpS1XXMXW0rOsKDrMGK/2eNvLAHprcDS8KyFFF+i1czG/jpiBQVbhbxbytmnjHGuK6X1oJoXuseR5d1UdRzSQg9bAE5FZnCq15/2jbqrjCAtVXFfJzMz1xDr50dUlVHUc0UB6rR17YgbgWZJF/OGfVMdpsaQAsnE9js7BXldBauhokKZxqxLpWs0tIfl8eNyV5IvyDVFcbm72Jip0tYz2ai9dX1am2M2Po6260P7IL/jkn1Udp0WSAsiGhWdvIDLrF84HD6dW9gKySuODC2jjVsXEPZ5UyaQR8T9+LTnF6uLjDPdsi6eds+o4ogmOt+pMobs/vRIXo62rUR2nxZECyEY5VRfQ6/ArXPSIo8Crk+o4oonsNPBE6yzSy7XMPyyr+gqjgroKXs7cQJxzIJ1cglXHEU1k0GjZE9Mft/J8Oh5coTpOiyMFkC0yGOh5ZDZaQy2poaOk68vKtXKp4Y7QfBafcmFPnoPqOEIxg8HA7MxfqTXoGe0ZJ11fVq7U1YfD4d1oe/xX/HNPqo7TokgBZIMiM1cTkbORc8EjqbOXVoOWYHTQRdq5VzIpyYPyOvnAs2W/FB9nY+lpRnq2w83OUXUcYQInQztQ4BlIz8Ql2NVWqY7TYkgBZGNcqnLpcfQ18r06ctErXnUcYSJaDTzeOovcKi3zDsmsMFuVW1vGq1kb6egSTLxLkOo4wlQ0WvZED8C5sojOyd+rTtNiSAFkSwwGeh+aCWg4FzxSdRphYsHOtdwdlsu/z7iyPUe6wmyNwWBgVuZ6NGgY6dlOdRxhYuUunhxs3YOYU5sIzD6qOk6LIAWQDYm6sILQ/B2kho5GJwuitUhDA4ro6FHOP/Z6UlIrXWG2ZEXRYbaXnWO0V3tctFIAt0RngtuT4xVKz8TPsK+pUB3H6kkBZCNcKzPpfux1cr27UOTRVnUc0Uy0GnisdRZFNRpmp8j4LluRWVPC69mb6eISSltnf9VxRHPRaNgb3R+HmnK67PtGdRqrJwWQLTDoue7gDPRaR9KCh6lOI5pZgFMd97XKYfk5FzZmyiDYlk5vMDAjYx2OGjuGecqXm5auwtmd5MhetEndQUhGiuo4Vk0KIBvQNu1rgi/u4WzoGHSyIJpNuN6vmK5eZUze50FhtXSFtWTfXExhT0U6Y7za46yVFcFtwbnAWLJ8wum++3Mcq8tUx7FaUgC1cB7l5+ly/B1yfHpQ4h6lOo4wE40GHo3IpkoHM5M9VMcRzSStupC3c7bSw7UVUU5+quMIc9Fo2BvdD7u6aromfak6jdWSAqgF0xh0XHdwGrX2rqQFDVEdR5iZr2MdD4bn8FO6M79ccFIdR5iYzqBnWsZa3LSODPGIUR1HmFmVoyv721xHRNoewtL2qo5jlaQAasHapf4b/6KDpIaORS8Lotmkfj4l9PYuZdp+d/KqpCusJfl3wX5SKrMY6x2Po3R92aR0/ygu+EXSfc+/caosVh3H6kgB1EJ5lp4h4eT7ZPv1ptStteo4QhGNBv4WkY1eb2Dafk8MBtWJhCmcqSrg/dwd9HaLIMLRW3UcoYpGw/42fTAY9HTf82/kBd44UgC1QBp9LX0OTqXa0Zv0wOtVxxGKeTno+FtENusznViZJl1h1q7OoGdqxhq87Zy53iNadRyhWLWjC/uj+hCWkUzEuV2q41gVKYBaoA5nF+NbcoyzoeMwyIJoAujtU0Z/32JmHvAgu1Je9tZscf4ejlflMc4rHgeNneo4wgJk+EVyPiCarnuX4VxRqDqO1ZB3whbGu+Q4HU8vJNO/H+WuYarjCAvyYHgODho9k/d6SEu5lTpemctHuYn0dW9NmKOX6jjCghxocx06jZYeu5dKV1gDSQHUgmh1NfRNmUKlUwAZAYNUxxEWxt1ez6Ots9iS48TXqbIelLWp0dcxNWMtAfbuDJIlLcTv1No7sTe6HyFZR2hzZpvqOFZBCqAWpOOZhXiWp3I2bBwGrTSNi8t19SrnBv8iZqe4k14uL39rsjBvF2erCxjnHY+dRp47cblsn3DOBrYlYf83uJblq45j8eRV1EL4FR2kw5nFZAQMoMI5WHUcYcHubZWLm52O5/d6opeWcqtwsCKLxflJDHSPIthBFrYUV5cS2YsaOwd67loCBr3qOBZNCqAWwE5XRZ+UqZS7hJDp3191HGHhXO30PNY6i915jvzrjIvqOOJPVOlrmZqxhhAHD/q5y5IW4o/V2TuSFNOfwNyTxJzcpDqORZMCqAVIOPk+bpUZnAkbB9I0Lhqgo2cFwwMKmXfQjbOl0l1qyf6Zu5OMmhLGeXVAK69v0QB5XqGcDm5Pp+TvcC/JVh3HYsmrycoFXNxHu3NfcCHweqqcAlTHEVbkr2G5+DjWMSnJA510hVmkfeUX+HfBPq73iCbAwU11HGFFDrbuQZWDCz0Tl4BeusKuxCIKoAULFhAZGYmzszO9e/dmz549Vz120aJFDBgwAB8fH3x8fBgyZMgfHt+S2ddV0OfgVEpdw8n26606jrAyznYGHmudRfJFBxaddFUdR/xOha6GaRlrCXf0prdbhOo4wsro7BzYEzMAv4KztDu+TnUci6S8APrmm2+YOHEis2bNYv/+/SQkJDB8+HByc3OvePzmzZu566672LRpE4mJiYSHhzNs2DAyMjLMnFy9LifexqU6n7Oh0vUlmibOvZIxQRd564gbJ4ulK8ySvJ2zjby6csZ5xaPVyD5uovEKPIM4GdqRDgdX4llke5+Rf0b5p+bbb7/NI488woMPPkh8fDwLFy7E1dWVJUuWXPH4ZcuW8cQTT9ClSxfi4uL49NNP0ev1bNy40czJ1QrO30nbtG9ID7yRaidf1XGEFbs9NJ8gxxqeS/KkVlrKLcLOsvN8U5jCjR4x+NpL65xousMR3Sh38qRX4mI0+jrVcSyK0gKopqaGffv2MWTIkPr7tFotQ4YMITExsUHnqKiooLa2Fl/fKxcB1dXVlJSUXHKzdg61pVx3cAbFblHk+PZQHUdYOUetgSciszhWZM+Hx+XDVrVSXTUzMtYR5ehLD9dWquMIK6fX2rMnpj9eRenEHVmjOo5FUVoA5efno9PpCAoKuuT+oKAgsrMbNnJ98uTJhIaGXlJE/a+5c+fi5eVVfwsPD7/m3Kp1O/Y6jrXFnA0da9zuW4hrFO1Wxc0hBbx/zI3Dhfaq49i0N7I3U6yrYqx3PBp5fQsTKPQI4HhYZ+IP/4T3xfOq41gM5V1g12LevHl8/fXXrFixAmfnKy/tP2XKFIqLi+tv6enpZk5pWmE5m4nO+JG04GHUyF5AwoT+EpxPhEs1E5M8qNapTmObtpSeZWXREYZ5xuJlJ9uVCNM52qoLJa4+9EpcjFZXqzqORVBaAPn7+2NnZ0dOTs4l9+fk5BAc/MerGc+fP5958+axfv16OnfufNXjnJyc8PT0vORmrRxriuh9eBaF7rHkeXdRHUe0MPZaeLx1FmdL7XnvqEy5NreiukpmZawn1smfLi6hquOIFsagtWNPzAA8SrKJP7RKdRyLoLQAcnR0pHv37pcMYP7PgOY+ffpc9XFvvPEGs2fPZu3atfToYTtjYHoceQ07XRWpoWOk60s0i9au1dwaks/CE67sL5CuMHN6Les3Kg21jPFqL11folkUu/lyJLwrcUfX4pt/RnUc5ZR3gU2cOJFFixbx+eefc+zYMR5//HHKy8t58MEHAbjvvvuYMmVK/fGvv/46M2bMYMmSJURGRpKdnU12djZlZWWqfgWzCM9aR2T2Ws4HD6dW9gISzWhccAFRblVMTPKkUiaNmMW64pOsLTnBcM92eNg5qY4jWrATYZ246O5Pr8TF2NVVq46jlPIC6I477mD+/PnMnDmTLl26kJyczNq1a+sHRqelpZGVlVV//EcffURNTQ233norISEh9bf58+er+hWanXN1Pr2OzOaiZ3sKvDqqjiNaODsNPBGZRWaFljcPu6uO0+Ll15UzO+tX2jsH0tE56M8fIMQ1MGi0JMUMwLW8gI4pK1THUcoi2rifeuopnnrqqSv+bPPmzZf8+dy5c80fyJIYDPQ8/Aoag47UkFHS9SXMIsy5hjtD8/jsdCDDwqq5LkAGTTYHg8HAK5m/ojPoGeUZJ11fwixKXb05FNGdLid+JaNVV/KD2qmOpITyFiDxxyIzfyY8dxPnQkZSZy8DU4X5jAwsJM69kueTPCivkw/m5vBz8TE2lZ5hpGccbnaOquMIG3IqJJ48z2B67lqCfW2V6jhKSAFkwVwqs+lx9DXyvTpR6NledRxhY7QaeCwyi/wqLXMOSvFtatm1pbyW9RudnINp7xKoOo6wNRotSTH9ca4spvOB5arTKCEFkKUyGLju8CwMGjvOhYxQnUbYqGCnWu5ulcuys65szZYWClMxGAzMyliPHRpGeNlm94NQr9zZk5TInkSf3kJQ5mHVccxOCiALFZ3+HSH5O0kNGY3OzkV1HGHDhvoX0dmznBf2eVBcI11hpvB94SF2lp9ntFd7XLQOquMIG3Y2KI4c71B67F6KQ02F6jhmJQWQBXKryKDb8TfJ9elKsUes6jjCxmk08PfWWZTUwCspMivsWmXUFPNG9ha6uoQS6+yvOo6wdRoNSdH9caipoMu+r1WnMSspgCyNQc91B6ej0zqRFjRMdRohAPB3rOP+Vrl8f96FDZnSFdZUeoOB6RnrcNLaMcyzreo4QgBQ6eROcmQvIlN3EnIhWXUcs5ECyMK0Pf8VQYV7SQ0di04WRBMWZJBfMd29ynhxnweF1dIV1hRfXTzA3ooLjPWKx0lrEauQCAHAucBYMn3C6bH7cxyrSlXHMQspgCyIR/k5upx4h2zfnpS4t1EdR4hLaDTwSOssanQw44CsRt5Y56oLeSdnGz1dW9HGyVd1HCEupdGwL7ofWl0N3ZKWqU5jFlIAWQiNQUefg9OotXcnPehG1XGEuCIfBx0Phmfz8wVnfk6XFsqG0hn0TMtYi7vWiRtlXJ+wUFWOruyP6kN4+l5and+jOk6zkwLIQsSlfo5f0SHOho1Fr5UxFsJy9fUppY9PCdMPeJBbJW8hDfF5wT4OVWYx1jseR62d6jhCXFW6XxvS/SLplvQFTpXFquM0K3n3sgBepafofPIDsvyuo8w1QnUcIf6QRgMPReSAQc/UfR4YDKoTWbZTVfl8kLuD69xaE+HorTqOEH9Mo2F/VB8MBgPd9/yLlvwClwJIMY2+lj4pU6l29OZC4PWq4wjRIJ72Oh6OyObXLCd+SHNWHcdi1Rp0TM1Yg4+dK9d7RKmOI0SD1Di4sC+qL2EZKbROTVQdp9lIAaRYhzOf4l16krNhN2GQWSHCivT0LmOgXzEvHXAnq0LeSq7k07w9nKzKZ5xXPPYa6foS1iPTrzXnAmLosu9LXCouqo7TLORdSyGf4qN0PPMxmQH9KHcJVR1HiEa7v1UOjlodL+yVrrDfO1qZw8d5u+jnHkmoo6fqOEI0WnKb3ug0dvTYtbRFdoVJAaSIVldD35QpVDoFkuk/UHUcIZrE3V7PoxHZbMt14stU6Qr7jxp9HVMy1hDo4M5AWdJCWKlaeyeSovsRnH2UqNNbVccxOSmAFOl0+kM8Ks5zJmwcBpkVIqxYF69ybvQv5NUUd9LK5C0F4MO8RM5XFzLOqwN2Gvk7EdYrx6cVZ4PakrD/G9zK8lTHMSl5ZSrgV5hC/NnPyAgYSKVzkOo4Qlyze1vl4WGv4/m9nuhbXkt5o6RUZPJZ/l4GeUQR5CB7pwnrlxLZm2oHJ3okfgYGveo4JiMFkJnZ6Srpc3AqZS6hZPr3Ux1HCJNwsdPzWOss9uQ7svS0i+o4ylTq65iasZZQB0/6urVWHUcIk6izcyApuj+BeSeJOfGb6jgmIwWQmSWceB+3yizOho0DaRoXLUgHjwpGBl7k9UPunCm1zW7dRXm7yaotYZx3PFp5fYsWJM8rhFMh8XRO/g73kmzVcUxCXqFmFFiQRNz5L7gQeD1VTv6q4whhcneF5eHrWMukJA/qWk5LeYN9V3iI692j8bd3Ux1FCJM7FNGDCic3eiUuRqPXqY5zzaQAMhP7unKuOziNEtfWZPv1Vh1HiGbhpDXwROtMDl504JOTrqrjmF0rRy96u8lq7qJl0tnZkxTdH9+Cc7Q9tk51nGsmBZCZdD3+Fi41BZwNG2vcS0CIFqqtexVjgy7yzlE3jhfbVlfYCM+2aOT1LVqwAs8gToR2pMOhH/EsuqA6zjWRAsgMQvJ2EJu+nLSgIVQ7+qqOI0Szuy00n2CnGibu8aTWhrrCvO1sdwC4sB1HIrpS5uxJr52L0ejrVMdpMimAmplDbQm9D82gyC2aXJ/uquMIYRYO/98VdqLEng+OyXgYIVoSvdaePTED8Cq+QPvDq1XHaTIpgJpZ96PzcKwtJTVsjHR9CZsS5VbNzcEFfHDclUOFss+dEC1Jkbs/x8ISaH9kNd4Xz6mO0yRSADWjsJzfiMr8ifPBw6hx8FIdRwizuzkknwiXaibu8aDK+ieNXGJbaarqCEIodaxVF4pdfem1czFaXa3qOI0mBVAzcaoppPfhlyj0aEu+d4LqOEIoYa+BJyIzOVdmzztHWk5XWGFdJW9kb1EdQwilDFote2L6416aS4eDP6qO02hSADWTHkdexU5XTWrIaOn6EjYtwqWG20LzWHTSlX35LaMr7NWsjdQYrHfwpxCmUuLmy5HwLrQ7tg6/vNOq4zSKFEDNICJrLa2z13MuZAS1Dh6q4wih3Nigi8S4VTEpyZNKK68b1hafYH3JSW7wiFEdRQiLcDKsExc9AuiZuAS7umrVcRpMCiATc67Op+fh2RR4xnPRs4PqOEJYBK0GHo/MJKtSy+uHrXeD0PzacmZn/kq8cxBxTgGq4whhEQwaLXtiBuBaUUCn5B9Ux2kwKYBMyWCg16GX0KDnXMgo6foS4n+EOtdyZ2geS0+7sjPXQXWcRjMYDLycuQE9BkZ5tZMFD4X4H2UuXhyM6EHsyY0E5BxXHadBpAAyoTYZq2iVt4VzIaOos7e9bQCE+DMjAguJ96jg+SRPymqtq4BYVXyUzWVnGeUVh6vWUXUcISzO6ZB4cj1D6Jm4BPvaKtVx/pQUQCbiWplNj6NzyfPuTKFnnOo4QlgkrQYeb51FYbWG1w5aT1dYdm0pc7M20dklmDjnQNVxhLBMGg1JMf1xqi4lYf+3qtP8KSmATMFgoPehGei19pwPHq46jRAWLdCplnta5fBVqgubsy2/JcVgMDAzYx32Gi3DPdupjiOERatw9iCldU+izmwlKPOw6jh/SAogE4hJX05IwS5SQ0ajk72AhPhTN/oX08WznBf2elBcY9ldYcsLD5FYnsZozzhctNY3dkkIczsb1I5s7zB67voMh5py1XGuSgqga+RWkU6342+S49ONYpkWK0SDaDTwaOssymvhpWTL7QpLrynizezNdHMNI8bZX3UcIayDRsPe6P7Y1VXSZe/XqtNclRRA18Kgp8/B6dTZuZAWNFR1GiGsip9jHfeH57AizYV1GZbXFaY3GJiesQ4XrQNDPWJVxxHCqlQ6uZEc2ZvIc4mEph9QHeeKpAC6Bu3OLSOwcD9nQ8eit3NSHUcIqzPQt4Se3qVM3edBQbVldYUtu3iA/RUZjPVqj5O2ZaxgLYQ5nQ+IIcM3gu57PsexqlR1nMtIAdREHmWpdDn5Ltm+vSh1i1QdRwirpNHAwxHZ1Oph+n4PDAbViYxSqy/ybs42ermGE+nkqzqOENZJo2FfVF80ujq6JX2BxbzA/58UQE2g0dfR5+BUauw9SA+6UXUcIayat4OOhyKyWZPhzE8X1Lek1hn0TL2wFg+tEzd6yrg+Ia5FtaMr+6OuIzx9H+Hnk1THuYQUQE3QPnUpfsVHOBs2Dr3MChHimvXxKaWvTwnT93uQW6n2bWlp/l6OVGUzzjseB42d0ixCtAQX/KNI829Dt6QvcK4sUh2nnhRAjeRVepLOpxaQ5d+HMtdw1XGEaDEeishGi54X96nrCjtZlceC3J30cWtNuKO3mhBCtEAH2vRBD3Tf/S+L6QqTAqgRtPpa+qZMocrRlwsBg1XHEaJF8bDX82hENr9lO/HdeWezX79Wr2PqhbX42rsy2CPa7NcXoiWrcXBmb3RfQjMPEnl2h+o4gBRAjdLhzCd4lZ3mTNg4DDIrRAiT6+5dxmC/Il5OdiezwrxvT5/k7+ZUdT7jvOOx18hboxCmluUbwbnAWLrs+xqX8gLVcaQAaijf4iN0OP0Jmf79qXAJVR1HiBbr/vBcnLQ6/rHXfF1hRypz+CRvN/3dIwl18DTPRYWwQcmRvai1s6PnrqXKu8KkAGoAra6aPilTqHAOIjNggOo4QrRornZ6/t46ix25Tnxxtvm3lqnW1zHlwhqCHDwY4N6m2a8nhC2rtXdib3R/gnKOEXV6s9IsUgA1QOdTC/CoSOds2E0YZFaIEM0uwbOCof6FzDnoxvmy5n3NLcjdSXpNETd5xWMnXV9CNLsc7zDOBMWRsH85bqW5ynLIq/1P+Bcm0z51KRcCBlHpHKg6jhA2455WuXja1/H8Xg/0zdRSnlyRydKCvQzyiCLQwXL3JBOipUmJ7EmVgzM9dy0BvV5JBimA/oBdXQV9UqZQ5tKKLP8+quMIYVOc7Qw81jqLvfkOLDll+q6wCn0tUy6soZWDF33cWpv8/EKIq9PZOZAU3Q//vNPEnvhVSQYpgP5Al5Pv4VqVw9mwcSBN40KYXbxHJaMCC3njsDunS0zbFfZezjZy6soY5x2PVmNZ+5AJYQvyvUI4FdKBTik/4FGcafbry6f6VQQW7KHd+S9JD7qBKic/1XGEsFl3huUR4FjLpCRP6kzUUr6nPI0vLyZzg0c0fvZupjmpEKLRDkV0p9zJnV6JS9DodWa9thRAV2BfW0afg9MocYskx7eX6jhC2DRHrYHHIzM5VGjPxydcr/l8Zbpqpl1YR6SjD71kNXchlNLb2ZMU0x+fi+dpd2ytWa8tBdAVdDsxH6eaQs6GjjVuVy2EUCrWrYpxwQW8c9SNY0XX1hU2P2crhboKxnrFo5HXtxDKXfQI5HhYJzocXIVXYbrZrisF0O+E5G0jJv170oKGUO3oozqOEOL/3RpSQJhzDc8leVLTxK6wbaWpfF94iCGesfjYN/8aQ0KIhjka3pUSFy96JS5Go6szyzWlAPofDrXFXHdoJkXuMeT5dFMdRwjxPxy0Bp6IzORUiT0fHGv8uJ1iXRUzM9cT4+RHN5ewZkgohGgqvdaOpJgBeBZnEn/4Z7NcUwqg/9Hj6Dwc6spIDR0jXV9CWKBI12puCclnwXFXUi42bj++eVm/UaarZoxXe+n6EsICFbn7cbRVAnFHf8GnILXZrycF0P9rlb2RNpk/cz54ODWyF5AQFuum4AIiXaqZmORJVQMnjWwsOcXPxccZ7tkWTzvz7zQvhGiY42EJFLn50itxMVpdbbNeSwogwKn6Ir0Ov8RFj3bke3VWHUcI8QfsNfB4ZCZpZVrePvLnXWEX6yp4KXMD7ZwD6OwSYoaEQoimMmi1JMUMwK00j44HVzbrtaQAMhjoeWQ2dvpaUkNHS9eXEFYg3KWG20PzWXTSlb35Dlc9zmAwMDvzV2oNOkZ7xknXlxBWoMTVh8MR3Wh7bD1+uaea7To2XwC1zlpDRM6vnAsZSZ297AUkhLUYE3SRtu5VTEzyoOIqk0bWlJzg19LTjPSMw93OybwBhRBNdjK0AwUegfRKXIxdXXWzXMOmCyDnqjx6HnmVAq8OXPSKVx1HCNEIWg083jqTnEotrx+6/MtLXm0Zr2ZupINzEPEuQQoSCiGaTKMlKaY/zpVFdD7wXbNcwnYLIIOB3odnAXAueKTiMEKIpghxruWvYbl8fsaVHTn/7QozGAzMytwAwEivdqriCSGuQZmLF4da9yDm1CYCs4+Z/PwWUQAtWLCAyMhInJ2d6d27N3v27PnD45cvX05cXBzOzs506tSJX375pdHXbJO5mrC8baSGjqLO/tqX1xdCqDEsoIiOHuX8Y68HpbXGMT4ri46wrSyVUV5xuGodFScUQjTV6eD25HqF0GPXEuxrK016buUF0DfffMPEiROZNWsW+/fvJyEhgeHDh5Obm3vF43fu3Mldd93F3/72Nw4cOMD48eMZP348hw8fbtR1uxx/mzzvLhR5yLdDIayZVgN/b51NYY2W2SnuZNWUMC97E11cQmjnHKA6nhDiWmg0JEX3x7G6jIR935j01MoLoLfffptHHnmEBx98kPj4eBYuXIirqytLliy54vHvvfceI0aM4B//+Aft27dn9uzZdOvWjQ8++KBR19VrHTgfPMwUv4IQQrFAp1rubZXDt+eceCp1Aw4aO4Z5ypcbIVqCCmcPUiJ7EXV2u0nP27ilVE2spqaGffv2MWXKlPr7tFotQ4YMITEx8YqPSUxMZOLEiZfcN3z4cFauXHnF46urq6mu/u8I8uLiYgAG+3pgV/T1Nf4GQgiLoQHX1nCsVEf1hXuYVRnTrJfTVRQDn1xy3yubemDn6tWs1xXCNl3HP+2LGFBSgoeHh0mWtFBaAOXn56PT6QgKunSGRlBQEMePH7/iY7Kzs694fHZ29hWPnzt3Li+//PJl9x+deOXzCyFagmlKrpq28FEl1xXCFowBeMOL3NxcAgKuvXtbaQFkDlOmTLmkxaioqIjWrVuTlpaGl5d8U1OppKSE8PBw0tPT8fSU7UdUk+fDcshzYTnkubAc/3kuHB1NM7FBaQHk7++PnZ0dOTk5l9yfk5NDcHDwFR8THBzcqOOdnJxwcrp8ATQvLy/5x2whPD095bmwIPJ8WA55LiyHPBeWw1QruisdBO3o6Ej37t3ZuHFj/X16vZ6NGzfSp0+fKz6mT58+lxwPsGHDhqseL4QQQgjxe8q7wCZOnMj9999Pjx496NWrF++++y7l5eU8+OCDANx3332EhYUxd+5cACZMmMCgQYN46623GD16NF9//TV79+7lk08++aPLCCGEEELUU14A3XHHHeTl5TFz5kyys7Pp0qULa9eurR/onJaWhlb734aqvn378uWXXzJ9+nSmTp1KbGwsK1eupGPHjg26npOTE7Nmzbpit5gwL3kuLIs8H5ZDngvLIc+F5TD1c6ExGAwGk5xJCCGEEMJKKF8IUQghhBDC3KQAEkIIIYTNkQJICCGEEDZHCiAhhBBC2JwWWwDNnTuXnj174uHhQWBgIOPHj+fEiROXHFNVVcWTTz6Jn58f7u7u3HLLLZctsiiu3UcffUTnzp3rFxLr06cPa9asqf+5PA/qzJs3D41Gw7PPPlt/nzwf5vHSSy+h0WguucXFxdX/XJ4H88rIyOCee+7Bz88PFxcXOnXqxN69e+t/bjAYmDlzJiEhIbi4uDBkyBBOnTqlMHHLFRkZedlrQ6PR8OSTTwKme2202AJoy5YtPPnkk+zatYsNGzZQW1vLsGHDKC8vrz/mueee46effmL58uVs2bKFzMxM/vKXvyhM3TK1atWKefPmsW/fPvbu3csNN9zATTfdxJEjRwB5HlRJSkri448/pnPnzpfcL8+H+XTo0IGsrKz62/bt/93tWp4H8yksLKRfv344ODiwZs0ajh49yltvvYWPj0/9MW+88Qbvv/8+CxcuZPfu3bi5uTF8+HCqqqoUJm+ZkpKSLnldbNiwAYDbbrsNMOFrw2AjcnNzDYBhy5YtBoPBYCgqKjI4ODgYli9fXn/MsWPHDIAhMTFRVUyb4ePjY/j000/leVCktLTUEBsba9iwYYNh0KBBhgkTJhgMBnldmNOsWbMMCQkJV/yZPA/mNXnyZEP//v2v+nO9Xm8IDg42vPnmm/X3FRUVGZycnAxfffWVOSLatAkTJhiio6MNer3epK+NFtsC9HvFxcUA+Pr6ArBv3z5qa2sZMmRI/TFxcXFERESQmJioJKMt0Ol0fP3115SXl9OnTx95HhR58sknGT169CV/7yCvC3M7deoUoaGhREVFcffdd5OWlgbI82Buq1atokePHtx2220EBgbStWtXFi1aVP/z1NRUsrOzL3k+vLy86N27tzwfzaympoYvvviChx56CI1GY9LXhk0UQHq9nmeffZZ+/frVrxidnZ2No6Mj3t7elxwbFBREdna2gpQt26FDh3B3d8fJyYnHHnuMFStWEB8fL8+DAl9//TX79++v317mf8nzYT69e/dm6dKlrF27lo8++ojU1FQGDBhAaWmpPA9mdvbsWT766CNiY2NZt24djz/+OM888wyff/45QP3f+X92KPgPeT6a38qVKykqKuKBBx4ATPsepXwrDHN48sknOXz48CX968K82rVrR3JyMsXFxXz33Xfcf//9bNmyRXUsm5Oens6ECRPYsGEDzs7OquPYtJEjR9b/f+fOnenduzetW7fm22+/xcXFRWEy26PX6+nxf+3dX0hT/R8H8Pd5nDNEcdbWtjJ1IJaSls4LVzcrQ5CQ/kCNCEmjIEtpUJE33UR/7CJoXUURVhR0ExEWZaRuiJR/irJBzBxaBFMRjTAlY36eq+fw2+Pz3Pxa256d9wsOHL/fc+b3uw/f8ebsHK2owIULFwAAZWVl8Pv9uHbtGg4cOBDn0WnbzZs3UVNTg1WrVkX9tZP+ClBTUxMeP36M7u5u5OTkqO0WiwULCwv4+vVrxPETExOwWCwxHmXy0+v1KCgogN1ux8WLF7FhwwZ4PB7WIcZev36NyclJlJeXQ6fTQafTwefz4erVq9DpdDCbzaxHnBgMBhQWFmJkZITrIsasViuKi4sj2oqKitSvJP96z//+pBHr8Xt9+vQJL168wKFDh9S2aK6NpA1AIoKmpiY8fPgQXV1dsNlsEf12ux2pqano7OxU2wKBAD5//gyHwxHr4WrO4uIifvz4wTrEWFVVFd6/f4+3b9+qW0VFBfbv36/usx7xMTs7i2AwCKvVynURY5s3b17yZ1KGh4eRl5cHALDZbLBYLBH1+PbtG/r6+liP36itrQ0rV67E9u3b1baoro0o36ydMBobGyUrK0u8Xq+EQiF1m5ubU485cuSI5ObmSldXlwwODorD4RCHwxHHUSenlpYW8fl8Mjo6KkNDQ9LS0iKKosjz589FhHWIt/99CkyE9YiVEydOiNfrldHRUent7ZVt27aJ0WiUyclJEWEdYqm/v190Op2cP39ePn78KPfu3ZP09HS5e/euekxra6sYDAZ59OiRDA0NyY4dO8Rms8n8/HwcR568wuGw5ObmyunTp5f0RWttJG0AAvCPW1tbm3rM/Py8HD16VLKzsyU9PV127doloVAofoNOUgcPHpS8vDzR6/ViMpmkqqpKDT8irEO8/T0AsR6x4XK5xGq1il6vl9WrV4vL5ZKRkRG1n3WIrfb2dlm/fr2kpaXJunXr5Pr16xH9i4uLcubMGTGbzZKWliZVVVUSCATiNNrk19HRIQD+8T2O1tpQRER++ToVERER0X9I0t4DRERERPRvGICIiIhIcxiAiIiISHMYgIiIiEhzGICIiIhIcxiAiIiISHMYgIiIiEhzGICIiIhIcxiAiIiISHMYgIgoYTidTrjd7ngPg4g0gAGIiIiINIcBiIgSQn19PXw+HzweDxRFgaIoGBsbg9/vR01NDTIyMmA2m1FXV4epqSn1PKfTiebmZrjdbmRnZ8NsNuPGjRv4/v07GhoakJmZiYKCAjx9+lQ9x+v1QlEUPHnyBKWlpVi2bBkqKyvh9/vjMXUiigMGICJKCB6PBw6HA4cPH0YoFEIoFEJmZia2bt2KsrIyDA4O4tmzZ5iYmMDevXsjzr19+zaMRiP6+/vR3NyMxsZG7NmzB5s2bcKbN29QXV2Nuro6zM3NRZx36tQpXL58GQMDAzCZTKitrcXPnz9jOW0iihP+N3giShhOpxMbN27ElStXAADnzp1DT08POjo61GO+fPmCNWvWIBAIoLCwEE6nE+FwGD09PQCAcDiMrKws7N69G3fu3AEAjI+Pw2q14uXLl6isrITX68WWLVtw//59uFwuAMD09DRycnJw69atJQGLiJKPLt4DICL6N+/evUN3dzcyMjKW9AWDQRQWFgIASktL1faUlBSsWLECJSUlapvZbAYATE5ORryGw+FQ95cvX461a9fiw4cPUZ0DESUmBiAiSlizs7Oora3FpUuXlvRZrVZ1PzU1NaJPUZSINkVRAACLi4u/aaRE9F/DAERECUOv1yMcDqs/l5eX48GDB8jPz4dOF/2Pq1evXiE3NxcAMDMzg+HhYRQVFUX99xBR4uFN0ESUMPLz89HX14exsTFMTU3h2LFjmJ6exr59+zAwMIBgMIiOjg40NDREBKX/19mzZ9HZ2Qm/34/6+noYjUbs3Lnz1ydCRAmPAYiIEsbJkyeRkpKC4uJimEwmLCwsoLe3F+FwGNXV1SgpKYHb7YbBYMAff/z6x1drayuOHz8Ou92O8fFxtLe3Q6/XR2EmRJTo+BQYEWnOX0+BzczMwGAwxHs4RBQHvAJEREREmsMARERERJrDr8CIiIhIc3gFiIiIiDSHAYiIiIg0hwGIiIiINIcBiIiIiDSHAYiIiIg0hwGIiIiINIcBiIiIiDSHAYiIiIg0509MjRggjTYMKgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# sim.input[\"al\"] = 0.0\n", "# sim.input[\"ti\"] = 0.0\n", "# sim.input[\"density\"] = 1.05979\n", "sim.input[\"al\"] = 0.0\n", "sim.input[\"ti\"] = 0.0\n", "sim.input[\"density\"] = 1.0569013636039\n", "sim.compute()\n", "sim.print_state()\n", "display(sim.output[\"temp\"])\n", "temp.view(sim=sim)" ] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2DensityRealInferredRMSE
0200.000.01.062502047.32794527.327945
1250.000.01.059792547.61147022.611470
2350.000.01.054043548.16503113.165031
3400.000.01.051034048.4329718.432971
4450.000.01.047944548.6518483.651848
5500.000.01.044775048.7796121.220388
6600.000.01.038266049.00736410.992636
7650.000.01.034846549.10921915.890781
8700.000.01.031827049.18916720.810833
9200.050.01.087552043.23573023.235730
10450.050.01.071054546.1596811.159681
11500.050.01.067605046.7455013.254499
12550.050.01.064095547.1536997.846301
13650.050.01.056916547.98349817.016502
14700.050.01.052917048.42865121.571349
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Density Real Inferred RMSE\n", "0 20 0.00 0.0 1.06250 20 47.327945 27.327945\n", "1 25 0.00 0.0 1.05979 25 47.611470 22.611470\n", "2 35 0.00 0.0 1.05404 35 48.165031 13.165031\n", "3 40 0.00 0.0 1.05103 40 48.432971 8.432971\n", "4 45 0.00 0.0 1.04794 45 48.651848 3.651848\n", "5 50 0.00 0.0 1.04477 50 48.779612 1.220388\n", "6 60 0.00 0.0 1.03826 60 49.007364 10.992636\n", "7 65 0.00 0.0 1.03484 65 49.109219 15.890781\n", "8 70 0.00 0.0 1.03182 70 49.189167 20.810833\n", "9 20 0.05 0.0 1.08755 20 43.235730 23.235730\n", "10 45 0.05 0.0 1.07105 45 46.159681 1.159681\n", "11 50 0.05 0.0 1.06760 50 46.745501 3.254499\n", "12 55 0.05 0.0 1.06409 55 47.153699 7.846301\n", "13 65 0.05 0.0 1.05691 65 47.983498 17.016502\n", "14 70 0.05 0.0 1.05291 70 48.428651 21.571349" ] }, "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn import metrics\n", "import math\n", "\n", "\n", "def fuzzy_pred(row):\n", " sim.input[\"al\"] = row[\"Al2O3\"]\n", " sim.input[\"ti\"] = row[\"TiO2\"]\n", " sim.input[\"density\"] = row[\"Density\"]\n", " sim.compute()\n", " return sim.output[\"temp\"]\n", "\n", "\n", "def rmse(row):\n", " return math.sqrt(metrics.mean_squared_error([row[\"Real\"]], [row[\"Inferred\"]]))\n", "\n", "\n", "result_train = density_train.copy()\n", "result_train[\"Real\"] = result_train[\"T\"]\n", "result_train[\"Inferred\"] = result_train.apply(fuzzy_pred, axis=1)\n", "result_train[\"RMSE\"] = result_train.apply(rmse, axis=1)\n", "result_test = result_test.round({\"RMSE\": 3})\n", "result_train.head(15)" ] }, { "cell_type": "code", "execution_count": 112, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TAl2O3TiO2DensityRealInferredRMSE
0300.000.001.056963047.89138817.891
1550.000.001.041585548.8968686.103
2250.050.001.084382543.76338518.763
3300.050.001.081123044.34349714.343
4350.050.001.077813544.9427689.943
5400.050.001.074464045.5514335.551
6600.050.001.060536047.56126512.439
7350.300.001.174593541.7250736.725
8650.300.001.148126541.02711023.973
9450.000.051.074244545.5909850.591
10500.000.051.070755046.2127533.787
11550.000.051.067215546.7925898.207
12200.000.301.224172028.3333338.333
13300.000.301.213103032.0522132.052
14400.000.301.202654035.8878974.112
15600.000.301.182656040.49472919.505
16700.000.301.172617042.00721727.993
\n", "
" ], "text/plain": [ " T Al2O3 TiO2 Density Real Inferred RMSE\n", "0 30 0.00 0.00 1.05696 30 47.891388 17.891\n", "1 55 0.00 0.00 1.04158 55 48.896868 6.103\n", "2 25 0.05 0.00 1.08438 25 43.763385 18.763\n", "3 30 0.05 0.00 1.08112 30 44.343497 14.343\n", "4 35 0.05 0.00 1.07781 35 44.942768 9.943\n", "5 40 0.05 0.00 1.07446 40 45.551433 5.551\n", "6 60 0.05 0.00 1.06053 60 47.561265 12.439\n", "7 35 0.30 0.00 1.17459 35 41.725073 6.725\n", "8 65 0.30 0.00 1.14812 65 41.027110 23.973\n", "9 45 0.00 0.05 1.07424 45 45.590985 0.591\n", "10 50 0.00 0.05 1.07075 50 46.212753 3.787\n", "11 55 0.00 0.05 1.06721 55 46.792589 8.207\n", "12 20 0.00 0.30 1.22417 20 28.333333 8.333\n", "13 30 0.00 0.30 1.21310 30 32.052213 2.052\n", "14 40 0.00 0.30 1.20265 40 35.887897 4.112\n", "15 60 0.00 0.30 1.18265 60 40.494729 19.505\n", "16 70 0.00 0.30 1.17261 70 42.007217 27.993" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result_test = density_test.copy()\n", "result_test[\"Real\"] = result_test[\"T\"]\n", "result_test[\"Inferred\"] = result_test.apply(fuzzy_pred, axis=1)\n", "result_test[\"RMSE\"] = result_test.apply(rmse, axis=1)\n", "# result_test[\"RMSE\"] = result_test[\"RMSE\"].apply(lambda x: \"{:,.4f}\".format(x))\n", "result_test = result_test.round({\"RMSE\": 3})\n", "result_test" ] }, { "cell_type": "code", "execution_count": 113, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'RMSE_train': 15.400435161512734,\n", " 'RMSE_test': 13.625552728224925,\n", " 'RMAE_test': 3.345881099161754,\n", " 'R2_test': 0.12969191263186874}" ] }, "execution_count": 113, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rmetrics = {}\n", "rmetrics[\"RMSE_train\"] = math.sqrt(\n", " metrics.mean_squared_error(result_train[\"Real\"], result_train[\"Inferred\"])\n", ")\n", "rmetrics[\"RMSE_test\"] = math.sqrt(\n", " metrics.mean_squared_error(result_test[\"Real\"], result_test[\"Inferred\"])\n", ")\n", "rmetrics[\"RMAE_test\"] = math.sqrt(\n", " metrics.mean_absolute_error(result_test[\"Real\"], result_test[\"Inferred\"])\n", ")\n", "rmetrics[\"R2_test\"] = metrics.r2_score(result_test[\"Real\"], result_test[\"Inferred\"])\n", "\n", "rmetrics" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.9" } }, "nbformat": 4, "nbformat_minor": 2 }