diff --git a/data/temp_density_tree.model.sav b/data/temp_density_tree.model.sav index 69c059a..11af14c 100644 Binary files a/data/temp_density_tree.model.sav and b/data/temp_density_tree.model.sav differ diff --git a/temp_density_regression.ipynb b/temp_density_regression.ipynb index 03ee448..3f8fa71 100644 --- a/temp_density_regression.ipynb +++ b/temp_density_regression.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 163, "metadata": {}, "outputs": [ { @@ -38,47 +38,47 @@ " 20\n", " 0.0\n", " 0.0\n", - " 1.06250\n", + " 1.274429\n", " \n", " \n", " 1\n", " 25\n", " 0.0\n", " 0.0\n", - " 1.05979\n", + " 1.261477\n", " \n", " \n", " 2\n", " 35\n", " 0.0\n", " 0.0\n", - " 1.05404\n", + " 1.234322\n", " \n", " \n", " 3\n", " 40\n", " 0.0\n", " 0.0\n", - " 1.05103\n", + " 1.220283\n", " \n", " \n", " 4\n", " 45\n", " 0.0\n", " 0.0\n", - " 1.04794\n", + " 1.205995\n", " \n", " \n", "\n", "" ], "text/plain": [ - " T Al2O3 TiO2 Density\n", - "0 20 0.0 0.0 1.06250\n", - "1 25 0.0 0.0 1.05979\n", - "2 35 0.0 0.0 1.05404\n", - "3 40 0.0 0.0 1.05103\n", - "4 45 0.0 0.0 1.04794" + " T Al2O3 TiO2 Density\n", + "0 20 0.0 0.0 1.274429\n", + "1 25 0.0 0.0 1.261477\n", + "2 35 0.0 0.0 1.234322\n", + "3 40 0.0 0.0 1.220283\n", + "4 45 0.0 0.0 1.205995" ] }, "metadata": {}, @@ -117,47 +117,47 @@ " 30\n", " 0.00\n", " 0.0\n", - " 1.05696\n", + " 1.248056\n", " \n", " \n", " 1\n", " 55\n", " 0.00\n", " 0.0\n", - " 1.04158\n", + " 1.176984\n", " \n", " \n", " 2\n", " 25\n", " 0.05\n", " 0.0\n", - " 1.08438\n", + " 1.382694\n", " \n", " \n", " 3\n", " 30\n", " 0.05\n", " 0.0\n", - " 1.08112\n", + " 1.366141\n", " \n", " \n", " 4\n", " 35\n", " 0.05\n", " 0.0\n", - " 1.07781\n", + " 1.349487\n", " \n", " \n", "\n", "" ], "text/plain": [ - " T Al2O3 TiO2 Density\n", - "0 30 0.00 0.0 1.05696\n", - "1 55 0.00 0.0 1.04158\n", - "2 25 0.05 0.0 1.08438\n", - "3 30 0.05 0.0 1.08112\n", - "4 35 0.05 0.0 1.07781" + " T Al2O3 TiO2 Density\n", + "0 30 0.00 0.0 1.248056\n", + "1 55 0.00 0.0 1.176984\n", + "2 25 0.05 0.0 1.382694\n", + "3 30 0.05 0.0 1.366141\n", + "4 35 0.05 0.0 1.349487" ] }, "metadata": {}, @@ -170,13 +170,16 @@ "train = pd.read_csv(\"data/density_train.csv\", sep=\";\", decimal=\",\")\n", "test = pd.read_csv(\"data/density_test.csv\", sep=\";\", decimal=\",\")\n", "\n", + "train[\"Density\"] = pow(train[\"Density\"], 4)\n", + "test[\"Density\"] = pow(test[\"Density\"], 4)\n", + "\n", "display(train.head())\n", "display(test.head())" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 164, "metadata": {}, "outputs": [ { @@ -210,43 +213,43 @@ " 0\n", " 0.0\n", " 0.0\n", - " 1.06250\n", + " 1.274429\n", " \n", " \n", " 1\n", " 0.0\n", " 0.0\n", - " 1.05979\n", + " 1.261477\n", " \n", " \n", " 2\n", " 0.0\n", " 0.0\n", - " 1.05404\n", + " 1.234322\n", " \n", " \n", " 3\n", " 0.0\n", " 0.0\n", - " 1.05103\n", + " 1.220283\n", " \n", " \n", " 4\n", " 0.0\n", " 0.0\n", - " 1.04794\n", + " 1.205995\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Al2O3 TiO2 Density\n", - "0 0.0 0.0 1.06250\n", - "1 0.0 0.0 1.05979\n", - "2 0.0 0.0 1.05404\n", - "3 0.0 0.0 1.05103\n", - "4 0.0 0.0 1.04794" + " Al2O3 TiO2 Density\n", + "0 0.0 0.0 1.274429\n", + "1 0.0 0.0 1.261477\n", + "2 0.0 0.0 1.234322\n", + "3 0.0 0.0 1.220283\n", + "4 0.0 0.0 1.205995" ] }, "metadata": {}, @@ -297,43 +300,43 @@ " 0\n", " 0.00\n", " 0.0\n", - " 1.05696\n", + " 1.248056\n", " \n", " \n", " 1\n", " 0.00\n", " 0.0\n", - " 1.04158\n", + " 1.176984\n", " \n", " \n", " 2\n", " 0.05\n", " 0.0\n", - " 1.08438\n", + " 1.382694\n", " \n", " \n", " 3\n", " 0.05\n", " 0.0\n", - " 1.08112\n", + " 1.366141\n", " \n", " \n", " 4\n", " 0.05\n", " 0.0\n", - " 1.07781\n", + " 1.349487\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Al2O3 TiO2 Density\n", - "0 0.00 0.0 1.05696\n", - "1 0.00 0.0 1.04158\n", - "2 0.05 0.0 1.08438\n", - "3 0.05 0.0 1.08112\n", - "4 0.05 0.0 1.07781" + " Al2O3 TiO2 Density\n", + "0 0.00 0.0 1.248056\n", + "1 0.00 0.0 1.176984\n", + "2 0.05 0.0 1.382694\n", + "3 0.05 0.0 1.366141\n", + "4 0.05 0.0 1.349487" ] }, "metadata": {}, @@ -370,7 +373,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 165, "metadata": {}, "outputs": [], "source": [ @@ -409,7 +412,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 166, "metadata": {}, "outputs": [ { @@ -448,182 +451,190 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 167, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 MSE_trainMSE_testMAE_trainMAE_testR2_trainR2_testMSE_trainMSE_testMAE_trainMAE_testR2_trainR2_test
linear_poly0.3027680.2032930.4194670.3926870.9988600.999047linear_poly0.4652830.2099210.5135270.3749800.9982480.999016
linear_interact9.69332310.8754422.5449442.7184240.9634920.949019linear_interact16.02192916.8810613.2686163.2667390.9396570.920866
linear10.46850314.8203152.6574762.9302290.9605720.930526linear30.84039836.8821074.6795034.5944000.8838460.827106
decision_tree10.52631647.4264711.8421055.7352940.9603550.777676decision_tree10.52631647.4264711.8421055.7352940.9603550.777676
random_forest20.24387654.5012403.5929536.5981330.9237550.744512random_forest20.21464554.5012403.5708926.5981330.9238660.744512
knn174.100430191.17647110.80827111.6806720.3442850.103812knn161.291622140.00600210.2067679.5378150.3925270.343686
ridge243.364664199.60147713.47272412.3967990.0834150.064317ridge204.018844162.07869612.35318810.7986420.2316040.240215
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 31, + "execution_count": 167, "metadata": {}, "output_type": "execute_result" } @@ -639,91 +650,91 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 168, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "|--- Density <= 1.04\n", - "| |--- Density <= 1.03\n", + "|--- Density <= 1.18\n", + "| |--- Density <= 1.14\n", "| | |--- value: [70.00]\n", - "| |--- Density > 1.03\n", - "| | |--- Density <= 1.04\n", + "| |--- Density > 1.14\n", + "| | |--- Density <= 1.15\n", "| | | |--- value: [65.00]\n", - "| | |--- Density > 1.04\n", + "| | |--- Density > 1.15\n", "| | | |--- value: [60.00]\n", - "|--- Density > 1.04\n", - "| |--- Density <= 1.07\n", + "|--- Density > 1.18\n", + "| |--- Density <= 1.31\n", "| | |--- TiO2 <= 0.03\n", "| | | |--- Al2O3 <= 0.03\n", - "| | | | |--- Density <= 1.05\n", - "| | | | | |--- Density <= 1.05\n", + "| | | | |--- Density <= 1.23\n", + "| | | | | |--- Density <= 1.20\n", "| | | | | | |--- value: [50.00]\n", - "| | | | | |--- Density > 1.05\n", + "| | | | | |--- Density > 1.20\n", "| | | | | | |--- value: [42.50]\n", - "| | | | |--- Density > 1.05\n", - "| | | | | |--- Density <= 1.06\n", + "| | | | |--- Density > 1.23\n", + "| | | | | |--- Density <= 1.25\n", "| | | | | | |--- value: [35.00]\n", - "| | | | | |--- Density > 1.06\n", + "| | | | | |--- Density > 1.25\n", "| | | | | | |--- value: [22.50]\n", "| | | |--- Al2O3 > 0.03\n", - "| | | | |--- Density <= 1.06\n", - "| | | | | |--- Density <= 1.05\n", + "| | | | |--- Density <= 1.26\n", + "| | | | | |--- Density <= 1.24\n", "| | | | | | |--- value: [70.00]\n", - "| | | | | |--- Density > 1.05\n", + "| | | | | |--- Density > 1.24\n", "| | | | | | |--- value: [65.00]\n", - "| | | | |--- Density > 1.06\n", - "| | | | | |--- Density <= 1.07\n", + "| | | | |--- Density > 1.26\n", + "| | | | | |--- Density <= 1.29\n", "| | | | | | |--- value: [55.00]\n", - "| | | | | |--- Density > 1.07\n", + "| | | | | |--- Density > 1.29\n", "| | | | | | |--- value: [50.00]\n", "| | |--- TiO2 > 0.03\n", - "| | | |--- Density <= 1.06\n", + "| | | |--- Density <= 1.25\n", "| | | | |--- value: [70.00]\n", - "| | | |--- Density > 1.06\n", - "| | | | |--- Density <= 1.06\n", + "| | | |--- Density > 1.25\n", + "| | | | |--- Density <= 1.27\n", "| | | | | |--- value: [65.00]\n", - "| | | | |--- Density > 1.06\n", + "| | | | |--- Density > 1.27\n", "| | | | | |--- value: [60.00]\n", - "| |--- Density > 1.07\n", - "| | |--- Density <= 1.12\n", - "| | | |--- Density <= 1.08\n", - "| | | | |--- Density <= 1.07\n", + "| |--- Density > 1.31\n", + "| | |--- Density <= 1.57\n", + "| | | |--- Density <= 1.37\n", + "| | | | |--- Density <= 1.33\n", "| | | | | |--- value: [45.00]\n", - "| | | | |--- Density > 1.07\n", - "| | | | | |--- Density <= 1.08\n", + "| | | | |--- Density > 1.33\n", + "| | | | | |--- Density <= 1.36\n", "| | | | | | |--- value: [40.00]\n", - "| | | | | |--- Density > 1.08\n", + "| | | | | |--- Density > 1.36\n", "| | | | | | |--- value: [35.00]\n", - "| | | |--- Density > 1.08\n", - "| | | | |--- Density <= 1.09\n", + "| | | |--- Density > 1.37\n", + "| | | | |--- Density <= 1.39\n", "| | | | | |--- value: [30.00]\n", - "| | | | |--- Density > 1.09\n", + "| | | | |--- Density > 1.39\n", "| | | | | |--- Al2O3 <= 0.03\n", "| | | | | | |--- value: [22.50]\n", "| | | | | |--- Al2O3 > 0.03\n", "| | | | | | |--- value: [20.00]\n", - "| | |--- Density > 1.12\n", - "| | | |--- Density <= 1.18\n", - "| | | | |--- Density <= 1.15\n", + "| | |--- Density > 1.57\n", + "| | | |--- Density <= 1.93\n", + "| | | | |--- Density <= 1.74\n", "| | | | | |--- value: [70.00]\n", - "| | | | |--- Density > 1.15\n", + "| | | | |--- Density > 1.74\n", "| | | | | |--- Al2O3 <= 0.15\n", "| | | | | | |--- value: [65.00]\n", "| | | | | |--- Al2O3 > 0.15\n", "| | | | | | |--- value: [50.00]\n", - "| | | |--- Density > 1.18\n", + "| | | |--- Density > 1.93\n", "| | | | |--- Al2O3 <= 0.15\n", - "| | | | | |--- Density <= 1.20\n", + "| | | | | |--- Density <= 2.09\n", "| | | | | | |--- value: [50.00]\n", - "| | | | | |--- Density > 1.20\n", + "| | | | | |--- Density > 2.09\n", "| | | | | | |--- value: [30.00]\n", "| | | | |--- Al2O3 > 0.15\n", - "| | | | | |--- Density <= 1.18\n", + "| | | | | |--- Density <= 1.95\n", "| | | | | | |--- value: [30.00]\n", - "| | | | | |--- Density > 1.18\n", + "| | | | | |--- Density > 1.95\n", "| | | | | | |--- value: [22.50]\n", "\n" ] @@ -739,7 +750,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 169, "metadata": {}, "outputs": [], "source": [ diff --git a/temp_density_tree.ipynb b/temp_density_tree.ipynb index 750f8f7..ea23944 100644 --- a/temp_density_tree.ipynb +++ b/temp_density_tree.ipynb @@ -2,91 +2,91 @@ "cells": [ { "cell_type": "code", - "execution_count": 88, + "execution_count": 397, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "|--- Density <= 1.04\n", - "| |--- Density <= 1.03\n", + "|--- Density <= 1.18\n", + "| |--- Density <= 1.14\n", "| | |--- value: [70.00]\n", - "| |--- Density > 1.03\n", - "| | |--- Density <= 1.04\n", + "| |--- Density > 1.14\n", + "| | |--- Density <= 1.15\n", "| | | |--- value: [65.00]\n", - "| | |--- Density > 1.04\n", + "| | |--- Density > 1.15\n", "| | | |--- value: [60.00]\n", - "|--- Density > 1.04\n", - "| |--- Density <= 1.07\n", + "|--- Density > 1.18\n", + "| |--- Density <= 1.31\n", "| | |--- TiO2 <= 0.03\n", "| | | |--- Al2O3 <= 0.03\n", - "| | | | |--- Density <= 1.05\n", - "| | | | | |--- Density <= 1.05\n", + "| | | | |--- Density <= 1.23\n", + "| | | | | |--- Density <= 1.20\n", "| | | | | | |--- value: [50.00]\n", - "| | | | | |--- Density > 1.05\n", + "| | | | | |--- Density > 1.20\n", "| | | | | | |--- value: [42.50]\n", - "| | | | |--- Density > 1.05\n", - "| | | | | |--- Density <= 1.06\n", + "| | | | |--- Density > 1.23\n", + "| | | | | |--- Density <= 1.25\n", "| | | | | | |--- value: [35.00]\n", - "| | | | | |--- Density > 1.06\n", + "| | | | | |--- Density > 1.25\n", "| | | | | | |--- value: [22.50]\n", "| | | |--- Al2O3 > 0.03\n", - "| | | | |--- Density <= 1.06\n", - "| | | | | |--- Density <= 1.05\n", + "| | | | |--- Density <= 1.26\n", + "| | | | | |--- Density <= 1.24\n", "| | | | | | |--- value: [70.00]\n", - "| | | | | |--- Density > 1.05\n", + "| | | | | |--- Density > 1.24\n", "| | | | | | |--- value: [65.00]\n", - "| | | | |--- Density > 1.06\n", - "| | | | | |--- Density <= 1.07\n", + "| | | | |--- Density > 1.26\n", + "| | | | | |--- Density <= 1.29\n", "| | | | | | |--- value: [55.00]\n", - "| | | | | |--- Density > 1.07\n", + "| | | | | |--- Density > 1.29\n", "| | | | | | |--- value: [50.00]\n", "| | |--- TiO2 > 0.03\n", - "| | | |--- Density <= 1.06\n", + "| | | |--- Density <= 1.25\n", "| | | | |--- value: [70.00]\n", - "| | | |--- Density > 1.06\n", - "| | | | |--- Density <= 1.06\n", + "| | | |--- Density > 1.25\n", + "| | | | |--- Density <= 1.27\n", "| | | | | |--- value: [65.00]\n", - "| | | | |--- Density > 1.06\n", + "| | | | |--- Density > 1.27\n", "| | | | | |--- value: [60.00]\n", - "| |--- Density > 1.07\n", - "| | |--- Density <= 1.12\n", - "| | | |--- Density <= 1.08\n", - "| | | | |--- Density <= 1.07\n", + "| |--- Density > 1.31\n", + "| | |--- Density <= 1.57\n", + "| | | |--- Density <= 1.37\n", + "| | | | |--- Density <= 1.33\n", "| | | | | |--- value: [45.00]\n", - "| | | | |--- Density > 1.07\n", - "| | | | | |--- Density <= 1.08\n", + "| | | | |--- Density > 1.33\n", + "| | | | | |--- Density <= 1.36\n", "| | | | | | |--- value: [40.00]\n", - "| | | | | |--- Density > 1.08\n", + "| | | | | |--- Density > 1.36\n", "| | | | | | |--- value: [35.00]\n", - "| | | |--- Density > 1.08\n", - "| | | | |--- Density <= 1.09\n", + "| | | |--- Density > 1.37\n", + "| | | | |--- Density <= 1.39\n", "| | | | | |--- value: [30.00]\n", - "| | | | |--- Density > 1.09\n", + "| | | | |--- Density > 1.39\n", "| | | | | |--- Al2O3 <= 0.03\n", "| | | | | | |--- value: [22.50]\n", "| | | | | |--- Al2O3 > 0.03\n", "| | | | | | |--- value: [20.00]\n", - "| | |--- Density > 1.12\n", - "| | | |--- Density <= 1.18\n", - "| | | | |--- Density <= 1.15\n", + "| | |--- Density > 1.57\n", + "| | | |--- Density <= 1.93\n", + "| | | | |--- Density <= 1.74\n", "| | | | | |--- value: [70.00]\n", - "| | | | |--- Density > 1.15\n", + "| | | | |--- Density > 1.74\n", "| | | | | |--- Al2O3 <= 0.15\n", "| | | | | | |--- value: [65.00]\n", "| | | | | |--- Al2O3 > 0.15\n", "| | | | | | |--- value: [50.00]\n", - "| | | |--- Density > 1.18\n", + "| | | |--- Density > 1.93\n", "| | | | |--- Al2O3 <= 0.15\n", - "| | | | | |--- Density <= 1.20\n", + "| | | | | |--- Density <= 2.09\n", "| | | | | | |--- value: [50.00]\n", - "| | | | | |--- Density > 1.20\n", + "| | | | | |--- Density > 2.09\n", "| | | | | | |--- value: [30.00]\n", "| | | | |--- Al2O3 > 0.15\n", - "| | | | | |--- Density <= 1.18\n", + "| | | | | |--- Density <= 1.95\n", "| | | | | | |--- value: [30.00]\n", - "| | | | | |--- Density > 1.18\n", + "| | | | | |--- Density > 1.95\n", "| | | | | | |--- value: [22.50]\n", "\n" ] @@ -110,7 +110,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 398, "metadata": {}, "outputs": [ { @@ -125,36 +125,36 @@ { "data": { "text/plain": [ - "[if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density > 1.083) and (Density > 1.086) and (Al2O3 > 0.025) -> 20.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density > 1.053) and (Density > 1.057) -> 22.5,\n", - " if (Density <= 1.042) and (Density > 1.033) and (Density > 1.037) -> 60.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density <= 1.053) and (Density <= 1.046) -> 50.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density <= 1.053) and (Density > 1.046) -> 42.5,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density > 1.053) and (Density <= 1.057) -> 35.0,\n", - " if (Density <= 1.042) and (Density > 1.033) and (Density <= 1.037) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density <= 1.061) and (Density <= 1.055) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density <= 1.061) and (Density > 1.055) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density > 1.061) and (Density <= 1.066) -> 55.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density > 1.061) and (Density > 1.066) -> 50.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) and (Density <= 1.058) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) and (Density > 1.058) and (Density <= 1.062) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) and (Density > 1.058) and (Density > 1.062) -> 60.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density <= 1.083) and (Density <= 1.074) -> 45.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density <= 1.083) and (Density > 1.074) and (Density <= 1.079) -> 40.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density <= 1.083) and (Density > 1.074) and (Density > 1.079) -> 35.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density > 1.083) and (Density <= 1.086) -> 30.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density <= 1.118) and (Density > 1.083) and (Density > 1.086) and (Al2O3 <= 0.025) -> 22.5,\n", - " if (Density <= 1.042) and (Density <= 1.033) -> 70.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density <= 1.179) and (Density <= 1.148) -> 70.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density <= 1.179) and (Density > 1.148) and (Al2O3 <= 0.15) -> 65.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density <= 1.179) and (Density > 1.148) and (Al2O3 > 0.15) -> 50.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 <= 0.15) and (Density <= 1.203) -> 50.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 <= 0.15) and (Density > 1.203) -> 30.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 > 0.15) and (Density <= 1.182) -> 30.0,\n", - " if (Density > 1.042) and (Density > 1.069) and (Density > 1.118) and (Density > 1.179) and (Al2O3 > 0.15) and (Density > 1.182) -> 22.5]" + "[if (Density > 1.177) and (Density > 1.308) and (Density <= 1.565) and (Density > 1.374) and (Density > 1.391) and (Al2O3 > 0.025) -> 20.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density > 1.227) and (Density > 1.248) -> 22.5,\n", + " if (Density <= 1.177) and (Density > 1.14) and (Density > 1.154) -> 60.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density <= 1.227) and (Density <= 1.199) -> 50.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density <= 1.227) and (Density > 1.199) -> 42.5,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) and (Density > 1.227) and (Density <= 1.248) -> 35.0,\n", + " if (Density <= 1.177) and (Density > 1.14) and (Density <= 1.154) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density <= 1.265) and (Density <= 1.238) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density <= 1.265) and (Density > 1.238) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density > 1.265) and (Density <= 1.291) -> 55.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) and (Density > 1.265) and (Density > 1.291) -> 50.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 > 0.025) and (Density <= 1.253) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 > 0.025) and (Density > 1.253) and (Density <= 1.271) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 > 0.025) and (Density > 1.253) and (Density > 1.271) -> 60.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density <= 1.565) and (Density <= 1.374) and (Density <= 1.332) -> 45.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density <= 1.565) and (Density <= 1.374) and (Density > 1.332) and (Density <= 1.357) -> 40.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density <= 1.565) and (Density <= 1.374) and (Density > 1.332) and (Density > 1.357) -> 35.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density <= 1.565) and (Density > 1.374) and (Density <= 1.391) -> 30.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density <= 1.565) and (Density > 1.374) and (Density > 1.391) and (Al2O3 <= 0.025) -> 22.5,\n", + " if (Density <= 1.177) and (Density <= 1.14) -> 70.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density > 1.565) and (Density <= 1.93) and (Density <= 1.738) -> 70.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density > 1.565) and (Density <= 1.93) and (Density > 1.738) and (Al2O3 <= 0.15) -> 65.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density > 1.565) and (Density <= 1.93) and (Density > 1.738) and (Al2O3 > 0.15) -> 50.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density > 1.565) and (Density > 1.93) and (Al2O3 <= 0.15) and (Density <= 2.092) -> 50.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density > 1.565) and (Density > 1.93) and (Al2O3 <= 0.15) and (Density > 2.092) -> 30.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density > 1.565) and (Density > 1.93) and (Al2O3 > 0.15) and (Density <= 1.949) -> 30.0,\n", + " if (Density > 1.177) and (Density > 1.308) and (Density > 1.565) and (Density > 1.93) and (Al2O3 > 0.15) and (Density > 1.949) -> 22.5]" ] }, - "execution_count": 89, + "execution_count": 398, "metadata": {}, "output_type": "execute_result" } @@ -170,7 +170,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 399, "metadata": {}, "outputs": [ { @@ -185,36 +185,36 @@ { "data": { "text/plain": [ - "[if (Density > 1.042) and (Density <= 1.118) and (Al2O3 > 0.025) -> 20.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 22.5,\n", - " if (Density <= 1.042) and (Density > 1.033) -> 60.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 50.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 42.5,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 35.0,\n", - " if (Density <= 1.042) and (Density > 1.033) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 55.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 50.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 60.0,\n", - " if (Density > 1.042) and (Density <= 1.118) -> 45.0,\n", - " if (Density > 1.042) and (Density <= 1.118) -> 40.0,\n", - " if (Density > 1.042) and (Density <= 1.118) -> 35.0,\n", - " if (Density > 1.042) and (Density <= 1.118) -> 30.0,\n", - " if (Density > 1.042) and (Density <= 1.118) and (Al2O3 <= 0.025) -> 22.5,\n", - " if (Density <= 1.042) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.179) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 <= 0.15) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 > 0.15) -> 50.0,\n", - " if (Density > 1.042) and (Density <= 1.203) and (Al2O3 <= 0.15) -> 50.0,\n", - " if (Density > 1.042) and (Al2O3 <= 0.15) -> 30.0,\n", - " if (Density > 1.042) and (Density <= 1.182) and (Al2O3 > 0.15) -> 30.0,\n", - " if (Density > 1.042) and (Al2O3 > 0.15) -> 22.5]" + "[if (Density > 1.177) and (Density <= 1.565) and (Al2O3 > 0.025) -> 20.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 22.5,\n", + " if (Density <= 1.177) and (Density > 1.14) -> 60.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 50.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 42.5,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 35.0,\n", + " if (Density <= 1.177) and (Density > 1.14) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 55.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 50.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 > 0.025) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 > 0.025) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 > 0.025) -> 60.0,\n", + " if (Density > 1.177) and (Density <= 1.565) -> 45.0,\n", + " if (Density > 1.177) and (Density <= 1.565) -> 40.0,\n", + " if (Density > 1.177) and (Density <= 1.565) -> 35.0,\n", + " if (Density > 1.177) and (Density <= 1.565) -> 30.0,\n", + " if (Density > 1.177) and (Density <= 1.565) and (Al2O3 <= 0.025) -> 22.5,\n", + " if (Density <= 1.177) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.93) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.93) and (Al2O3 <= 0.15) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.93) and (Al2O3 > 0.15) -> 50.0,\n", + " if (Density > 1.177) and (Density <= 2.092) and (Al2O3 <= 0.15) -> 50.0,\n", + " if (Density > 1.177) and (Al2O3 <= 0.15) -> 30.0,\n", + " if (Density > 1.177) and (Density <= 1.949) and (Al2O3 > 0.15) -> 30.0,\n", + " if (Density > 1.177) and (Al2O3 > 0.15) -> 22.5]" ] }, - "execution_count": 90, + "execution_count": 399, "metadata": {}, "output_type": "execute_result" } @@ -230,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 400, "metadata": {}, "outputs": [ { @@ -245,24 +245,24 @@ { "data": { "text/plain": [ - "[if (Density > 1.042) and (Density <= 1.118) and (Al2O3 > 0.025) -> 20.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 37.5,\n", - " if (Density <= 1.042) and (Density > 1.033) -> 62.5,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 60.0,\n", - " if (Density > 1.042) and (Density <= 1.069) and (TiO2 > 0.025) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.118) -> 37.5,\n", - " if (Density > 1.042) and (Density <= 1.118) and (Al2O3 <= 0.025) -> 22.5,\n", - " if (Density <= 1.042) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.179) -> 70.0,\n", - " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 <= 0.15) -> 65.0,\n", - " if (Density > 1.042) and (Density <= 1.179) and (Al2O3 > 0.15) -> 50.0,\n", - " if (Density > 1.042) and (Density <= 1.203) and (Al2O3 <= 0.15) -> 50.0,\n", - " if (Density > 1.042) and (Al2O3 <= 0.15) -> 30.0,\n", - " if (Density > 1.042) and (Density <= 1.182) and (Al2O3 > 0.15) -> 30.0,\n", - " if (Density > 1.042) and (Al2O3 > 0.15) -> 22.5]" + "[if (Density > 1.177) and (Density <= 1.565) and (Al2O3 > 0.025) -> 20.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 37.5,\n", + " if (Density <= 1.177) and (Density > 1.14) -> 62.5,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 60.0,\n", + " if (Density > 1.177) and (Density <= 1.308) and (TiO2 > 0.025) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.565) -> 37.5,\n", + " if (Density > 1.177) and (Density <= 1.565) and (Al2O3 <= 0.025) -> 22.5,\n", + " if (Density <= 1.177) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.93) -> 70.0,\n", + " if (Density > 1.177) and (Density <= 1.93) and (Al2O3 <= 0.15) -> 65.0,\n", + " if (Density > 1.177) and (Density <= 1.93) and (Al2O3 > 0.15) -> 50.0,\n", + " if (Density > 1.177) and (Density <= 2.092) and (Al2O3 <= 0.15) -> 50.0,\n", + " if (Density > 1.177) and (Al2O3 <= 0.15) -> 30.0,\n", + " if (Density > 1.177) and (Density <= 1.949) and (Al2O3 > 0.15) -> 30.0,\n", + " if (Density > 1.177) and (Al2O3 > 0.15) -> 22.5]" ] }, - "execution_count": 91, + "execution_count": 400, "metadata": {}, "output_type": "execute_result" } @@ -278,7 +278,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 401, "metadata": {}, "outputs": [ { @@ -314,31 +314,31 @@ " 20\n", " 0.0\n", " 0.0\n", - " 1.06250\n", + " 1.274429\n", " \n", " \n", " 1\n", " 25\n", " 0.0\n", " 0.0\n", - " 1.05979\n", + " 1.261477\n", " \n", " \n", " 2\n", " 35\n", " 0.0\n", " 0.0\n", - " 1.05404\n", + " 1.234322\n", " \n", " \n", "\n", "" ], "text/plain": [ - " T Al2O3 TiO2 Density\n", - "0 20 0.0 0.0 1.06250\n", - "1 25 0.0 0.0 1.05979\n", - "2 35 0.0 0.0 1.05404" + " T Al2O3 TiO2 Density\n", + "0 20 0.0 0.0 1.274429\n", + "1 25 0.0 0.0 1.261477\n", + "2 35 0.0 0.0 1.234322" ] }, "metadata": {}, @@ -377,48 +377,150 @@ " 30\n", " 0.00\n", " 0.0\n", - " 1.05696\n", + " 1.248056\n", " \n", " \n", " 1\n", " 55\n", " 0.00\n", " 0.0\n", - " 1.04158\n", + " 1.176984\n", " \n", " \n", " 2\n", " 25\n", " 0.05\n", " 0.0\n", - " 1.08438\n", + " 1.382694\n", " \n", " \n", "\n", "" ], "text/plain": [ - " T Al2O3 TiO2 Density\n", - "0 30 0.00 0.0 1.05696\n", - "1 55 0.00 0.0 1.04158\n", - "2 25 0.05 0.0 1.08438" + " T Al2O3 TiO2 Density\n", + "0 30 0.00 0.0 1.248056\n", + "1 55 0.00 0.0 1.176984\n", + "2 25 0.05 0.0 1.382694" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
T38.045.52631616.51328220.00000031.25000045.00000060.00000070.000000
Al2O338.00.0789470.1260800.0000000.0000000.0000000.0500000.300000
TiO238.00.0578950.1081330.0000000.0000000.0000000.0500000.300000
Density38.01.5350640.3441611.1334851.2512341.3744441.8678872.205183
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% \\\n", + "T 38.0 45.526316 16.513282 20.000000 31.250000 45.000000 \n", + "Al2O3 38.0 0.078947 0.126080 0.000000 0.000000 0.000000 \n", + "TiO2 38.0 0.057895 0.108133 0.000000 0.000000 0.000000 \n", + "Density 38.0 1.535064 0.344161 1.133485 1.251234 1.374444 \n", + "\n", + " 75% max \n", + "T 60.000000 70.000000 \n", + "Al2O3 0.050000 0.300000 \n", + "TiO2 0.050000 0.300000 \n", + "Density 1.867887 2.205183 " + ] + }, + "execution_count": 401, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "density_train = pd.read_csv(\"data/density_train.csv\", sep=\";\", decimal=\",\")\n", - "density_test = pd.read_csv(\"data/density_test.csv\", sep=\";\", decimal=\",\")\n", + "train = pd.read_csv(\"data/density_train.csv\", sep=\";\", decimal=\",\")\n", + "test = pd.read_csv(\"data/density_test.csv\", sep=\";\", decimal=\",\")\n", "\n", - "display(density_train.head(3))\n", - "display(density_test.head(3))" + "train[\"Density\"] = pow(train[\"Density\"], 4)\n", + "test[\"Density\"] = pow(test[\"Density\"], 4)\n", + "\n", + "display(train.head(3))\n", + "display(test.head(3))\n", + "train.describe().transpose()" ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 402, "metadata": {}, "outputs": [ { @@ -433,24 +535,24 @@ { "data": { "text/plain": [ - "[if (Density = 1.08) and (Al2O3 = 0.3) -> 20.0,\n", - " if (Density = 1.055) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 37.5,\n", - " if (Density = 1.037) -> 62.5,\n", - " if (Density = 1.055) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 60.0,\n", - " if (Density = 1.055) and (TiO2 = 0.3) -> 65.0,\n", - " if (Density = 1.08) -> 37.5,\n", - " if (Density = 1.08) and (Al2O3 = 0.0) -> 22.5,\n", - " if (Density = 1.032) -> 70.0,\n", - " if (Density = 1.11) -> 70.0,\n", - " if (Density = 1.11) and (Al2O3 = 0.0) -> 65.0,\n", - " if (Density = 1.11) and (Al2O3 = 0.3) -> 50.0,\n", - " if (Density = 1.122) and (Al2O3 = 0.0) -> 50.0,\n", - " if (Density = 1.219) and (Al2O3 = 0.0) -> 30.0,\n", - " if (Density = 1.112) and (Al2O3 = 0.3) -> 30.0,\n", - " if (Density = 1.219) and (Al2O3 = 0.3) -> 22.5]" + "[if (Density = 1.371) and (Al2O3 = 0.3) -> 20.0,\n", + " if (Density = 1.242) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 37.5,\n", + " if (Density = 1.158) -> 62.5,\n", + " if (Density = 1.242) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 60.0,\n", + " if (Density = 1.242) and (TiO2 = 0.3) -> 65.0,\n", + " if (Density = 1.371) -> 37.5,\n", + " if (Density = 1.371) and (Al2O3 = 0.0) -> 22.5,\n", + " if (Density = 1.133) -> 70.0,\n", + " if (Density = 1.553) -> 70.0,\n", + " if (Density = 1.553) and (Al2O3 = 0.0) -> 65.0,\n", + " if (Density = 1.553) and (Al2O3 = 0.3) -> 50.0,\n", + " if (Density = 1.635) and (Al2O3 = 0.0) -> 50.0,\n", + " if (Density = 2.205) and (Al2O3 = 0.0) -> 30.0,\n", + " if (Density = 1.563) and (Al2O3 = 0.3) -> 30.0,\n", + " if (Density = 2.205) and (Al2O3 = 0.3) -> 22.5]" ] }, - "execution_count": 93, + "execution_count": 402, "metadata": {}, "output_type": "execute_result" } @@ -458,14 +560,14 @@ "source": [ "from src.rules import simplify_rules\n", "\n", - "rules = simplify_rules(density_train, rules)\n", + "rules = simplify_rules(train, rules)\n", "display(len(rules))\n", "rules" ] }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 403, "metadata": {}, "outputs": [ { @@ -498,7 +600,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOw0lEQVR4nOzdd1hU19bH8e/QQQFBFCwo9orYUbEl9q5JNDEmGlM1auwdsWGNxhRbYoq5N01NFLvGXhBLLNh7wQZiAUSkz/vHecMNsVEG9pT1eR6emOHMOb8ZZmDN3uesrdPr9XqEEEIIIcyEleoAQgghhBCGJMWNEEIIIcyKFDdCCCGEMCtS3AghhBDCrEhxI4QQQgizIsWNEEIIIcyKFDdCCCGEMCtS3AghhBDCrEhxI4QQQgizYnHFjV6vJy4uDmnMLIQQQpgnpcXN7t276dSpE8WLF0en0xESEvLC++zcuZPatWtjb29P+fLlWbp0abaO+fDhQ1xdXXn48GHOQgshhBDCqCktbh49eoSfnx8LFizI0vZXrlyhQ4cOvPTSSxw7dowhQ4bw/vvvs3nz5jxOKoQQQghToTOWhTN1Oh2rVq2ia9euz9xm9OjRrF+/npMnT2bc9sYbbxATE8OmTZuydJy4uDhcXV2JjY3FxcUlt7GFEEIIkQ/0ej06nS5L25rUOTdhYWG0bNky021t2rQhLCzsmfdJSkoiLi4u0xdAfFJqnmYVQihwdj382BkS41QnEUIY2OpLq7O8rUkVN5GRkXh6ema6zdPTk7i4OB4/fvzU+8yYMQNXV9eML29vbwDmbD6b53mFEPko7jYsewuu7II/x6tOI4QwoMhHkcw6OCvL25tUcZMTY8eOJTY2NuPr+vXrAPx++CY7zt1RnE4IYRB6PawdDE4e0CIIjvwHLmxRnUoIYQB6vZ6g0CCcbJ2yfB+TKm68vLyIiorKdFtUVBQuLi44Ojo+9T729va4uLhk+gJoVL4wY/44TmxCSp7nFkLksaM/wYXN0OkLaDwMyrWANYPg8QPVyYQQubTi/ArCbocxpdGULN/HpIqbhg0bsm3btky3bdmyhYYNG2Z7X1M6VyMhOY1Ja08ZKp4QQoWYCNg0FvzehMrtQaeDzl9BcgJsHK06nRAiF64/vM6cv+bwWsXXCCgRkOX7KS1u4uPjOXbsGMeOHQO0S72PHTtGREQEoE0p9e7dO2P7fv36cfnyZUaNGsXZs2dZuHAhy5cvZ+jQodk+tperI5M7V2PV0ZtsOhlpkMcjhMhn6emweiA4uEDbGf+73bUEtJ8Nx5fBmbXq8gkhcixdn07g3kDcHdwZUXdEtu6rtLj566+/qFWrFrVq1QJg2LBh1KpVi6CgIABu376dUegAlClThvXr17Nlyxb8/PyYO3cu3377LW3atMnR8bvVKkGrqp6MX3WCe/FJuX9AQoj89dd32gnEnb8Cx0KZv1fjdajUAdYOgUd3VaQTQuTCT6d/4sidI0wNmEoB2wLZuq/R9LnJL//ucxP9MInW83bRoGxhFvaqneVr6IUQit27BIsbg98b0HHe07eJvwML/MGnMfT4jzZlJYQwepdjL9NjbQ+6V+zO6PrZn142qXNu8kIRZ3uCu/qy8WQka8JvqY4jhMiK9DRYPQAKFIFWU5+9XcGi0PEzOLMGTv6Rf/mEEDmWmp5K4N5AvAp48UntT3K0D4svbgA61ChGJ7/iBK0+RVRcouo4QogX2b8QIvZD14VgX/D521brBtVegfXDtV44QgijtvTUUk7dO0VwQDCONk+/EvpFpLj5f1M6V8POxoqxK0/IiuFCGLPoc7BtKjTor003ZUWHuWBtp/XCkfe3EEbr3P1zLDi2gHeqvUPNojVzvB8pbv6fWwE7ZnTzZfvZO6z464bqOEKIp0lLhVX9oFAprVlfVjm5Q+cvtV44R3/Ku3xCiBxLSUshMDQQHxcfBtQckKt9SXHzDy2retK9TkmmrDvNjQcJquMIIf4tdB7cPgbdFoNtNoerK7WDmr20njgxES/eXgiRr74+/jUXH1xkWuNp2Fnb5WpfUtz8y4ROVXFxsGH0H8dJT5fhayGMRuQJ2DkLAoZAybo520fbGVpPnNUDtR45QgijcOruKb498S0f1viQqoWr5np/Utz8i4uDLbNf8yP04j1+PnBNdRwhBEBqsjYd5VERmo/J+X4cXLWeOFd2aT1yhBDKJaUlMW7vOCq6VeT9Gu8bZJ9S3DxF4woevNWgFNM3nOXq3Ueq4wghds2C6LPQbRHY2OduX+VbQN13YUuQ1itHCKHUgqMLuP7wOtMaT8PWytYg+5Ti5hnGtqtCEWd7RqwIJ02mp4RQ58Zh2DsPmo6CYn6G2WerqVqPnNUDtJ45Qggljt45ytJTSxlQcwAV3CoYbL9S3DxDAXsb5nT343DEA77fe0V1HCEsU8pjCOkHXr7QZJjh9mtfELou0nrl7F9ouP0KIbIsISWBwL2B+Bbx5Z1q7xh031LcPEf9Mu68F1CGT/88x4Woh6rjCGF5tgfDg6va1VHWhhmuzuATAA0+1nrmRJ8z7L6FEC/0xZEvuJNwh2kB07C2sjbovqW4eYERbSrh7ebI8BXhpKbJ1RVC5Jtr+yBsAbwcCEWr5M0xWkzQeuas6qf10BFC5IsDtw/wy9lfGFJnCD6uPgbfvxQ3L+Bga83cHjU5eTOWRTvl5EMh8kVSPIT0B+/60HBg3h3H1lEbFbp9TOuhI4TIc/HJ8QSFBlHPqx49K/fMk2NIcZMFNb0L8XHz8ny5/QKnbsWqjiOE+ds6ER5GaefFGHi4+gkl62q9c3bO0nrpCCHy1Jy/5hCTFMOURlOw0uVNGSLFTRZ90qIC5YoUZPjycJJS5eoKIfLMpR1w6FtoNQUKl8ufYzYfo/XQWdVP66kjhMgTe27s4Y8LfzCi3ghKOpfMs+NIcZNFdjZWfNajJpei4/ly2wXVcYQwT4mxWvdgnyZQzzDNvLLExl6bnoo+q/XUEUIYXGxSLJP2TSKgeACvVXgtT48lxU02VC3uwuAWFVi08xJHIx6ojiOE+dk0TitwuiwAq3z+9VSsBjQbrfXUuXE4f48thAWYeXAmj1MfM6nRJHQ6XZ4eS4qbbOrXrBy+JVwZviKcxBSZnhLCYM5tgmM/QZtp4FZaTYbGQ7WeOiH9tB47QgiD2HZtG+sur2Os/1i8Cnjl+fGkuMkmG2sr5vbw48aDx8zZLL0xhDCIhPuw9hMo3wpq91aXw9pWm556cE3rsSOEyLX7ifeZsn8KL3m/RMeyHfPlmFLc5ED5os6MbF2J70KvcPDKfdVxhDB9G0ZCaqK2qGUeD1e/UNEq8PJ4rcfOtX1qswhh4vR6PcH7g0nXpxPUMCjPp6P+JsVNDr3buAx1S7sxYkU4j5Kk+ZcQOXYqBE7+Du3ngEsx1Wk0DQdqPXZC+ms9d4QQObLxyka2XNtCYINAPBw98u24UtzkkLWVjjnd/Yh+mMSMjWdUxxHCNMXfgfXDoHJH8O2uOs3/WFlrPXYeRmk9d4QQ2XYn4Q7TDkyjnU872vi0yddjS3GTC6ULF2Bc+8r8tD+CPReiVccRwrTo9bBuqPbvjp+rn476t8LltF47h77Veu8IIbJMr9czOWwydtZ2jPMfl+/Hl+Iml3r5l6ZxeQ9G/X6cuMQU1XGEMB3Hl8PZddBxHhQsojrN09V7X+u5s3qgdom6ECJLQi6GsPvGbiY2nEghh0L5fnwpbnLJykrHrNdqEJ+YypS1p1XHEcI0xN3STiL27Q5Vu6hO82xWVlrPncRY2Jz/nz6FMEW34m8x69AsupTrQnPv5koySHFjACUKOTKhU1V+P3yDraejVMcRwrjp9bBmkLZoZbvZqtO8mFtprffO0Z+0XjxCiGdK16cTtC8IZztnRtcfrSyHFDcG0r1OSVpULsqYlSd48EjWphHimY78CBe3QucvwclddZqsqd1b68Gz9hOtJ48Q4qmWn1vOgdsHmNxoMs52zspySHFjIDqdjhmv+JKSlk7QmlOq4whhnB5cg83jodZbUDF/r57IFZ1O68GTmqhNpwkhnhARF8Fnhz/j9Uqv06h4I6VZpLgxoKIuDkzpUo214bdYd/yW6jhCGJf0dFg9ABzdoM0M1Wmyz6WY1ovn5O9abx4hRIa09DQmhE6gsENhhtUZpjqOFDeG1tmvOO19vZgQcpLoh0mq4whhPA4tgat7oMt8cHBRnSZnfLtrPXnWD4N4af8gxN9+OvMTR+8cZWrAVJxsnVTHkeLG0HQ6HVO7VMfaSsfYlSfQ6/WqIwmh3t2LsGUi1PsAyjZXnSbndDqtJw/AuiHaydFCWLjLMZf58siXvFX1Lep61VUdB5DiJk8ULmjPtG6+bD0TxcojN1XHEUKt9DRtGQNnL2g1WXWa3CtYROvNc3ad1qtHCAuWmp7K+L3jKV6wOJ/U+kR1nAxS3OSRNtW8eKVWCSatPcXt2Meq4wihzr6v4MYhbTkDuwKq0xhG1S7aFNXGkVrPHiEs1Pcnv+f0/dNMazwNBxsH1XEySHGThyZ2qoaTnTWjfj8u01PCMt05AzumQcMBULqh6jSG1W422DhqPXvk/S0s0Ln751gUvoj3qr9HjSI1VMfJRIqbPOTqZMusV2uw58JdfjkYoTqOEPkrLQVWfQRuZeDlCarTGJ6Tu9ar5+JWOPIf1WmEyFcpaSmM2zuOMq5l6OfXT3WcJ0hxk8eaVypKz/reTFt/hoh7CarjCJF/9nwGkSeh2yKwNZ7haoOq2Ebr2bN5nNbDRwgLsSh8EZdjLjO98XTsrO1Ux3mCFDf5YHyHqrgXsGPk7+Gkp8vwtbAAt47B7tnQZBiUqKM6Td5qM0Pr3bN6gNbLRwgzdyL6BN+f/J6P/D6isntl1XGeSoqbfFDQ3oZPX/PjwJX7LN13VXUcIfJWapJ2dVSRKtB0lOo0ec/BRevdc3WP1stHCDOWmJrI+NDxVHavzHu+76mO80xS3OSThuUK804jH2ZtOsul6HjVcYTIOztnwN0L2nSUjfENV+eJss21Hj5bJsK9S6rTCJFn5h+dz82HN5nWeBq2Vraq4zyTFDf5aHTbyhQv5MiIFeGkpsnwtTBD1w9B6BfQfDR4+apOk79aTdZ6+azqp/X2EcLMHI46zH9O/4dBtQZRrlA51XGeS4qbfORoZ82c7n6EX4/hmz2XVccRwrCSEyCkHxSrCQFDVafJf3YFtF4+Nw5B2HzVaYQwqISUBAL3BlKzaE3ervq26jgvJMVNPqtT2o0Pm5Zj3pbznI2MUx1HCMPZPhVirkO3xWBtozqNGqUbaj19tgdrPX6EMBOfHf6Me4n3CA4IxtrKWnWcF5LiRoGhrSpQxqMAw5eHk5wq01PCDFzdC/sXQosgKFJJdRq1Xp6g9fZZ1U/r9SOEiQu7Fcayc8sYUnsIpVxKqY6TJVLcKGBvY81nPWpyLvIh83dcVB1HiNxJegghH0OphtCgv+o06tk6aCdTR56AvfNUpxEiVx4mPyRoXxD+Xv68UfkN1XGyTIobRaqXcGXgy+VZsOMiJ27Eqo4jRM79OQEeRUPXhWACw9X5okQdrcfPrllwO1x1GiFy7NNDn/Iw+SFTAqZgpTOdksF0kpqhAS+Vp0oxZ4YtP0ZiilxdIUzQxa1w+AdoNQXcy6pOY1yajtJ6/azqr/X+EcLE7Lq+i1UXVzGq3iiKFyyuOk62SHGjkK21FXO71+TavQTmbT2vOo4Q2fM4BlYP0nq81DXeZl7K2Nhp01N3z8POmarTCJEtMYkxTAqbRJMSTehWvpvqONkmxY1ilbycGdqqIt/svszha/dVxxEi6zaNheR46DwfrORXyVN5+Wo9f0I/hxt/qU4jRJZNPzid5LRkJjWahE6nUx0n2+Q3khH4sGlZanoXYvjycBKSU1XHEeLFzm6A8F+g7Qwo5K06jXELGKr1/lnVD1Ieq04jxAv9efVPNl7ZyFj/sRR1Kqo6To5IcWMErK10zO3uR2RcIrM3nVMdR4jne3QP1g6Gim2hZi/VaYyftY3W+ycmArZNVZ1GiOe69/gewfuDaVGqBR3KdFAdJ8ekuDESZYsUZHTbyizdd5V9F++qjiPEs20YDmnJ0OkLMMHhaiWKVNJ6AO1fCFdDVacR4qn0ej1TwqYAMKHBBJOcjvqbFDdGpE9DHxqUdWfk78d5mCjNv4QROvkHnFoFHeZq6yiJrGvQH0o10FZMT5LFc4XxWXd5Hduvb2dCwwkUdiysOk6uSHFjRKysdHz6mh8xCclMWy+t24WReRgF64dD1S5Q/VXVaUyPlbXWC+hRNGyZoDqNEJlEPYpixsEZtC/TnlalW6mOk2tS3BgZb3cnAjtW5bdD19lx7o7qOEJo9HpYNwR01tDhM5mOyin3slpPoL++h4vbVKcRAtCmoyaGTcTB2oFx/uNUxzEIKW6M0Bv1vGlWsQijfz9OTEKy6jhCQPivcG6Ddp5NAQ/VaUxb3fe03kBrBmm9goRQbOWFlYTeDGVSo0m42ruqjmMQUtwYIZ1Ox6xXa5CYksakNadUxxGWLvYGbBwDNd6AKh1VpzF9VlZab6Ckh7DZPD4lC9N1M/4msw/Nplv5bjQt2VR1HIOR4sZIebk6MLlLNUKO3WLTyduq4whLpddrIwx2TtBOuuwaTCFvrUfQsZ+1nkFCKJCuTycoNAhXe1dG1RulOo5BSXFjxLrWLEHrqp6MX3WSe/GyNo1Q4PAPcGm7NtLg6KY6jXmp2UvrFbR2MCRId3KR/349+ysHIw8yJWAKBe0Kqo5jUFLcGDGdTse0br7ogfGrTqLX61VHEpbk/hXYHAi1+0CFlqrTmB+dTjuHKS1ZuwpNiHx0Le4anx/+nDcqvUGDYg1UxzE4KW6MXBFne4K7VmfTqUjWhN9SHUdYivR0WD0AChSGNtNUpzFfzl5az6BTK+HkStVphIVIS09j/N7xFHEqwtA6Q1XHyRNS3JiA9r7F6OxXnKDVp4iKS1QdR1iCA4vhWih0WQD2zqrTmLfqr2q9g9YPh3hp/yDy3n9O/4fj0ccJDgjGydZJdZw8IcWNiZjSpRp2NlaM+eO4TE+JvHX3AmybDP79oIz5XD1htHS6/+8dZKWdfyPvb5GHLj64yFdHv6J31d7U9qytOk6eUV7cLFiwAB8fHxwcHPD39+fgwYPP3f7zzz+nUqVKODo64u3tzdChQ0lMNP/RjEJOdsx8xZcd56JZ/td11XGEuUpL1VavdikBLSaqTmM5Cnho59+c2wDhv6lOI8xUSnoK40PH4+3szaDag1THyVNKi5tly5YxbNgwJk6cyJEjR/Dz86NNmzbcufP0odlffvmFMWPGMHHiRM6cOcN3333HsmXLGDfOMnpFtKjiSY+6JZm67gw3HiSojiPM0b4v4NYR6LpIu/xb5J8qHaHG67BxNMTeVJ1GmKFvT3zLufvnmNZ4GvbW9qrj5Cmlxc1nn33GBx98QN++falatSqLFy/GycmJ77///qnb79u3j4CAAN588018fHxo3bo1PXv2fOFojzkJ7FgVFwcbRv1+nPR0Gb4WBhR1CnbMgEaDoJS/6jSWqd0srahcM1Cmp4RBnbl3hm/Cv+E93/eo7lFddZw8p6y4SU5O5vDhw7Rs+b9LTK2srGjZsiVhYWFPvU+jRo04fPhwRjFz+fJlNmzYQPv27Z95nKSkJOLi4jJ9mTIXB1tmv+bHvkv3+OnANdVxhLlITYZVH0Hh8tDcMkZCjZKjm9ZT6NJ2OLxUdRphJpLTkhm3dxzlCpWjX41+quPkC2XFzd27d0lLS8PT0zPT7Z6enkRGRj71Pm+++SZTpkyhcePG2NraUq5cOZo3b/7caakZM2bg6uqa8eXt7W3Qx6FC4woevN2gNDM2nOXq3Ueq4whzsGcORJ2GbovA1kF1GstWoaXWW2jzeHhwVXUaYQYWhS/iatxVpjWehq21reo4+UL5CcXZsXPnTqZPn87ChQs5cuQIK1euZP369UydOvWZ9xk7diyxsbEZX9evm8fJuGPaVaaoiz0jVoSTJtNTIjduHoHdc6DpSCheS3UaAVpvIafCEDJA6zkkRA6FR4fz/cnv6e/Xn0rulVTHyTfKihsPDw+sra2JiorKdHtUVBReXl5Pvc+ECRN4++23ef/99/H19aVbt25Mnz6dGTNmkP6MXwD29va4uLhk+jIHBextmNPdj8MRD/hu72XVcYSpSkmEkP7gWQ2ajlCdRvzN3hm6LoBre+Hg16rTCBP1OPUxgXsDqepelXerv6s6Tr5SVtzY2dlRp04dtm3blnFbeno627Zto2HDhk+9T0JCAlZWmSNbW1sDWGTvl3o+7rzfuAxz/jzPhaiHquMIU7RjGty/DN0Wg4UMV5uMMk2h/kewdZLWe0iIbPryyJfcir/FtMbTsLGyUR0nXymdlho2bBhLlizhxx9/5MyZM/Tv359Hjx7Rt29fAHr37s3YsWMztu/UqROLFi3it99+48qVK2zZsoUJEybQqVOnjCLH0gxvXYlS7k4MXxFOSpoMX4tsiDgA+76C5mO1kRthfFpO0noOhfSH9DTVaYQJ+SvyL34+8zOf1P6EsoXKqo6T75SWcq+//jrR0dEEBQURGRlJzZo12bRpU8ZJxhEREZlGagIDA9HpdAQGBnLz5k2KFClCp06dmDbNcte+cbC1Zm53P15ZtI9FOy/xSYsKqiMJU5D8CEL6Qcm60OgT1WnEs9g5aT2HfmgL+76Exua5DpAwrISUBAJDA6lVtBZvVXlLdRwldHoLm8+Ji4vD1dWV2NhYszn/BmDun+dYtPMSqwcGUK24q+o4wthtGAVHfoR+e8FDCmKjtyUI9i+CD3eBZ1XVaYSRmxo2lbWX1/JHpz/wdjH9K4RzwqSulhLPNujlClTwdGb48nCSUmX4WjzH5V3aSaotJ0lhYyqajwP3slovorQU1WmEEdt3cx/Lzy9nWJ1hFlvYgBQ3ZsPOxoq53f24FB3PF1vl5EPxDIlxsHoglG6snawqTIOtg3bSd9Qp7bJ9IZ4iLjmOoH1BNCjWgB6VeqiOo5QUN2akanEXhrSsyOJdlzga8UB1HGGM/hwPCfe0y4yt5O1vUorX0i7X3zMHbh1VnUYYodkHZ/Mo5RFTGk3BSmfZ72/LfvRm6KOmZfEtWYjhK8JJTJHpKfEPF7bAkf9Am2Bw81GdRuREkxFQtAqs6g+pSarTCCOyI2IHqy+tZlS9URQrWEx1HOWkuDEzNtba9NTNB4/5dPM51XGEsXj8ANYMgnIvQ52+qtOInLKxg25fw72LsGO66jTCSMQkxjA5bDLNSjaja/muquMYBSluzFD5ogUZ2aYS34de4cDle6rjCGOwcTQkJ2iLMup0qtOI3PCsBi+N1S4Nv35QdRphBKYdmEZKegoTG05EJ+9vQIobs9U3oAz1Srsz4vdwHiWlqo4jVDqzFo4vg3azwLWE6jTCEBoNhuK1YVU/rWgVFmvT1U1surqJ8f7jKeJURHUcoyHFjZmyttLxafca3H2YzPQNZ1THEao8ugtrh0Cl9uD3huo0wlCsbbSrp+JuwrbJqtMIRe4+vsu0/dNoVboV7cq0Ux3HqEhxY8ZKFy7AuA5V+PlABLvPR6uOI/KbXg/rhoI+HTp+LtNR5sajArSYCAcWw5XdqtOIfKbX65kcNhkrnRWBDQJlOupfpLgxc2/5l6JJBQ9G/3Gc2MfS/MuinPwDzqyBDnPB2VN1GpEX/PtB6QBYPQCSZPFcS7L28lp2Xt9JUMMg3B3cVccxOlLcmDmdTsesV2sQn5jKlLWnVccR+SXuNqwfDtVegeqvqE4j8oqVFXRZAI/uwZ+BqtOIfBL5KJKZB2bSsWxHWpRqoTqOUZLixgIUL+RIUKeq/HHkBltOR6mOI/KaXg9rB4O1nTZqI8ybexloPRUOL4ULW1WnEXlMr9czcd9EHG0cGVN/jOo4RkuKGwvxWp2StKhclLErT/DgUbLqOCIvHf0JLmyGTl+AkwxXW4S670LZl7ReRo+lO7k5+/3C7+y7tY/JAZNxtZdFkp9FihsLodPpmPGKL6np6UxYfVJ1HJFXYiJg01jwexMqt1edRuQXnQ66zIfkeNgon+bN1Y2HN/j00Ke8WuFVGpdorDqOUZPixoIUdXFgSpfqrDt+m7Xht1THEYaWnq4tiungAm1nqE4j8ptrSa2X0fHf4Mw61WmEgaXr05kQOgE3ezdG1hupOo7Rk+LGwnSqUYwOvsWYsPokdx4mqo4jDOmv7+DKLuj8FTgWUp1GqODXEyq2g3VDtJOMhdn45cwv/BX1F1MDplLAtoDqOEZPihsLo9PpmNq1OjZWOsatPIler1cdSRjCvUuwJUg796K8XD1hsXQ67Vyr9FRYP1Q7uVyYvCuxV/j8yOe8WflN6herrzqOSZDixgK5F7Bjejdftp6J4o8jN1XHEbmVnqb1OSlQBFpNVZ1GqObsqV0ld3q11utImLS09DQCQwPxKuDFkDpDVMcxGVLcWKjW1bx4pXYJJq89xa2Yx6rjiNzYvxAi9kPXhWBfUHUaYQyqvwrVusGGEfAwUnUakQtLTy3l5N2TBAcE42jjqDqOyZDixoJN7FSNAnY2jP7juExPmaroc7BtKjToDz5y9YT4h/ZzwcpG63kk72+TdOHBBRYcW0Cfan2oWbSm6jgmRYobC+bqaMus12qw58JdfjkYoTqOyK60VG1V6EKloEWQ6jTC2BQoDJ2+hPOb4NgvqtOIbEpJT2H83vGUci7FgJoDVMcxOVLcWLhmFYvQs34ppq0/Q8S9BNVxRHaEzoPbx7TVoW1luFo8ReX22hVUm8ZA7A3VaUQ2LDm+hPMPzjOtyTTsre1VxzE5UtwIxneognsBO0b8Hk56ugxfm4TIE7BzFgQMgZJ1VacRxqztTLArqJ10LtNTJuHUvVMsOb6ED2p8QLXC1VTHMUlS3AgK2tswp7sfB6/c54d9V1XHES+SmqxNR3lUhObSjVa8gGMh6PIVXN6p9UISRi05LZnAvYFUcKvAh74fqo5jsqS4EQA0KFuYvgE+zN50lkvR8arjiOfZNQuiz0K3RWAjw9UiC8q3hDp94c8guH9FdRrxHAuOLeBq3FWCGwdja22rOo7JkuJGZBjVpjIlCjkyfHk4qWnpquOIp7lxGPbOg2ajoZif6jTClLSeqp1kHPKxtlSHMDrH7hxj6amlDKg5gIpuFVXHMWlS3IgMjnbWzOnhx/EbMXy9+7LqOOLfUh5DSD/w8oXGQ1WnEabG3hm6LoKIfXBgkeo04l8epz4mMDSQ6oWr8061d1THMXlS3IhMapdy46Nm5fh863nORsapjiP+aXswPLimXR0lw9UiJ3wag39/2DYFos+rTiP+4YsjXxD5KJLgxsHYWNmojmPypLgRTxjSsgJlPQoybFk4yakyfG0Uru2DsAXw8ngoWkV1GmHKWgRpK4iH9NN6JQnlDt4+yM9nfmZw7cGUcS2jOo5ZkOJGPMHexpq5Pfw4H/WQ+dsvqI4jkuIhpD9414eGA1WnEabOzgm6LoZbR2HfF6rTWLxHKY8I2hdEXc+69KrSS3UcsyHFjXiq6iVcGfRyBRbsvMTxGzGq41i2rRPhYZR2voSVteo0whx414OAwbBjBkSeVJ3Gos35aw73E+8zJWAKVjr5k2wo8kyKZ/r4pXJULebCsOXhJKakqY5jmS7tgEPfQqspULic6jTCnDQfCx4VtOmp1GTVaSzS3pt7+f3874yoOwJvZ2/VccyKFDfimWytrZjbw4+IewnM2yInH+a7xFhYPRB8mkC991WnEebGxl4bDbxzBnZ/qjqNxYlNimXivok0Kt6I7hW7q45jdqS4Ec9V0dOZYa0r8s2ey/x19b7qOJZl8zitwOmyAKzkrSryQPGa0HQk7JkLN4+oTmNRZh2cxeOUx0xuNBmdTqc6jtmR35jihT5oUpZa3oUYsSKchGS5uiJfnNsER3+CNtPArbTqNMKcNRkOXtW1JT1SElWnsQjbIrax9vJaRtcfjVcBL9VxzJIUN+KFrK10zO1Rk8i4RGZtPKs6jvlLuA9rP4HyraB2b9VphLmztoVuX8ODK7Bjmuo0Zu9B4gOmhE2huXdzOpfrrDqO2ZLiRmRJGY8CjGlbmR/DrhF68a7qOOZtw0hITYTOX4EMV4v8ULQKvDQe9n0FEftVpzFber2eqfunkqZPY2LDiTIdlYekuBFZ1ruhDw3LFmbU78d5mJiiOo55OhUCJ3+H9nPApZjqNMKSNBoEJetpPZWSH6lOY5Y2Xd3ElmtbCGwQiIejh+o4Zk2KG5FlVlY6Zr9Wg5iEZILXnVEdx/zER8P6YVC5I/jK1RMin1lZa1dPxd2GrZNUpzE70QnRTDswjTY+bWjr01Z1HLMnxY3IFm93JyZ0rMqyv66z4+wd1XHMh14P64Zo/+74uUxHCTU8ykPLSXDwG7i8S3Uas6HX65kcNhlrnTXj/cerjmMRpLgR2fZ6PW+aVyrC6D+OE5Mgzb8M4vhyOLsOOs6DgkVUpxGWrP6HWm+l1QMgURbPNYTVl1az68YuJjWchJuDm+o4FkGKG5FtOp2Oma/UIDEljUlrTqmOY/ribsHGkdpUVNUuqtMIS2dlpfVWevwA/pRRhtyKfBTJrIOz6FyuMy+Vekl1HIshxY3IES9XB6Z0qU7IsVtsPHFbdRzTpdfDmkFg4wjtZqtOI4TGrbTWY+nIf+D8n6rTmCy9Xs+E0Ak42Toxuv5o1XEsihQ3Ise61CxOm2qejA85yd34JNVxTNORH+HiVuj8JTi5q04jxP/U7gPlW2rFd4J0J8+J5eeWs//2fqY0moKLnYvqOBZFihuRYzqdjmndfAEIXHUSvV6vOJGJeXANNo+HWm9BxTaq0wiRmU6n9VpKfQwbZdQhu67HXWfu4bl0r9idgBIBquNYHCluRK54FLRnWtfqbDoVyepjt1THMR3p6doJm45u0GaG6jRCPJ1LcW269MRyOL1GdRqTka5PJzA0EHcHd4bXHa46jkWS4kbkWjvfYnSpWZyg1SeJipO1abLk0BK4uge6zAcHGa4WRqzG61rvpXVD4ZF0J8+Kn07/xJE7R5gaMJUCtgVUx7FIUtwIg5jcuRoOttaM/uO4TE+9yN2LsGUi1PsAyjZXnUaI59PptBYF+nStF5O8v5/rcuxlvjjyBW9VeYt6XvVUx7FYUtwIgyjkZMfMV33ZeS6aZYeuq45jvNLTtPb2zl7QarLqNEJkTcGiWoFzZi2c+F11GqOVmp5K4N5Aihcszie1P1Edx6JJcSMM5uXKnrxe15up605z/X6C6jjGad9XcOOQ1ubeToarhQmp1hWqvwobRmhLNIgn/HDyB07dO0Vw42AcbRxVx7FoUtwIgwrsWIVCTnaM+v046ekyfJ3JnTOwYxo0HAClG6pOI0T2tZ8DNvaw9hOZnvqXc/fPsTB8IX2r9cWviJ/qOBZPihthUM4Otsx+rQZhl+/x3/3XVMcxHmkpsOojcCsDL09QnUaInHFyh05fwoU/4ehPqtMYjZS0FMbvHY+Piw8f1/xYdRyBFDciDwSU96B3w9LM2HiGK3cfqY5jHPZ8BpEnodsisHVQnUaInKvUFmq+BZvGQkyE6jRG4evjX3Mp5hLTGk/DztpOdRyBFDcij4xpVxlPFwdGrAgnzdKnp24dg92zockwKFFHdRohcq/tdHBw1Xo1paerTqPUybsn+fbEt3xY40OqFq6qOo74f1LciDzhZGfD3O5+HIl4wLd7LquOo05qknZ1VJEq0HSU6jRCGIaDq9aj6cpu+Os71WmUSUpLYvze8VR0q8j7Nd5XHUf8gxQ3Is/U9XHngyZlmfvnec5HPVQdR42dM+DuBW06ykaGq4UZKfcS1H0PtgTBvUuq0ygx/+h8rj+8zvTG07G1slUdR/yDFDciTw1rVZFShZ0YvjyclDQLG76+fghCv4Dmo8HLV3UaIQyv1RStB07Ix1oPJwty9M5Rfjz1IwNrDaS8W3nVccS/SHEj8pSDrTWf9fDj9O04Fu6woE93yQkQ0g+K1YSAoarTCJE37AtqPZuuH4D9C1WnyTcJKQmM3zueGkVq0KdqH9VxxFNIcSPyXI2ShRjQvBxfbb/AyZuxquPkj+1TIeY6dFsM1jaq0wiRd0o30no3bZsKd86qTpMvPj/yOdEJ0QQHBGNtZa06jngKKW5Evhj4cgUqejozfHk4SalmPnx9da/2KbZFEBSppDqNEHnv5UBwK62NVqalqk6Tp/bf3s+vZ39lSJ0h+Lj6qI4jnkGKG5Ev7GysmNvDj8t34/li6wXVcfJO0kPt/INSDaFBf9VphMgfto7QdTHcDoe981SnyTPxyfEEhQZRz6sePSv3VB1HPIcUNyLfVCnmwpCWFVm86xJHIh6ojpM3/pwAj6Kh60KQ4WphSUrWgcZDYdcsuH1cdZo8MeevOcQmxTI1YCpWOvnzacyU/3QWLFiAj48PDg4O+Pv7c/DgweduHxMTw4ABAyhWrBj29vZUrFiRDRs25FNakVsfNS2Lb8lCjFgezuNkM5ueurgVDv+gXUHiXlZ1GiHyX7PR2lRsSH9ITVadxqB239jNHxf+YGS9kZQoWEJ1HPECOS5utm3bRseOHSlXrhzlypWjY8eObN26NVv7WLZsGcOGDWPixIkcOXIEPz8/2rRpw507d566fXJyMq1ateLq1av8/vvvnDt3jiVLllCihLzQTIWNtRVzu/txM+Yxn24+pzqO4TyOgdWDoGxzrfeHEJbIxl67eir6rDaCYyZik2KZtG8SASUCeLXCq6rjiCzIUXGzcOFC2rZti7OzM4MHD2bw4MG4uLjQvn17FixYkOX9fPbZZ3zwwQf07duXqlWrsnjxYpycnPj++++fuv3333/P/fv3CQkJISAgAB8fH5o1a4afn6zAakrKFy3IyDaV+D70Cvsv31MdxzA2jYXkeOg8H6yUD4gKoU6xGtBsDOz9DG4cVp3GIGYcnEFiWiKTG05Gp9OpjiOyQKfXZ3/d+pIlSzJmzBgGDhyY6fYFCxYwffp0bt68+cJ9JCcn4+TkxO+//07Xrl0zbu/Tpw8xMTGsXr36ifu0b98ed3d3nJycWL16NUWKFOHNN99k9OjRWFs//fyGpKQkkpKSMv4/Li4Ob29vYmNjcXFxyeIjFoaWnq7njSX7uR37mI2Dm1LQ3oQvlz67AX7rCV0WQK23VKcRQr20VPiuJSQ/go92ayccm6it17YydOdQpjeeTqdynVTHEVmUo78oMTExtG3b9onbW7duzejRo7O0j7t375KWloanp2em2z09PTl79um9Ei5fvsz27dvp1asXGzZs4OLFi3z88cekpKQwceLEp95nxowZTJ48OUuZRP6xstIx5zU/2n6xm+kbzjC9m4l28H10D9YOhoptoWYv1WlyRK/Xk5pq3pfvmjJra2usTG000NpGu3rq66awPRjaTFOdKEfuJ95n6v6pvOz9Mh3LdlQdR2RDjoqbzp07s2rVKkaOHJnp9tWrV9OxY969ANLT0ylatCjffPMN1tbW1KlTh5s3b/Lpp58+s7gZO3Ysw4YNy/j/v0duhHqlCjsxrn0VAkNO0qaaF80qFlEdKfs2DIe0ZOj0BZjgcHVqairR0dHkYABX5CMnJydcXV1Na0qkaGWt/82WIKjcQWv2Z0L0ej1Tw6aSrk9nQsMJpvXci5wVN1WrVmXatGns3LmThg0bArB//35CQ0MZPnw4X375Zca2n3zyyVP34eHhgbW1NVFRUZluj4qKwsvL66n3KVasGLa2tpmmoKpUqUJkZCTJycnY2T25MKG9vT329vbZfowif/TyL8XmU5GM/v04m4c2xdXRhBafO/kHnFoFr34Hzk9/zRozvV5PTEwMVlZWuLm5yS9vI6TX60lOTiYuLg6AQoUKqQ2UXQ0HwNn12tVT/UK15RpMxIYrG9gasZW5zebi4eihOo7Iphydc1OmTJms7Vyn4/Lly8/8vr+/P/Xr1+err74CtJGZUqVKMXDgQMaMGfPE9uPGjeOXX37h8uXLGcO0X3zxBbNmzeLWrVtZyhQXF4erq6ucc2NEbsU8ps283bSq5slnPWqqjpM1D6NgoT+UaQrdfzTJUZu0tDSioqJwc3PD0dF0z4mwBPHx8cTFxeHl5WV6U1T3LsHixlDzTegwV3WaLLmTcIduq7sRUDyA2c1mq44jciBHIzdXrlwxyMGHDRtGnz59qFu3LvXr1+fzzz/n0aNH9O3bF4DevXtTokQJZsyYAUD//v2ZP38+gwcPZtCgQVy4cIHp06c/c3RImIbihRyZ2LkaI1aE07aaF62rGfkoiF4P64aAlQ10+MwkCxvQPkwAzzwZXxiPv0el09LSTK+4KVxO6/20YQRU7gjlXlKd6Ln0ej2T9k3CztqOcf7jVMcROaT0EpXXX3+d6OhogoKCiIyMpGbNmmzatCnjJOOIiIhMb2Rvb282b97M0KFDqVGjBiVKlGDw4MFZPolZGK9Xa5dg08nbjFt1gro+7rgXeHKK0WiE/wrnNsDrP0MB0x+uluko42fyP6O678GZNbB6IHy8DxxcVSd6ppCLIey5uYf5L8+nkEMh1XFEDmV5WmrYsGFMnTqVAgUKZDpB92k+++wzg4TLCzItZbzuPEyk9bzdBJT3YMGbtVXHebrYG7CwEVRqB698rTpNrqSkpBAdHU2RIkWwtTWhc50skFn8rGIitPdO1S7QNev90PLTrfhbvLLmFVqVbsXUgKmq44hcyPLIzdGjR0lJScn497OY/CcMoUxRZwemdqnOoF+P0rbaLTr5FVcdKTO9HtYMAjsnaDdTdRohTEuhUtB2uvYeqtIJKj3ZTkSldH06QaFBONs5M6reKNVxRC5lubjZsWPHU/8thCF18ivOplORTFh9Ev+y7hR1dlAd6X8O/wCXtkOvP8DRTXUai9W8eXNq1qzJ559/rjqKyK5ab8OZtbD2E/DeD07uqhNlWHZuGQciD/BNq29wtnNWHUfkkomdmSYswdQu1bGxsmLsHyeMp//K/SuwORBq94EKLVWnEcI06XTQ6UtITYINI1+8fT6JiItg3uF5vF7pdRoWb6g6jjCAHBU3jx49YsKECTRq1Ijy5ctTtmzZTF9C5IZ7ATtmvOLLtrN3+P3wDdVxID0dVg+AAoVNttOqEEbDpRi0/xRO/g6nQlSnIS09jcDQQAo7FGZYneefTypMR46ulnr//ffZtWsXb7/9NsWKFZPzbITBtarqyau1SzJl7WkCyntQvJDCPiwHFsO1UOizFuxluNqYPHjwgMGDB7N27VqSkpJo1qwZX375JRUqVECv11O0aFEWLVrEa6+9BkDNmjWJiori9u3bAOzdu5cWLVrw4MEDnJycVD4Uy+LbXbt6av0wrXNxwaLKovx05ieO3TnGD21/wMlWXgPmIkfFzcaNG1m/fj0BAQGGziNEhqBOVQm9eJfRfxznP+/WV1NE370A2yaDfz+tYZ+Ze5ycxqXo+Hw/brkiBXG0y36/nXfeeYcLFy6wZs0aXFxcGD16NO3bt+f06dPY2trStGlTdu7cyWuvvcaDBw84c+YMjo6OnD17lsqVK7Nr1y7q1asnhU1+0+mgwzytEea6ofD6T0r6RV2KucSXR77k7apvU8ezTr4fX+SdHBU3bm5uuLsbz4lgwjy5Otoy+7Ua9P7+ID8fiOCtBqXzN0BaKqzqBy4loMXT1y4zN5ei4+n41d58P+66QY2pXiJ7vU/+LmpCQ0Np1Ehbt+jnn3/G29ubkJAQunfvTvPmzfn6a+2S/d27d1OrVi28vLzYuXMnlStXZufOnTRr1szgj0dkQcEi0PFzWP42HF8Ofq/n6+FT01MZv3c8JZxLMKjWoHw9tsh7OSpupk6dSlBQED/++KN84hF5qmnFIrzpX4rpG87QtEIRShXOx9fbvi/h1hHou0m7/NsClCtSkHWDGis5bnadOXMGGxsb/P39M24rXLgwlSpV4syZMwA0a9aMwYMHEx0dza5du2jevHlGcfPee++xb98+Ro2Sy36VqdpZm6LaOBLKNAGX/Gv/8N2J7zhz/ww/tfsJBxsjuipTGESWi5tatWplmha4ePEinp6e+Pj4PNFU6siRI4ZLKCzeuPZV2HMhmhErwvntwwZYWeXD8HXUKdgxHRoNglL+L97eTDjaWWd7BMWY+fr64u7uzq5du9i1axfTpk3Dy8uLWbNmcejQIVJSUjJGfYQi7WbDlT1a/5tev+fL9NTZ+2dZfHwx71V/D98ivnl+PJH/slzcdO3aNQ9jCPFsBe1t+PQ1P3ou2c/3oVd4v0keX5GXmqxNRxUuD81lbRljVaVKFVJTUzlw4EBGgXLv3j3OnTtH1apVAa2paJMmTVi9ejWnTp2icePGODk5kZSUxNdff03dunUpUKCAyochnNyh81fwS3c48h+o0ydPD5eSlsL4veMp61qWfn798vRYQp0sFzcTJ1rGOQfCODUoW5i+jcowe/M5mlcqSvmi2Z/GyLI9c7SRmw+2ga0MVxurChUq0KVLFz744AO+/vprnJ2dGTNmDCVKlKBLly4Z2zVv3pzhw4dTt25dChbUXjdNmzbl559/ZuRI4+m1YtEqttYa/G0eB2Wbg1venV+3KHwRl2Mu82vHX7GzNuI17ESu5KjPzfXr17lx43/9Rw4ePMiQIUP45ptvDBZMiH8b1bYSJd0cGb4inNS09Lw5yK2jsHsONB0JxWvlzTGEwfzwww/UqVOHjh070rBhQ/R6PRs2bMg0Vd6sWTPS0tJo3rx5xm3Nmzd/4jahWJvpWufv1QO03lJ54ET0Cb47+R39/PpR2b1ynhxDGIcsL5z5T02aNOHDDz/k7bffJjIykooVK1K9enUuXLjAoEGDCAoKyousBiELZ5q2oxEPeHXRPoa3rsSAl8obducpifBNM7C2gw+2g7WJLlCYRWaxGKOFsJif1eWd8J8u2nk4/h8ZdNeJqYn0WNcDJxsnfmr/EzZWObqeRpiIHI3cnDx5kvr16wOwfPlyfH192bdvHz///DNLly41ZD4hMqlVyo1+zcrx+dbznLkdZ9id75wO9y9Dt8VmX9gIYZTKNod6H8CWiXDvkkF3/dXRr7j58CbTGk+TwsYC5Ki4SUlJwd7eHoCtW7fSuXNnACpXrpzR+VOIvDK4ZQXKFSnIsOXhJKcaaPg64gCEfgnNx4JnNcPsUwiRfa0mg7OXdlJ/eppBdnk46jD/Pf1fBtUaRLlC5QyyT2HcclTcVKtWjcWLF7Nnzx62bNlC27ba0vW3bt2icOHCBg0oxL/Z21gzp7sfF6Ie8tX2C7nfYfIjCOkHJetCo09yvz8hRM7ZFdBGT28cgrD5ud5dQkoCgXsDqVm0Jm9XfdsAAYUpyFFxM2vWLL7++muaN29Oz5498fPzA2DNmjUZ01VC5KXqJVz5pEUFFu68RPj1mNztbOtkiLsFXReBtQxXC6FcqQbQaCBsD4Y7Z3K1q88Of8a9xHsEBwRjbZX9JT6Eacr2b3K9Xk/ZsmWJiIggNTUVNze3jO99+OGH0rFY5Jv+zcux5XQUw1eEs25QYxxsc/CL68puOPg1tJ0JHhUMH1IIkTMvBcL5P7Xpqfe35ug8uLBbYSw7t4xx/uMo5VIqD0IKY5XtkRu9Xk/58uWJjIzMVNgA+Pj4ULSoutVdhWWxtbZibg8/Iu4n8NmW89nfQWIchAyA0o2hvmGvzBBC5JKtA3RbBJEnYM9n2b77w+SHBO0Lwt/Ln9cr5e+6VUK9bBc3VlZWVKhQgXv37uVFHiGypaKnM8NbVWTJnsscuno/e3f+MxAS7kHXBWCVoxlaIUReKlEHmgyD3bPhdni27jr70GweJj9kSsAUrHTy/rY0OfqJz5w5k5EjR3Ly5ElD5xEi295vUpbapdwYsSKchOTUrN3pwhY48iO0CQY3nzzNJ4TIhaajoEgVbXoqNSlLd9l1fRchF0MYVW8UxQvm32KcwnjkqLjp3bs3Bw8exM/PD0dHR9zd3TN9CZGfrK10zO3ux524JGZuPPviOzx+oC3SV+5lqNM37wMKIXLOxk67euruBdg584WbxyTGMClsEk1KNKFb+W75EFAYoxxdGvL5558bOIYQuePjUYAx7Sozcc0p2lTzIqC8x7M33jgakhOg8/x8WYFYCJFLXtWh+RjYMQ0qtQfves/cdPrB6SSnJTOp0SR08v62WDkqbvr0ydtVW4XIibcblGbzqUhG/X6cjUOa4OLwlKsrzqyF48ug62JwLZH/IYUQORMwBM5t0HpSfbQH7J68MvfPq3+y8cpGZjaZSVEnubjFkuX4LKtLly4RGBhIz549uXPnDgAbN27k1KlTBgsnRHZYWemY/VoNYh+nELzu9JMbPLoLa4don/z83sj3fMJ0paWlkZ5HizmKLLK20T6UxN6A7VOf+Pbdx3cJ3h9My1ItaV+mvYKAwpjkqLjZtWsXvr6+HDhwgJUrVxIfHw9AeHg4EydONGhAIbKjpJsTEzpWYflfN9h+Nup/39DrYd1Q0KdDx89lOsrEbdq0icaNG1OoUCEKFy5Mx44duXRJW4uoUaNGjB49OtP20dHR2Nrasnv3bgCSkpIYMWIEJUqUoECBAvj7+7Nz586M7ZcuXUqhQoVYs2YNVatWxd7enoiICA4dOkSrVq3w8PDA1dWVZs2aceTIkUzHOnv2LI0bN8bBwYGqVauydetWdDodISEhGdtcv36dHj16UKhQIdzd3enSpQtXr17Nk+fKrBSpCC9PgP2L4OrejJv1ej1Tw6ai0+kIbBAo01EiZ9NSY8aMITg4mGHDhuHs7Jxx+8svv8z8+blvly1EbvSo682mk5GM/uMEW4a6UcjJDk7+AWfWwGs/gLOn6ojGKzkB7uagZ1BueVR86jTDszx69Ihhw4ZRo0YN4uPjCQoKolu3bhw7doxevXoxe/ZsZs6cmfFHbtmyZRQvXpwmTZoAMHDgQE6fPs1vv/1G8eLFWbVqFW3btuXEiRNUqKA1c0xISGDWrFl8++23FC5cmKJFi3L58mX69OnDV199hV6vZ+7cubRv354LFy7g7OxMWloaXbt2pVSpUhw4cICHDx8yfPjwTNlTUlJo06YNDRs2ZM+ePdjY2BAcHEzbtm05fvw4dnZ2BnpSzVSD/nB2PYR8DP33gX1B1l1ex/br25nXfB6FHWUJIAE6vV6vz+6dChYsyIkTJyhTpgzOzs6Eh4dTtmxZrl69SuXKlUlMTMyLrAYRFxeHq6srsbGxuLi4qI4j8khUXCKt5+2meaUifNHeCxY20K6O6v6D6mhGIyUlhejoaIoUKYKt7f+fn3TrGHzTLP/DfLgLitfM8d3v3r1LkSJFOHHiBJ6enhQvXpzt27dnFDONGjWiadOmzJw5k4iIiIwu68WL/+8y4ZYtW1K/fn2mT5/O0qVL6du3L8eOHctYXuZp0tPTKVSoEL/88gsdO3Zk06ZNdOrUievXr+Pl5QVoiwu3atWKVatW0bVrV3766SeCg4M5c+ZMRvGVnJxMoUKFCAkJoXXr1k8c56k/K0t2/zIsCgC/N4h6aQzdVnejSckmzGo6S3UyYSRyNHJTqFAhbt++TZkyZTLdfvToUUqUkJM0hXqeLg5M6VKNwb8dZXzMRIpa20GHuapjGT+PilqhoeK42XDhwgWCgoI4cOAAd+/ezTgfJiIigurVq9O6dWt+/vlnmjRpwpUrVwgLC+Prr78G4MSJE6SlpVGxYuZjJiUlZVr4187Ojho1amTaJioqisDAQHbu3MmdO3dIS0sjISGBiIgIAM6dO4e3t3dGYQM8sd5eeHg4Fy9ezDTqDZCYmJgxtSZewL0stJ6Kfv1wJqbdwMHGgXH+41SnEkYkR8XNG2+8wejRo1mxYgU6nY709HRCQ0MZMWIEvXv3NnRGIXKks19xYkN/oGjkLuK6/gcXJ+nB9EJ2TrkaQckvnTp1onTp0ixZsoTixYuTnp5O9erVSU5OBqBXr1588sknfPXVV/zyyy/4+vri6+sLQHx8PNbW1hw+fBhr68zrkRUsWDDj346Ojk+cu9GnTx/u3bvHF198QenSpbG3t6dhw4YZx82K+Ph46tSpw88///zE94oUKZLl/Vi8uu/xx+mfCY05y4Ims3G1d1WdSBiRHBU306dPZ8CAAXh7e5OWlkbVqlVJS0vjzTffJDAw0NAZhcgRXex13opdxFpdc9YeL8HXfno50dAM3Lt3j3PnzrFkyZKMaae9e/dm2qZLly58+OGHbNq0iV9++SXTh65atWqRlpbGnTt3Mu6fVaGhoSxcuJD27bWrca5fv87du3czvl+pUiWuX79OVFQUnp7auV2HDh3KtI/atWuzbNkyihYtKlPjuXDz0S0+tX7EK3FJNA1fA2XbqY4kjEiOrpays7NjyZIlXLp0iXXr1vHTTz9x9uxZ/vvf/z7xSUgIJdLTYfVArBxccew0mz9PRxFy7KbqVMIA3NzcKFy4MN988w0XL15k+/btDBs2LNM2BQoUoGvXrkyYMIEzZ87Qs2fPjO9VrFiRXr160bt3b1auXMmVK1c4ePAgM2bMYP369c89doUKFfjvf//LmTNnOHDgAL169cLR0THj+61ataJcuXL06dOH48ePExoamvGB7+/CulevXnh4eNClSxf27NnDlStX2LlzJ5988gk3btww1NNk1tL16UwInYCrQyFG1h8N4b/A2Q2qYwkjkqvVxEqVKkW7du3o3r17xhUGQhiFv76DK7ug81e0rF2JrjWLM3H1KSJjjfdkd5E1VlZW/Pbbbxw+fJjq1aszdOhQPv300ye269WrF+Hh4TRp0oRSpUpl+t4PP/xA7969GT58OJUqVaJr164cOnToie3+7bvvvuPBgwfUrl2bt99+m08++YSiRf/XLM7a2pqQkBDi4+OpV68e77//PuPHjwfAwcEBACcnJ3bv3k2pUqV45ZVXqFKlCu+99x6JiYkykpNFv579lUORh5gSMIWCdd6Fim1h7WBIyObiucJs5ehqKdDe5PPmzePChQuA9olmyJAhvP/++wYNaGhytZQFuHcJFjfWGvV1nAdAbEIKrebtokoxF5b2rSfTU8gVOPklNDSUxo0bc/HiRcqVK5ejfcjP6n+uxl6l+9rudC3flfENtMKRh5GwwF+uiBQZcjRyExQUxODBg+nUqRMrVqxgxYoVdOrUiaFDhxIUFGTojEJkXXoarB4ABYpAq/91MXV1smXWqzXYdT6aZYeuKwwozN2qVavYsmULV69eZevWrXz44YcEBATkuLAR/5OWnkZgaCBFnIowtM7Q/33D2Uu7GvLUSji5Ul1AYTRydELxokWLWLJkSaZ57M6dO1OjRg0GDRrElClTDBZQiGzZvxAi9sM768C+YKZvvVS5KG/U82bqutMElPfA2z3rTeOEyKqHDx8yevRoIiIi8PDwoGXLlsydK20IDOHH0z9yPPo4P7b7ESfbf71/q7+qNepcPxxKB0izTguXo5GblJQU6tat+8TtderUITU1NdehhMiR6HOwbarWwdSn8VM3Gd+hCoWc7Bj5ezjp6TmakRXiuXr37s358+dJTEzkxo0bLF26NFP/HJEzFx9cZP7R+fSp1odaRWs9uYFOBx0+AytrWDdEW3JFWKwcFTdvv/02ixYteuL2b775hl69euU6lBDZlpYKq/pBoVLQ4tlTo84Otnz6Wg32X77Pf8Ku5l8+IUSOpaSnMG7vOLydvRlYa+CzNyzgoa0dd24DhP+Wb/mE8cnytNQ/L7XU6XR8++23/PnnnzRo0ACAAwcOEBERIU38hBqh8+D2MXhvC9g6PnfTRuU96NOwNDM3naVpxSKULVLwudsLIdT69sS3nH9wnp/a/4S9tf3zN67SEWq8ARtHQ5mm4Cpd8y1Rlq+Weumll7K2Q52O7du35ypUXpKrpcxQ5An45iVoNAhaZm1V+oTkVNp/sQf3Anas6NcIayvLu3pKrsAxHZb8szp97zS91vfiXd93GVRrUNbu9PgBLGwIRavAWyu1KSthUXJ8KbipkuLGzKQmw5KXtPn1D3eAzQs+1f3DX1fv0/3rMEa3rUy/ZpZ3JYsl/8E0NZb6s0pOS+b1da9jrbPm1w6/Ymudjcd+YSv8/KrWDqLuu3kXUhilXDXxE0K5XbMg+ix0W5ytwgagro87HzYpy2d/nud81MM8CiiEyKmFxxZyNe4q0xpPy15hA1ChJdTuA5sD4f6VvAkojFaOLgVPTEzkq6++YseOHdy5cydjRd6/HTlyxCDhhHiuG4dh7zxoPgaK1Xjx9k8xtFVFtp+9w7Dlx1j1cQC21lLvC2EMwqPD+eHUDwysOZBK7pVytpM20+DyDlg9EPqsBSt5f1uKHP2k33vvPWbPnk3p0qXp2LEjXbp0yfQlRJ5LeQwh/cDLFxoPffH2z+Bga81nPWpy5vZDFuy4aMCAIq80b96cIUOGPPP7Op2OkJCQLO9v586d6HQ6YmJicp1NGMbj1McE7g2kWuFq9K3eN+c7sneGLgvg2l44+LXhAgqjl6ORm3Xr1rFhwwYCAgIMnUeIrNkeDA+uwUe7ILvD1f/iW9KVAS+VZ/72i7Ss4kn1Eq4GCilUuH37Nm5ubqpjiFz48siX3H50my9e/gIbqxz9mfqfMk3Bvx9snQTlW4KHrINoCXI0clOiRAmcnZ0NnUWIrLm2D8IWwMvjtashDGDgS+Wp6OnMsOXHSEpNM8g+hRpeXl7Y22fv/CthPA5FHuKnMz8xqNYgyrqWNcxOW0wElxIQ0l/riSXMXo6Km7lz5zJ69GiuXbtm6DxCPF9SvPYLyrs+NHxOM69ssrOx4rPX/bhy9xGfb71gsP2KvJGens6oUaNwd3fHy8uLSZMmZXzv39NS+/bto2bNmjg4OFC3bl1CQkLQ6XQcO3Ys0z4PHz5M3bp1cXJyolGjRpw7dy5/HozI8CjlERNCJ1C7aG3eqvKW4XZs5wRdF8HNw7DvS8PtVxitHI331a1bl8TERMqWLYuTk9MTlybevy/Lzos8snUiPIzSeldYWRt015W9XBjSsiJz/zxHq6qe1C5leVMbj1MfcyU2/68sKeNaBkeb5zdf/Kcff/yRYcOGceDAAcLCwnjnnXcICAigVatWmbaLi4ujU6dOtG/fnl9++YVr164983yd8ePHM3fuXIoUKUK/fv149913CQ0Nzc3DEtk096+53E+8z5JWS7A28PubUv5aL6ydM6BiG/CsZtj9C6OSo+KmZ8+e3Lx5k+nTp+Pp6YlOGiSJ/HBpBxz6Ftp9CoXzpi/NR03LsuV0FCOWh7P+kyY42hn4F6yRuxJ7hdfXvZ7vx13WcRlVC1fN8vY1atRg4kStYWOFChWYP38+27Zte6K4+eWXX9DpdCxZsgQHBweqVq3KzZs3+eCDD57Y57Rp02jWrBkAY8aMoUOHDiQmJuLg4JCLRyayKvRmKCvOryDQPxBvF++8OUjzcXD+T22plg+25/p8PWG8clTc7Nu3j7CwMPz8/AydR4inS4zVLuf0aQL13s+zw9hYWzG3hx/tv9jD7M1nmdjJsj7dlXEtw7KOy5QcNztq1Mh86X+xYsW4c+fOE9udO3eOGjVqZCpQ6tev/8J9FitWDIA7d+5QqlSpbGUT2ReXHEfQviAaFGtAj0o98u5Atg7QbREsaQG758BLY/PuWEKpHBU3lStX5vHjx4bOIsSzbR6nFThdFuR5r4pyRQoyqm1lpq47TeuqXjQsZzkrOjvaOGZrBEWVf0+F63S6J/pt5Waff49G53afImtmHZxFQkoCUxpNyfuZgOK1oOlI2P0pVGqr/b8wOzn6KzFz5kyGDx/Ozp07uXfvHnFxcZm+hDCoc5vg6E9aQy630vlyyL6NfPAv487I38OJT5KrK0xVpUqVOHHiBElJSRm3HTp0SGEi8W87Inaw5tIaRtUbRbGCxfLnoE1HaOfcrOoPKYn5c0yRr3JU3LRt25awsDBatGhB0aJFcXNzw83NjUKFCkl/CWFYCfdh7SdQvhXUzr8V562sdHz6mh/3HyUzbf2ZfDuuMKw333yT9PR0PvzwQ86cOcPmzZuZM2cOgJwraARiEmOYHDaZZiWb0bV81/w7sLWttmTL/Uuwc3r+HVfkmxxNS+3YscPQOYR4ug0jITUROn+V7yv7lirsxPgOVRi/6iRtq3vRrGKRfD2+yD0XFxfWrl1L//79qVmzJr6+vgQFBfHmm2/KicJGYNqBaaSkpzCx4cT8LzY9q0HzsbB9KlTqoF1NJcyGrAoujNepEFjRB15ZAjXy8CTD59Dr9fT+/iAXouLZPKQprk7mc3WFpa40/fPPP9O3b19iY2NxdMz65ecqmePPatPVTYzcNZLZTWfTrkw7NSHSUuGHttoIcb+9Wj8cYRZyfGbmnj17eOutt2jUqBE3b94E4L///S979+41WDhhweKjYf0wqNwRfLsri6HT6Zj9Wg0eJacyee0pZTlEzv3nP/9h7969XLlyhZCQEEaPHk2PHj1MprAxR3cf32Xa/mm0Kt2Ktj5t1QWxttGa+8XdhG2T1eUQBpej4uaPP/6gTZs2ODo6cuTIkYyT9WJjY5k+XeYvRS7p9bBuiPbvjp/n+3TUvxVzdWRSp2qsPHqTzacilWYR2RcZGclbb71FlSpVGDp0KN27d+ebb75RHcti6fV6JodNxkpnRWCDQPXnPnlUgJaT4MBiuLJbbRZhMDkqboKDg1m8eDFLlizJNEQaEBDAkSNHDBZOWKjjy+HsOug4Dwoax3kur9QuQcsqnoxfdYL7j5JVxxHZMGrUKK5evUpiYiJXrlxh3rx5ODnJ9IMqay+vZef1nQQ1DMLdwV11HE39j6B0YwgZAEkPVacRBpCj4ubcuXM0bdr0idtdXV2JiYnJbSZhyeJuwcaR2lRU1S6q02TQ6XRMf6U6ael6AkNOYGGnqglhEJGPIpl5YCadynaiRakWquP8j5UVdF0ACfdg83jVaYQB5Ki48fLy4uLFi0/cvnfvXsqWNdAqrsLy6PWwZhDYOEK72arTPKGoswNTu1Znw4lI1h6/rTqOwUihZvzM4Wek1+uZuG8ijjaOjK4/WnWcJ7n5QJtgOPIjXNiqOo3IpRxdCv7BBx8wePBgvv/+e3Q6Hbdu3SIsLIwRI0YwYcIEQ2cUluLIf+DiVnhzOTgZyXD1v3SsUZxNJyMJWn2SBmXcKepiupcTW1tbo9PpePjwIc7OzurPfRBP0Ov1pKWlERcXh06nw8YmR7+yjcKK8yvYd2sfi1ouwtXeVXWcp6vTF86shTUD4eMwcJS+baYqR5eC6/V6pk+fzowZM0hISADA3t6eESNGMHXqVIOHNCS5FNxIPbgGixpBta7aEgtG7MGjZFrN241fSVe+7VPXpIuCpKQk7t+/bxYjA+bMzs6OQoUKmWxxc/3hdV5d8yrty7RnUqNJquM8X+xNWNgQKrWDV75WnUbkUK763CQnJ3Px4kXi4+OpWrUqBQsWNGS2PCHFjRFKT4f/dIYHV6H/PnAw/p/L1tNRvP+fv5j9Wg161M2jFYzzSXp6OmlpaapjiGewsrLCysrKZIvodH06721+j9uPbvNH5z8oYFtAdaQXO/YrhPSD13+GKh1VpxE5kK2PAe+++26Wtvv++++zFWLBggV8+umnREZG4ufnx1dfffXMlXv/6bfffqNnz5506dKFkJCQbB1TGJFDS+DqHui92iQKG4CWVT15rU5Jpq49TUB5D0oUMt2eKX//8RQiL/xy5hf+ivqL71p/ZxqFDYDfG3BmjdaSolRDKGA5i+eai2z9Rlu6dCk7duwgJiaGBw8ePPMrO5YtW8awYcOYOHEiR44cwc/PjzZt2nDnzp3n3u/q1auMGDGCJk2aZOt4wsjcuwRbJkK9D6Bsc9VpsiWoU1UKOtgw+vfjMq0jxFNcib3C50c+p1eVXtQv9uIPrEZDp9N6bKWnwfqh2sUOwqRka1pqwIAB/Prrr5QuXZq+ffvy1ltv4e6euxM//f39qVevHvPnzwe0IXJvb28GDRrEmDFjnnqftLQ0mjZtyrvvvsuePXuIiYl55shNUlJSphWB4+Li8Pb2lmkpY5CeBt+3hUfR0D8U7EzkU90/7D4fTe/vDzK1a3XebpA/K5YLYQpS01Pps6kPsUmxrOi0AkcbExzdPLkSfu8Lr34Hvq+pTiOyIVsjNwsWLOD27duMGjWKtWvX4u3tTY8ePdi8eXOOPrkmJydz+PBhWrZs+b9AVla0bNmSsLCwZ95vypQpFC1alPfee++Fx5gxYwaurq4ZX97epn1+hFkJmw83Dmntz02wsAFoWrEIvfxLMX39Ga7de6Q6jhBGY+mppZy8e5LggGDTLGwAqr8C1V6BDSPgoXQnNyXZnmi3t7enZ8+ebNmyhdOnT1OtWjU+/vhjfHx8iI+Pz9a+7t69S1paGp6enplu9/T0JDLy6S+kvXv38t1337FkyZIsHWPs2LHExsZmfF2/fj1bGUUeuXMGtgdDwwFQuqHqNLkyrn0VPJztGLniOGnpMnwtxPkH51l4bCF9qvWhZtGaquPkToe5YGULawfL9JQJydVZhH+fwf93L4a89vDhQ95++22WLFmCh4dHlu5jb2+Pi4tLpi+hWFoKrOoHbmXgZdPvi1TA3oY5r/lx6Np9fgi9ojqOEEqlpKcQuDeQ0i6lGVBzgOo4uefkDp2+gPOb4NgvqtOILMp2cZOUlMSvv/5Kq1atqFixIidOnGD+/PlERERk+1JwDw8PrK2tiYqKynR7VFQUXl5eT2x/6dIlrl69SqdOnbCxscHGxob//Oc/rFmzBhsbGy5dupTdhyNU2PMZRJ6AbovA1nSb4P2Tf9nCvBtQhtmbz3HxjqxNIyzXkuNLOP/gPMGNg7G3tlcdxzAqtwe/N2HTGIi9oTqNyIJsFTcff/wxxYoVY+bMmXTs2JHr16+zYsUK2rdvn6NLSe3s7KhTpw7btm3LuC09PZ1t27bRsOGTUxWVK1fmxIkTHDt2LOOrc+fOvPTSSxw7dkzOpzEFt8Nh92xoMgxK1FGdxqBGtqlESTdHhi8PJzUtXXUcIfLdqXun+Ob4N3xY40OqFa6mOo5htZ0BdgVh9QCZnjIB2bpaysrKilKlSlGrVq3nNpRauXJllgMsW7aMPn368PXXX1O/fn0+//xzli9fztmzZ/H09KR3796UKFGCGTNmPPX+77zzznOvlvo3aeKnUGoSfNMcdNbwwXawsVOdyOCORjzg1UX7GNaqIgNfrqA6jhD5JiktiTfWvYGtlS0/d/gZWytb1ZEM7+I2+OkV7Tyceu+rTiOeI1tN/Hr37m3wLpmvv/460dHRBAUFERkZSc2aNdm0aVPGScYRERHSYMxc7JwJdy/AhzvMsrABqFXKjf7Ny/HFtgu8XNmTqsWlgBaWYcGxBVyLu8ZvHX8zz8IGoHwLbf2pP4Og3MvgLgtFG6tcLb9gimTkRpHrh+D71vDSOGg6UnWaPJWUmkaX+aEArBnYGDsbKc6FeTt25xh9NvVhUK1BvO9r5iMaSQ9hUQC4lIB31oN8+DZK8lMReS85QVunpVhNCBiqOk2es7exZm4PPy7eieer7RdUxxEiTz1OfUxgaCDVParzTrV3VMfJe/bO0HUhROyDA4tUpxHPIMWNyHvbp0LMdei2GKxNc1Xj7KpW3JXBLSqwcOcljl2PUR1HiDzzxZEviHwUSXBAMDZWlvH+xqcxNPgYtk6G6POq04inkOJG5K2re2H/QmgRBEUqqU6Tr/o3L0e14i4MX36MxBRZdVuYn4O3D/LzmZ8ZUnsIZVzLqI6Tv1oEQSFvbVQ6LVV1GvEvUtyIvJP0EEI+1lbVbdBfdZp8Z2Ntxdzuflx/8Ji5f55THUcIg3qU8ogJoROo61mXN6u8qTpO/rN1hK6L4dZRCP1cdRrxL1LciLzz5wRtUcyuC8HKWnUaJSp4OjOidUW+3XuFg1fuq44jhMF8euhTHiQ9YGrAVKx0FvqnxLseBAzWrgSNPKk6jfgHC31Fijx3cSsc/gFaTbH4yyXfa1yWOqXcGLEinEdJMnwtTN/em3v548IfjKg7gpLOJVXHUav5WPCooC0pk5qsOo34f1LcCMN7HAOrB0HZ5lD3xSu3mztrKx1zuvsR/TCJmRvPqo4jRK7EJsUyMXQijYo3onvF7qrjqGdjr10sEX0Gdn+qOo34f1LcCMPbNBaS46HzfOkB8f98PAowtn1l/rv/Gnsv3FUdR4gcm3VwFo9THzO50WSDN3U1WcX8oOko2DMXbh5WnUYgxY0wtLMbIPwXbR2WQrLW1z+95V+agPKFGfV7OHGJKarjCJFt2yK2sfbyWsb4j8GrwJOLG1u0JsPAyxdW9YeURNVpLJ4UN8JwHt2DtYOhYluo2Ut1GqNjZaVj9mt+xCWmMnXtadVxhMiW+4n3mRI2hebezelUtpPqOMbH2labnnpwBXYEq05j8aS4EYazYTikJUOnL0CGq5+qRCFHgjpWZcXhG2w7E6U6jhBZotfrCd4fTLo+nYkNJ8p01LMUrQIvjYd98yFiv+o0Fk2KG2EYJ/+AU6u01XKdZbj6ebrXLclLlYowZuUJHjySqyuE8dt0dRNbrm1hfIPxeDh6qI5j3BoNgpL1tKunkh+pTmOxpLgRufcwCtYPh6pdoPqrqtMYPZ1Ox8xXa5Ccms7ENadUxxHiuaITogneH0xbn7a09WmrOo7xs7LWpqceRsLWSarTWCwpbkTu6PWwbghY2UCHz2Q6Kos8XRyY0qUaa8JvseHEbdVxhHgqvV7P5LDJ2FrZMt5/vOo4pqNwOWg1GQ5+A5d3qk5jkaS4EbkT/iuc2wAdP4cCMlydHZ39itOuuheBISeJfpikOo4QTwi5GMKuG7uY2HAihRwKqY5jWup9AD5NYPVASIxTncbiSHEjci72BmwcAzXegCodVacxOTqdjuCu1dEB41edQK/Xq44kRIbb8beZfWg2nct15qVSL6mOY3qsrKDLAnj8ADaPU53G4khxI3JGr4c1g8DOCdrNVJ3GZBUuaM+0br78eTqKVUdvqo4jBKBNRwXtC8LJ1onR9UerjmO63EpDm2lw9L9w/k/VaSyKFDciZw7/AJe2a12IHd1UpzFpbat70a1WCSauOcXt2Meq4wjB8nPL2X97P1MbTcXFzkV1HNNWuw+Ub6l9GEyQxXPzixQ3IvvuX4HNgdqbtkJL1WnMwqRO1XCys2b0HzI9JdS6HneduYfn0r1idxqVaKQ6junT6aDzV5D6GDbKKFh+keJGZE96OqweAAUKa8OtwiBcnWyZ+WoNdp+P5rdD11XHERYqLT2NwNBA3B3cGV53uOo45sOlOLT7FE4sh9NrVKexCFLciOw5sBiuhWonytk7q05jVl6qVJSe9b0JXnea6/cTVMcRFuinMz9x5M4RpgZMpYBtAdVxzEuNHlC5I6wbCvHRqtOYPSluRNbdvQDbJoN/PyjTVHUaszS+Q1UKOdkx8vdw0tNlekrkn8sxl/nyyJe8VeUt6nnVUx3H/Oh00HEeoIf1Q7WLMkSekeJGZE1aqtZO3KUEtJioOo3ZKmhvw6fda7D/8n1+DLuqOo6wEKnpqYzfO57iBYszuPZg1XHMV8GiWrPTM2vhxO+q05g1KW5E1uz7Em4dga6LtMu/RZ5pVM6Ddxr5MGvTWS5Hx6uOIyzADyd/4PT90wQ3DsbBxkF1HPNWrStUf01baDhOupPnFSluxItFnYId07UF4Ur5q05jEUa3rUwxV0eGrwgnTaanRB46d/8cC8MX0rdaX/yK+KmOYxnafwo2DrD2E5meyiNS3IjnS03WpqMKl4fm0mUzvzjaWTOnew3Cr8fwze7LquMIM5WSlsL4vePxcfHh45ofq45jOZzcodOXcOFPrcGfMDgpbsTz7Zmjjdx0WwS2Mlydn+qUdueDpmWZt+U85yIfqo4jzNDi44u5FHOJ6Y2nY2dtpzqOZanUFmq+BZvGQUyE6jRmR4ob8Wy3jsLuOdB0JBSvpTqNRRrasiI+Hk4MW36MlLR01XGEGTl59yTfnfiOD/0+pErhKqrjWKa208HBVesdli7vb0OS4kY8XUqiNh3lWQ2ajlCdxmI52Fozt3tNzkY+ZP72i6rjCDORlJbE+L3jqeReifd931cdx3I5uEKX+XBlN/z1neo0ZkWKG/F0O6fD/cvQbTFY26pOY9F8S7oy8KXyLNhxkRM3YlXHEWZg/tH5XH94nWkB07C1kve3UuVegnrvw5YguHdJdRqzIcWNeFLEAQj9EpqP1UZuhHIDXy5PJS9nhq84RlJqmuo4woQdiTrCj6d+ZGCtgZR3K686jgBoOVnrgRPyMaTL+9sQpLgRmSU/gpB+ULIuNPpEdRrx/2ytrZjbw4+rdxOYt+WC6jjCRCWkJBAYGkiNIjXoU7WP6jjib/YFtR5i1w9A2ALVacyCFDcis62TIe6W9kaztlGdRvxDZS8XhrSqwDe7L3H42gPVcYQJmnd4HtEJ0UxrPA1rK2vVccQ/lW4EDQfA9mC4c1Z1GpMnxY34nyu74eDX0HISeFRQnUY8xYdNyuLnXYgRK8J5nCzD1yLr9t/ez2/nfmNInSGUdimtOo54mpcDwa20Nnqelqo6jUmT4kZoEuMgZACUbgz1P1KdRjyDjbUVc7v7cTv2MbM2yac7kTXxyfEEhQZR36s+PSv3VB1HPIutI3RdDLfDYe881WlMmhQ3QvNnICTcg64LwEpeFsasbJGCjGpTmaX7rrLv0l3VcYQJ+PSvT4lNimVKwBSsdPL+Nmol60DjYbBrJtw+rjqNyZJXuYALW+DIj9AmGNx8VKcRWfBOIx/8y7gzcsVx4pNk+Fo82+4bu1l5YSUj642kRMESquOIrGg2GopUhpD+kJqkOo1JkuLG0j1+AGsGQbmXoU5f1WlEFllZ6ZjT3Y+YhGSmrT+tOo4wUrFJsUzaN4mAEgG8WuFV1XFEVtnYaT3Gos/Brlmq05gkKW4s3cbRkJwAneeDTqc6jcgGb3cnxneoyq8Hr7Pz3B3VcYQRmn5gOolpiUxuOBmdvL9Ni5evNoKzdx7c+Et1GpMjxY0lO7MWji+DdrPAVYarTVHP+t40rViE0X8cJzYhRXUcYUS2XtvKhisbGFt/LJ4FPFXHETnReCgUq6kthZPyWHUakyLFjaV6dBfWDoFK7cHvDdVpRA7pdDpmvepLQnIak9eeUh1HGIl7j+8xdf9UXvZ+mY5lO6qOI3LK2kabnoqJ0PrfiCyT4sYS6fWwbijo06Hj5zIdZeKKuToyuXM1Vh69yaaTkarjCMX0ej3B+4PR6/VMaDhBpqNMXZFK0GKC1rn42j7VaUyGFDeW6OQfcGYNdJgLzjJcbQ661SpBq6qejF91gnvxcnWFJdtwZQNbI7YS2CAQD0cP1XGEITT4GLz9taunkuJVpzEJUtxYmoeRsH44VHsFqr+iOo0wEJ1Ox/RuvqTr9QSGnESv16uOJBS4k3CHaQem0a5MO1r7tFYdRxiKlTV0XQjxd2DrRNVpTIIUN5ZEr4c1n4C1nTZqI8xKEWd7grv6svFkJGvCb6mOI/KZXq9n0r5J2FvbM95/vOo4wtAKl4NWU+DQt3Bph+o0Rk+KG0ty7Ge4sBk6fQFO7qrTiDzQoUYxOvkVJ2j1Ke7EJaqOI/LRqour2HNzD5MaTsLV3lV1HJEX6r4HZZrB6oGQGKs6jVGT4sZSxFyHjWPA702o3F51GpGHpnSuhp2NFWNWnpDpKQtxK/4Wsw/Npmv5rjTzbqY6jsgrVlbQZYFW2GwapzqNUZPixhKkp8OageDgAm1nqE4j8phbATtmvuLL9rN3WHH4huo4Io+l69MJCg3C2c6ZUfVGqY4j8lohb+33+LGf4Nwm1WmMlhQ3luCv7+DyTuj8FTgWUp1G5IMWVTzpXqckU9ae5saDBNVxRB5adm4ZByIPMKXRFJztnFXHEfmh1ltQoTWs/QQS7qtOY5SkuDF39y/DliCo+y6Ub6E6jchHEzpVxcXBhtF/HCc9XaanzFFEXATzDs/j9Uqv07B4Q9VxRH7R6aDTl9qimhtGqk5jlKS4MWfpaRDyMRQoAq2mqk4j8pmLgy2zX/Mj9OI9fj5wTXUcYWBp6WkEhgZS2KEww+oMUx1H5DeXYtB+Dpz8HU6FqE5jdKS4MWf7F0HEfq0/gn1B1WmEAo0rePBWg1JM33CWq3cfqY4jDOi/p//LsTvHCG4cjJOtk+o4QgXf16BKZ1g/TOuBIzJIcWOuos/BtilaZ0ufxqrTCIXGtqtCEWd7Rv4eTppMT5mFSzGX+OroV7xd9W3qeNZRHUeootNBx3mA7v+X1JH399+kuDFHaanaKrKFSmlrkgiLVsDehjnd/fjr2gO+33tFdRyRS6npqYzfO54SziUYVGuQ6jhCtQIeWoFzdh0cX646jdGQ4sYchc6D28e01WRtHVWnEUagfhl33gsow6d/nuPinYeq44hc+O7Ed5y5f4ZpAdNwsHFQHUcYg6qdwbeHdnJxnHQnByluzE/kCdg5CwKGQMm6qtMIIzKiTSW83RwZtjyc1LR01XFEDpy9f5bF4Yt5r/p7+BbxVR1HGJP2s8HOCdYMkukppLgxL6nJ2nSUR0VoPkZ1GmFkHGytmdujJidvxrJo5yXVcUQ2JaclM37veMoWKkt/v/6q4whj4+im9TK7uBWO/Kg6jXJS3JiTXbMg+qw2HWVjrzqNMEI1vQvxcfPyfLn9Aqduydo0pmRx+GIux15meuPp2Frbqo4jjFGFVlC7N2weDw8su/2DFDfm4sZh2DsPmo2GYjVUpxFG7JMWFShXpCDDl4eTnCrTU6bgePRxvjv5Hf1q9KOSeyXVcYQxaz1NG8VZPUBbesdCSXFjDlIeQ0g/8PKFxkNVpxFGzs7Gis961ORSdDxfbrugOo54gcTURMbvHU9V96q85/ue6jjC2Dm4aItrXt0Dh5aoTqOMFDfmYHuwNgTZbTHIcLXIgqrFXRjcogILd17k2PUY1XHEc3x19Ctuxd9iWuNp2FjZqI4jTEHZZlD/Q9gyEe5eVJ1GCSluTN21fRC2AF4eD0WrqE4jTEi/ZuXwLeHK8OXHSExJUx1HPMXhqMP89/R/+aT2J5QtVFZ1HGFKWk7SlmgI6a8txWNhjKK4WbBgAT4+Pjg4OODv78/Bgwefue2SJUto0qQJbm5uuLm50bJly+dub9aS4rUXrnd9aDhQdRphYmysrZjbw4/rDx4zZ/M51XHEvySkJBC4N5CaRWvyVpW3VMcRpsauAHRdBDcOwb6vVKfJd8qLm2XLljFs2DAmTpzIkSNH8PPzo02bNty58/R1Mnbu3EnPnj3ZsWMHYWFheHt707p1a27evJnPyY3A1onwMEp7AVtZq04jTFD5os6MbF2J70KvcPDKfdVxxD98dvgz7iXeIzggGGt5f4ucKNUAGg2CHdPgzhnVafKVTq9X2+3H39+fevXqMX/+fADS09Px9vZm0KBBjBnz4l4taWlpuLm5MX/+fHr37v3C7ePi4nB1dSU2NhYXF5dc51fm0g74b1do9yn4f6g6jTBhael63vgmjKi4JDYObkIBezmvQ7V9t/bx0ZaPGOc/jp6Ve6qOI0xZSiJ800xrD/L+Nos5L1PpyE1ycjKHDx+mZcuWGbdZWVnRsmVLwsLCsrSPhIQEUlJScHd3f+r3k5KSiIuLy/Rl8hJjYfVA8GkC9d5XnUaYOGsrHXO6+xH9MIkZGy3r050xepj8kKDQIPyL+fN6pddVxxGmztZBG92PPAl7PlOdJt8oLW7u3r1LWloanp6emW739PQkMjIyS/sYPXo0xYsXz1Qg/dOMGTNwdXXN+PL29s51buU2j9MKnC4LwEr5zKIwA6ULF2Bc+8r8tD+CPReiVcexaLMPzSY+JZ6pjaZipZP3tzCAErWhyXDYPRtuHVOdJl+Y9Dtn5syZ/Pbbb6xatQoHh6cvIDd27FhiY2Mzvq5fv57PKQ3s3CY4+hO0mQZupVWnEWakl39pGpf3YNTvx4lLTFEdxyLtur6LkIshjK43mmIFi6mOI8xJ05HaFbUh/SE1SXWaPKe0uPHw8MDa2pqoqKhMt0dFReHl5fXc+86ZM4eZM2fy559/UqPGszvy2tvb4+LikunLZCXch7WfQPn/b7EthAFZWemY9VoN4hNTmbL2tOo4FicmMYZJYZNoUqIJXct3VR1HmBsbO+i6GO5egJ0zVKfJc0qLGzs7O+rUqcO2bdsybktPT2fbtm00bNjwmfebPXs2U6dOZdOmTdSta0ErX28YCamJ2uJoOp3qNMIMlSjkyIROVfn98A22no568R2EwUw/MJ3ktGQmNZqETt7fIi94VdcWVQ79Aq4fUp0mTymflho2bBhLlizhxx9/5MyZM/Tv359Hjx7Rt29fAHr37s3YsWMztp81axYTJkzg+++/x8fHh8jISCIjI4mPj1f1EPLHqRA4+Tu0n6M1ZhIij3SvU5IWlYsyZuUJHjxKVh3HImy+upmNVzcyzn8cRZ2Kqo4jzFnAECheS1uyJzlBdZo8o7y4ef3115kzZw5BQUHUrFmTY8eOsWnTpoyTjCMiIrh9+3bG9osWLSI5OZnXXnuNYsWKZXzNmTNH1UPIe/HRsH4YVO4Ivt1VpxFmTqfTMeMVX1LS0glac0p1HLN39/FdgvcH06p0K9qXaa86jjB31jba9FTsDdg+VXWaPKO8z01+M7k+N3o9LHsLIsLg4wNQsIjqRMJCrD52k8G/HWPBm7XpUENGC/OCXq9nyI4hHIs+xqouq3B3eHpLCyEMLmyBduXtO+vBp7HqNAanfORGvMDx5XB2HXScJ4WNyFed/YrT3teLwJATRD80/6srVFh3eR3br29nQoMJUtiI/OXfH0o1gpCPIemh6jQGJ8WNMYu7BRtHalNRVbuoTiMsjE6nY2qX6lhb6Ri78gQWNsib5yIfRTLjwAw6lO1Ay9JP79MlRJ6xsoKuC+DRXfhzguo0BifFjbHS62HNILBxhHazVacRFqpwQXumdfNl65koVh6xwPXb8oher2fSvkk42jgytv7YF99BiLzgXhZaT4HDP8DFrarTGJQUN8bqyH+0F1vnL8FJhquFOm2qefFKrRJMWnuK27GPVccxC39c+IPQW6FMajQJV3tX1XGEJav7HpR9CVYPgscxqtMYjBQ3xujBNe1Er1pvQcU2qtMIwcRO1XCys2bU78dleiqXbsbf5NNDn/JKhVdoUrKJ6jjC0ul00GU+JMfDJvMZRZTixtikp8PqAeDoBm3Mv4ukMA2uTrbMerUGey7c5deDJr6EiULp+nQmhE7A1d6VkXVHqo4jhMa1JLSdCeG/wNkNqtMYhBQ3xubQEri6R6ukHUzgUnVhMZpXKkrP+qUIXn+a6/fNt/lXXvr17K8cijzE1ICpFLQrqDqOEP9T802o2BbWDoZH91SnyTUpbozJvUuwZSLU+wDKNledRognjO9QBfcCdoxYEU56ukxPZcfV2Kt8fvhzelbuiX8xf9VxhMhMp4NOX0B6CmwYrjpNrklxYyzS02BVP3D2glaTVacR4qkK2tvw6Wt+HLhyn6X7rqqOYzLS0tMIDA2kqFNRhtQeojqOEE/n7KUt8XNqFZz8Q3WaXJHixliEzYcbh6DrIrAroDqNEM/UsFxh3mnkw6xNZ7kUbeZruhnIj6d/5Hj0cYIbB+Nk66Q6jhDPVv1VqNoV1g+Hh6a7eK4UN8bgzhnYHgwNB0DpZ6+GLoSxGN22MsULOTJiRTipaemq4xi1Cw8uMP/ofPpU60OtorVUxxHi+XQ66PAZWNnAuiFazzUTJMWNamkp2nSUWxl42fy6RArz5GhnzZzufoRfj+GbPZdVxzFaKekpjN87Hm9nbwbWGqg6jhBZU6AwdPwczm2A8F9Vp8kRKW5U2/MZRJ6AbovA1kF1GiGyrE5pNz5sWo7Pt1zgbGSc6jhG6dvj33L+wXmmN56OvbW96jhCZF2VjlDjDdg4RltB3MRIcaPS7XDYPRuaDIMSdVSnESLbhraqgI+HE8OXh5Mi01OZnL53mm+Of8P7vu9TzaOa6jhCZF+7mdo5oGsGmdz0lBQ3qqQmadNRRapA01Gq0wiRI/Y21nzWoybnIh8yf/tF1XGMRnJaMuP3jqe8W3k+qvGR6jhC5IyjG3T+Ci5t19afMiFS3KiycybcvaBNR9nYqU4jRI5VL+HKwJfLM3/HRU7ciFUdxygsPLaQq3FXCQ4IxtbaVnUcIXKuQkuo8w5sDoT7V1SnyTIpblS4fghCP4fmo8HLV3UaIXJtwEvlqVLMmWHLj5GYkqY6jlLh0eH8cOoHPvb7mErulVTHESL3WgdrJxmvHqAtEWQCpLjJb8kJENIPitWEgKGq0whhELbWVsztXpNr9xKYt/W86jjKPE59TODeQKoVrkbf6n1VxxHCMOydoctCuBYKBxarTpMlUtzkt+1TIeY6dFsM1jaq0whhMJW8nBnaqiLf7L7M4Wv3VcdR4ssjX3L70W2CGwdjYyXvb2FGyjQB/36wbbJ2SoWRk+ImP13dC/sXQYsgKCLD1cL8fNi0LDW9CzF8eTgJyamq4+SrQ5GH+OnMT3xS6xPKupZVHUcIw2sxEVxKaBfDpBn3+1uKm/ySFA8hH0OpBtCgv+o0QuQJaysdc7v7ERmXyOxN51THyTePUh4xIXQCtYvW5q2qb6mOI0TesHPSZh1uHYF9X6pO81xS3OSXLRPgUTR0XQhW1qrTCJFnyhYpyOi2lVm67yr7Lt1VHSdfzP1rLvcT7xMcEIyVTn6tCjPmXR8afQI7pkPUKdVpnknehfnh4jb463toPRXcZbhamL8+DX1oUNadkSuO8zAxRXWcPBV6M5QV51cwvM5wvF28VccRIu+9NA4Kl///6SnjfH9LcZPXHsdo3R3LNoe676lOI0S+sLLS8elrfsQkJDNt/RnVcfJMXHIcQfuCaFisIT0q9VAdR4j8YWOv9Wi7cxp2z1Gd5qmkuMlrm8ZC0kPoPF9bbVUIC+Ht7kRgx6r8dug6O87dUR0nT8w6OIuElASmBExBJ+9vYUmK14ImI2D3p3DrqOo0T5DiJi+d3QDhv0DbGVBIhquF5XmjnjfNKhZhzB/HiU0wzuHrnNoesZ01l9Ywuv5ovAp4qY4jRP5rOgI8q8Gq/pCSqDpNJlLc5JWE+7B2MFRsCzV7qU4jhBI6nY5Zr9bgcXIak9Ya78mH2fUg8QGTwybTrGQzupTrojqOEGpY20K3r+H+Jdg5XXWaTKS4ySvrh0NaMnT6QqajhEXzcnVgcpdqrDp6k00nI1XHMYhpB6aRpk9jYsOJMh0lLJtnVe0E431fQcQB1WkySHGTF06uhFMrocNccJbhaiG61ixB66qejF91gnvxSarj5MqmK5vYfHUz4/3HU8SpiOo4QqjX6BMoUQdC+mtLDBkBKW4M7WGUNmpTtQtUf1V1GiGMgk6nY1o3X/TA+FUn0ev1qiPlyN3Hdwk+EEzr0q1p69NWdRwhjIOVNXRdDHG3tOUZjIAUN4ak18O6IdoPusNnMh0lxD8UcbYnuGt1Np2KZE34LdVxsk2v1zM5bDLWOmsCGwTKdJQQ/+RRHlpO1BbWvLJbdRopbgwq/Dc4twE6fg4FPFSnEcLotPctRme/4gStPkVUnHFdXfEiay6tYef1nQQ1DMLNwU11HCGMT/2PoHRjCBmgtUBRSIobQ4m9CRtHQ403oEpH1WmEMFpTulTDzsaKMX8cN5npqchHkcw6OItOZTvRolQL1XGEME5WVtB1ATy+D5vHq42i9OjmQq+HNQO1RcXazVSdRgijVsjJjpmv+LLjXDQr/rqhOs4L6fV6Ju6biKOtI6Prj1YdRwjj5uYDrYPhyI9wYauyGFLcGMLhH+DSdq0LsaMMVwvxIi2qeNKjbkmmrDvNjQfGcXXFs6w4v4J9t/YxudFkXO1dVccRwvjVeQfKtdA+9D9+oCSCFDe5df8KbA6E2n2gQkvVaYQwGYEdq+LiYMOo34+Tnm6c01PXH15nzl9zeK3iazQu0Vh1HCFMg04Hnb/SLgvfOEZJBCluciM9HVYPgAKFoc001WmEMCkuDrbMfs2PfZfu8dOBa6rjPCFdn86E0Am4O7gzou4I1XGEMC2uJaDdLDj+G5xZl++Hl+ImNw4shmuh0GUB2DurTiOEyWlcwYO3G5RmxoazXL37SHWcTH4+8zOHow4zNWAqBWwLqI4jhOnxewMqddBapDy6m6+HluImp+5e0JoV+feDMk1VpxHCZI1pV5miLvaMWBFOmpFMT12JvcIXR76gV5Ve1POqpzqOEKZJp4NOn0N6Gqwfpl18k0+kuMmJtFRY1Q9cSkCLiarTCGHSCtjbMKe7H4cjHvDd3suq45Cankrg3kC8CngxuPZg1XGEMG0Fi0LHz+D0ajj5R74dVoqbnNj3Jdw6Al0XaZd/CyFypZ6PO+83LsOcP89zIUpt86+lp5Zy8t5JggOCcbRxVJpFCLNQrRtUe0Vbmuhh/iyeK8VNdkWdgh3TodEgKOWvOo0QZmN460qUcndi+IpwUtLSlWQ4/+A8C44t4J1q71CzaE0lGYQwSx3mgrUdrB2cL9NTUtxkR2qyNh1VuDw0H6c6jRBmxcHWmrnd/Th1K45FOy/l+/FT0lII3BuIj4sPA2oOyPfjC2HWnNyh85dwfhMc+znPDyfFTXbsmaON3HRbBLYOqtMIYXb8vAvxcfNyfLntAqduxebrsb858Q0XHlwguHEwdtZ2+XpsISxCpXZQsxdsGgsx1/P0UFLcZNWto7B7DjQdCcVrqU4jhNka9HIFKng6M3x5OEmpaflyzFP3TrHk+BI+qPEB1QpXy5djCmGR2s7QWqesGZin01NS3GRFSqI2HeVZDZpKMy8h8pKdjRVzu/txKTqeL7ddyPPjJaUlMX7PeCq6VeSDGh/k+fGEsGgOrlr34ss74a/v8uwwUtxkxc7pcP8ydFsM1raq0whh9qoWd2FIy4os2nmJoxF5uzbNgmMLiHgYwbTG07C1kve3EHmufAuo+y78OUH725oHpLh5kYgDEPolNB+rjdwIIfLFR03L4luyEMNXhJOYkjfTU8fuHGPpyaUMqDmACm4V8uQYQoinaDUVChSBkAFakz8Dk+LmeZIfQUg/KFkXGn2iOo0QFsXGWpueuvngMZ9uPmfw/SekJDB+73h8i/jyTrV3DL5/IcRz2BfUesVFhMH+RQbfvRQ3z7N1MsTd0n4A1jaq0whhccoXLcjINpX4PvQKBy7fM+i+vzjyBXcS7jAtYBrWVtYG3bcQIgt8AqDBx7BtCkQb9gOMFDfPcmU3HPwaWk4CDxmuFkKVvgFlqFfanRG/h/MoKdUg+zx4+yC/nP2FwbUH4+PqY5B9CiFyoMUEKFRKu2gnzTDvb5Di5ukS47R5wNKNof5HqtMIYdGsrXR82r0Gdx8mM33DmVzvLz45ngmhE6jrWZc3q7xpgIRCiByzddQu1rl9DEI/N9hupbh5mj8DIeEedF0AVvIUCaFa6cIFGNehCj8fiGD3+ehc7WvOX3OISYphasBUrHTy/hZCuZJ1IWAI7JwJkScMskt5Z//bhS1w5EdoEwxuPqrTCCH+31v+pWhSwYPRfxwn9nFKjvax58Ye/rjwByPqjaCkc0kDJxRC5FjzMeBREVb115Y6yiUpbv7p8QNYMwjKvQx1+qpOI4T4B51Ox6xXaxCfmMrUdaezff/YpFgm7ZtEQPEAXqvwWh4kFELkmI29Nj0VfQZ2z8717qS4+aeNoyE5ATrPB51OdRohxL8UL+RIUKeq/H74BltOR2XrvjMPzuRx6mMmNZqETt7fQhifYjWg2WjY8xncPJyrXUlx87cza+H4Mmg3C1xLqE4jhHiG1+qUpEXlooxdeYIHj7I2fL3t2jbWXV7HGP8xeBXwyuOEQogcazwUvHy16amUxBzvRoobgEd3Ye0QqNQe/N5QnUYI8Rw6nY4Zr/iSmp7OhNUnX7j9/cT7TNk/hZe8X6JT2U75kFAIkWPWttr01IOrsCM4x7uR4kavh3VDQZ8OHT+X6SghTEBRFwemdKnOuuO3WXf81jO30+v1BO8PJl2fTlDDIJmOEsIUFK0CL4+HffPhWliOdiHFzck/4Mwa6DAXnD1VpxFCZFGnGsXo4FuMCSEnufPw6cPXG69sZMu1LQQ2CMTD0SOfEwohcqzhQPCuDyH9taWQssmyi5uHkbB+OFR7Baq/ojqNECIbdDodU7tWx9pKx7iVJ9Hr9Zm+H50QzbQD02jr05Y2Pm0UpRRC5IiVtbb00cNI2DIx+3fPg0imQa+HNZ+AtZ02aiOEMDnuBeyY3s2XrWeiWHnkZsbter2eSWGTsLWyZbz/eIUJhRA5VrgctJoCh5bA5Z3ZuqtRFDcLFizAx8cHBwcH/P39OXjw4HO3X7FiBZUrV8bBwQFfX182bNiQ/YMeXw4XNkOnL8DJPYfJhRCqta7mxSu1SzBp7SluxTwGIORiCLtv7GZSo0kUciikNqAQIufqvQ8+TWD1QG1ppCxSXtwsW7aMYcOGMXHiRI4cOYKfnx9t2rThzp07T91+37599OzZk/fee4+jR4/StWtXunbtysmTL75qIpMtE8HvTajc3gCPQgih0sRO1ShgZ8PoP45z6+EtZh2aRZdyXWju3Vx1NCFEblhZQZcF8DgGNo/L8t10+n9PVOczf39/6tWrx/z58wFIT0/H29ubQYMGMWbMmCe2f/3113n06BHr1q3LuK1BgwbUrFmTxYsXv/B4cXFxuLq6EjutIi5DD4BjIYM9FlOW1ZeBnixuZ+j9ZXG7rGxm6GOqeu6yyth/ZoZ6vKEX7/LxL4fxrbmWx9xmVZdVONs5G2TfQgjFDv8Iaz+BSbFZ2twmj+M8V3JyMocPH2bs2LEZt1lZWdGyZUvCwp5++VdYWBjDhg3LdFubNm0ICQl56vZJSUkkJSVl/H9srPbENHSyxvq/TZ8dLst/S437D6UQlsTJGy7dg+Sbfah54E/VcYQQBlOAr6yr0zguDmdn5xe2dVBa3Ny9e5e0tDQ8PTNfgu3p6cnZs2efep/IyMinbh8ZGfnU7WfMmMHkyZOfuP300DM5TC2EMH5PjvoKIUxbB4DZrsTGxuLi4vLcbZUWN/lh7NixmUZ60tPTuX//PoULFzaLhl5xcXF4e3tz/fr1F/6wzZk8D/IcgDwHf5PnQZ4DMN/nwNn5xdPNSosbDw8PrK2tiYrKvABeVFQUXl5PX//Fy8srW9vb29tjb2+f6bZChQrlPLSRcnFxMasXb07J8yDPAchz8Dd5HuQ5AMt8DpReLWVnZ0edOnXYtm1bxm3p6els27aNhg0bPvU+DRs2zLQ9wJYtW565vRBCCCEsi/JpqWHDhtGnTx/q1q1L/fr1+fzzz3n06BF9+/YFoHfv3pQoUYIZM2YAMHjwYJo1a8bcuXPp0KEDv/32G3/99RfffPONyochhBBCCCOhvLh5/fXXiY6OJigoiMjISGrWrMmmTZsyThqOiIjAyup/A0yNGjXil19+ITAwkHHjxlGhQgVCQkKoXr26qoeglL29PRMnTnxi6s3SyPMgzwHIc/A3eR7kOQDLfg6U97kRQgghhDAk5R2KhRBCCCEMSYobIYQQQpgVKW6EEEIIYVakuBFCCCGEWZHiRqHdu3fTqVMnihcvjk6ne+b6WP+0c+dOateujb29PeXLl2fp0qWZvj9p0iR0Ol2mr8qVK2faJjExkQEDBlC4cGEKFizIq6+++kRjxPyUF8+Dj4/PE8+DTqdjwIABGds0b978ie/369fPwI8ua7L7HNy+fZs333yTihUrYmVlxZAhQ5663YoVK6hcuTIODg74+vqyYcOGTN/X6/UEBQVRrFgxHB0dadmyJRcuXDDQo8qevHgOlixZQpMmTXBzc8PNzY2WLVty8ODBTNu88847T7wO2rZta8BHlnV58RwsXbr0icfn4OCQaRtjeh1A3jwPT3u/63Q6OnTokLGNKb8WVq5cSatWrShSpAguLi40bNiQzZs3P7HdggUL8PHxwcHBAX9//yfeD8b29yGnpLhR6NGjR/j5+bFgwYIsbX/lyhU6dOjASy+9xLFjxxgyZAjvv//+Ey/gatWqcfv27YyvvXv3Zvr+0KFDWbt2LStWrGDXrl3cunWLV155xWCPK7vy4nk4dOhQpudgy5YtAHTv3j3Tvj744INM282ePdtwDywbsvscJCUlUaRIEQIDA/Hz83vqNvv27aNnz5689957HD16lK5du9K1a1dOnjyZsc3s2bP58ssvWbx4MQcOHKBAgQK0adOGxMREgzyu7MiL52Dnzp307NmTHTt2EBYWhre3N61bt+bmzZuZtmvbtm2m18Gvv/6a68eTE3nxHIDWofafj+/atWuZvm9MrwPIm+dh5cqVmZ6DkydPYm1t/cTvBFN9LezevZtWrVqxYcMGDh8+zEsvvUSnTp04evRoxjbLli1j2LBhTJw4kSNHjuDn50ebNm24c+dOxjbG9vchx/TCKAD6VatWPXebUaNG6atVq5bpttdff13fpk2bjP+fOHGi3s/P75n7iImJ0dva2upXrFiRcduZM2f0gD4sLCxH2Q3JUM/Dvw0ePFhfrlw5fXp6esZtzZo10w8ePDg3cfNEVp6Df3rW4+jRo4e+Q4cOmW7z9/fXf/TRR3q9Xq9PT0/Xe3l56T/99NOM78fExOjt7e31v/76a46yG4qhnoN/S01N1Ts7O+t//PHHjNv69Omj79KlS/ZD5jFDPQc//PCD3tXV9Zn3M+bXgV6fd6+FefPm6Z2dnfXx8fEZt5nLa+FvVatW1U+ePDnj/+vXr68fMGBAxv+npaXpixcvrp8xY4Zerzf+vw/ZISM3JiQsLIyWLVtmuq1NmzaEhYVluu3ChQsUL16csmXL0qtXLyIiIjK+d/jwYVJSUjLtp3LlypQqVeqJ/RirrD4Pf0tOTuann37i3XfffWKx1J9//hkPDw+qV6/O2LFjSUhIyLPc+e1Fz9OVK1eIjIzMtI2rqyv+/v4m81rIroSEBFJSUnB3d890+86dOylatCiVKlWif//+3Lt3T1HCvBEfH0/p0qXx9vamS5cunDp1KuN7lvg6APjuu+944403KFCgQKbbzeW1kJ6ezsOHDzNe68nJyRw+fDjTz9nKyoqWLVtm/JzN4e/D35R3KBZZFxkZmdG5+W+enp7ExcXx+PFjHB0d8ff3Z+nSpVSqVInbt28zefJkmjRpwsmTJ3F2diYyMhI7O7snFg/19PQkMjIyHx9NzmXlefinkJAQYmJieOeddzLd/uabb1K6dGmKFy/O8ePHGT16NOfOnWPlypV5/RDyxbOep79/zn//93nbmJvRo0dTvHjxTL+827ZtyyuvvEKZMmW4dOkS48aNo127doSFhWFtba0wrWFUqlSJ77//nho1ahAbG8ucOXNo1KgRp06domTJkhb5Ojh48CAnT57ku+++y3S7Ob0W5syZQ3x8PD169ADg7t27pKWlPfXnfPbsWQCz+PvwNyluzEy7du0y/l2jRg38/f0pXbo0y5cv57333lOYTJ3vvvuOdu3aUbx48Uy3f/jhhxn/9vX1pVixYrRo0YJLly5Rrly5/I4p8tjMmTP57bff2LlzZ6YTat94442Mf/v6+lKjRg3KlSvHzp07adGihYqoBtWwYcNMCws3atSIKlWq8PXXXzN16lSFydT57rvv8PX1pX79+pluN5fXwi+//MLkyZNZvXo1RYsWVR1HCZmWMiFeXl5PnLUeFRWFi4vLE6MVfytUqBAVK1bk4sWLGftITk4mJibmif14eXnlSW5Dy87zcO3aNbZu3cr777//wv36+/sDZDxXpu5Zz9PfP+e///u8bczFnDlzmDlzJn/++Sc1atR47rZly5bFw8PDbF4H/2Zra0utWrUy/U4Ay3gdgHai7m+//ZalD3um+Fr47bffeP/991m+fHmmEUoPDw+sra1f+DvB1P8+/E2KGxPSsGFDtm3blum2LVu2ZPpU9m/x8fFcunSJYsWKAVCnTh1sbW0z7efcuXNEREQ8dz/GJDvPww8//EDRokUzXe75LMeOHQPIeK5M3YuepzJlyuDl5ZVpm7i4OA4cOGAyr4WsmD17NlOnTmXTpk3UrVv3hdvfuHGDe/fumc3r4N/S0tI4ceJExuOzlNfB31asWEFSUhJvvfXWC7c1tdfCr7/+St++ffn111+f+J1nZ2dHnTp1Mv2c/6+9ew1pev/jAP7eUafNPfBYUctwpTaRCuxCV9MwuxBFVqRdyKTMoiQCN0ooNB+UkPUkgiBqSiYVESwI1MpWsFZ5GayLmtVyBAsrul+W6ec86H9+tL+e8+/y3/TsvF+wB/6+n+178ef25vv7DXt6enD58mXl9xwMnw+K/r6j+d/s7du34nA4xOFwCAA5ePCgOBwO6ejoEBGRnTt3ytq1a5X6R48eiUajEZPJJC0tLXL48GEJCQmRmpoapaawsFCsVqu4XC6x2WySkZEhQ4YMkc7OTqVm8+bNEhsbK/X19dLY2CjTp0+X6dOnB27i/8Uf6yDy9ZsAsbGxsmPHjl59PnjwQEpLS6WxsVFcLpdYLBaJi4uT1NRU/072L/zoGoiIUj9p0iRZvXq1OBwOuXv3rtJus9kkNDRUysvLpaWlRYqLiyUsLExu376t1JSVlUlUVJRYLBZxOp2yZMkSGT16tHz8+DEwE/+GP9agrKxM1Gq1nD17Vjwej/J4+/at0qfRaBS73S4ul0suXbokEydOlDFjxsinT58CN/n/8Mca7NmzR2pra+Xhw4fS1NQkK1eulIiIiF7rNFDOAxH/rMOfUlJSJDs7u88+/8nnwsmTJyU0NFQOHz7sc66/evVKqTl16pSEh4dLRUWF3Lt3T/Lz8yUqKkqePn2q1Ay0z4efxXDTj65cuSIAej3WrVsnIl+/lpiWltbrOcnJyaJWqyUuLk7MZrNPe3Z2tuh0OlGr1RITEyPZ2dny4MEDn5qPHz/Kli1b5PfffxeNRiNLly4Vj8fjx5n+PX+sg4hIbW2tAJC2trZebW63W1JTUyU6OlrCw8MlISFBTCaTvH792g8z/N9+Zg36qtfr9T41Z86cEYPBIGq1WsaOHSsXLlzwae/p6ZHdu3fLsGHDJDw8XObMmdPnegWCP9ZAr9f3WVNcXCwiIh8+fJB58+bJ0KFDJSwsTPR6vWzcuNHnzT6Q/LEG27dvl9jYWFGr1TJs2DBZuHChNDc3+7zGQDoPRPz399Da2ioApK6urlef//RzIS0t7W/r/3To0CHlfJgyZYrcuHHDp32gfT78LJWIyM/u+hARERENNLznhoiIiIIKww0REREFFYYbIiIiCioMN0RERBRUGG6IiIgoqDDcEBERUVBhuCEiIqKgwnBDREREQYXhhogGhNmzZ2P79u0B6aukpATJyckB6YuIAo/hhoj+dYxGo88/B8zNzUVmZmb/DYiI/q9C+3sARESBptVqodVq+3sYROQn3LkhooB7//49cnJyoNVqodPpcODAAZ92r9cLo9GImJgYREZGYurUqbBarUp7RUUFoqKiUFtbi6SkJGi1WixYsAAej0epsVqtmDJlCiIjIxEVFYWZM2eio6MDgO9lqZKSElRWVsJisUClUkGlUsFqtSI9PR0FBQU+43r27BnUarXPrg8RDTwMN0QUcCaTCVevXoXFYkFdXR2sViuam5uV9oKCAtjtdpw6dQpOpxMrVqzAggUL0N7ertR8+PAB5eXlOHHiBK5duwa32w2j0QgA+PLlCzIzM5GWlgan0wm73Y78/HyoVKpeYzEajcjKylLCkcfjwYwZM5CXl4fq6mp4vV6ltqqqCjExMUhPT/fj6hDRr+JlKSIKqHfv3uHYsWOoqqrCnDlzAACVlZUYOXIkAMDtdsNsNsPtdmPEiBEAvgaQmpoamM1m7N27FwDQ1dWFI0eOID4+HsDXQFRaWgoAePPmDV6/fo1FixYp7UlJSX2OR6vVYtCgQfB6vRg+fLhyfNmyZSgoKIDFYkFWVhaArztGubm5fYYkIho4GG6IKKAePnyIz58/Y+rUqcqx6OhoJCYmAgBu376N7u5uGAwGn+d5vV4MHjxY+Vmj0SjBBQB0Oh06OzuV18vNzcX8+fMxd+5cZGRkICsrCzqd7rvHGRERgbVr1+L48ePIyspCc3Mz7ty5g/Pnz//UvIkocBhuiGhAeffuHUJCQtDU1ISQkBCftm9vAg4LC/NpU6lUEBHlZ7PZjG3btqGmpganT5/Grl27cPHiRUybNu27x5KXl4fk5GQ8efIEZrMZ6enp0Ov1PzkzIgoU3nNDRAEVHx+PsLAw3Lx5Uzn28uVL3L9/HwAwYcIEdHd3o7OzEwkJCT6Pby8bfY8JEyagqKgI169fx7hx41BdXd1nnVqtRnd3d6/j48ePx+TJk3H06FFUV1dj/fr1P9Q/EfUPhhsiCiitVosNGzbAZDKhvr4ed+7cQW5uLn777evbkcFgwJo1a5CTk4Nz587B5XLh1q1b2LdvHy5cuPBdfbhcLhQVFcFut6OjowN1dXVob2//y/tuRo0aBafTiba2Njx//hxdXV1KW15eHsrKyiAiWLp06a8vABH5HcMNEQXc/v37MWvWLCxevBgZGRlISUnBpEmTlHaz2YycnBwUFhYiMTERmZmZaGhoQGxs7He9vkajQWtrK5YvXw6DwYD8/Hxs3boVmzZt6rN+48aNSExMxOTJkzF06FDYbDalbdWqVQgNDcWqVasQERHxaxMnooBQybcXqYmIyMfjx48RHx+PhoYGTJw4sb+HQ0TfgeGGiKgPXV1dePHiBYxGI1wul89uDhENbLwsRUTUB5vNBp1Oh4aGBhw5cqS/h0NEP4A7N0RERBRUuHNDREREQYXhhoiIiIIKww0REREFFYYbIiIiCioMN0RERBRUGG6IiIgoqDDcEBERUVBhuCEiIqKg8geWxQd909Tn8gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGyCAYAAAAPn3WRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAIElEQVR4nOzdeVhb55X48a82xCax72Y1eAEb73G84xVh4yz+dUvSpmmbZrpkuqSdJJ20STttkna6ZDpdkzSdtDNJm07HdhLHSF5ivMcL3jG2ASOwMSAwi8QmhKTfHwo0tsFmkXQl8X6eh6eNuLr3ODfgo/fc9xyZ0+l0IgiCIAiCEODkUgcgCIIgCILgDSLpEQRBEARhQhBJjyAIgiAIE4JIegRBEARBmBBE0iMIgiAIwoQgkh5BEARBECYEkfQIgiAIgjAhiKRHEARBEIQJQSQ9giAIgiBMCBMu6XE6nZjNZkQjakEQBEGYWCRNevbt28fGjRtJTk5GJpOxdevWO76ntLSUuXPnolaryc7O5vXXXx/VNS0WCxEREVgslrEFLQiCIAiCX5I06enq6mLWrFn85je/GdHxNTU1bNiwgZUrV3Lq1Cm+8Y1v8Oijj2IwGDwcqSAIgiAI/k7mKwNHZTIZW7Zs4b777hv2mKeeeor33nuPc+fODb72qU99ivb2dvR6/YiuYzabiYiIoKOjA61WO96wBUEQBEHwAofdgVwxvrUav3qm5/Dhw6xZs+aG1woLCzl8+PCw77FarZjN5hu+AOwOn8j1BE+r2gWvF4PDLnUkghccrD/Io4ZHsYv7PSF07t9P7WcfwWkX93siqDzWNO5z+FXS09jYSEJCwg2vJSQkYDab6enpGfI9L774IhEREYNfqampABw3tno8XsEHbPkSGPdD7UGpIxG84F8P/CtHGo9Q1lQmdSiCF1x7+jt0HzlC97HjUocieEFVmWnc5/CrpGcsvvOd79DR0TH4deXKFQAM5Y0SRyZ4XE+b6wvg3GZpYxE8rsPagdnqWsnVG0dW7hb8l72jA3tHBwDmkhKJoxE8rbfLRt358S9W+FXSk5iYSFPTjctbTU1NaLVaQkJChnyPWq1Gq9Xe8AWw63wT/XaHx2MWJHThPVdZa+YnoOIdsPdLHZHgQXuu7MHutLMhawO7anfR7xD3O5BZdu0Cux3tPRux7NiBs1/c70BWc7oZhxseS/GrpGfRokXs3r37htd27tzJokWLRn2u1m4bhy9fd1dogi8q3wLpi2HRV6D7OtTslToiwYP0Rj1zE+bymdzP0GZt42jDUalDEjzIXKIndP58oh/+LPa2NrqOHJE6JMGDqo6bSM6OHPd5JE16Ojs7OXXqFKdOnQJcW9JPnTpFXV0d4CpNPfzww4PHf+lLX+Ly5cs8+eSTXLhwgd/+9rf87W9/45vf/Oaor50aHcK20w1u+XMIPqi7FS6XQt79kDQbojJdSZAQkNp72zly7QiFGYXkRueSqknFUCtaWQSq/rY2ug4fRru+iOC8XFRpaaLEFcB6O21cudBGzvz4cZ9L0qTn+PHjzJkzhzlz5gDwxBNPMGfOHJ599lkAGhoaBhMggMzMTN577z127tzJrFmz+PnPf84f/vAHCgsLR31tXV4i+vJG+vpFiSsgVbwDTgfk3gsyGczYBBXvQn+f1JEJHrCrbhcOHKxNX4tMJqMwo5Bdtbuw2W1ShyZ4gGXHTnA60axbh0wmQ1tUhGXnLpx94uc7EFWfNIHTSdYcP096CgoKcDqdt3wNdFl+/fXXKS0tveU9J0+exGq1Ul1dzSOPPDKma+tmJNLRY+NgVcv4/hCCbzq3GTKWQviHPyR5m6C33bX6IwQcg9HAgoQFxIbEAqDL0GHuM3O4Yfh2FoL/MpeUELrwLpQxMQBoi3Q4Ojro+uADiSMTPKGqzETK1ChCtUHjPpdfPdPjTlMSNEyOC2PbGVHiCjidza5t6nmb/vFaQh7E5EC52MUVaK73XOdo41EKM/+x4jslagoZ2gwMRlHiCjT9LS10Hz2Ktqho8DX11KkEZWZi3i5KXIGm29xH/cU2sueNf5UHJnDSI5PJ2JCfzI7zjVj7RWOrgFLxNiCD6ff847WBEteF98DWK1logvvtqt2FDBlr0v7RuFQmk6HL1PF+3ftY7VYJoxPczbxjB8jlaNauHXxtsMS1ezcOUeIKKJdPmkAmY7IbSlswgZMegI35SVh6+9l3SZS4Asq5LZBVAGExN76etwmsZqjePeTbBP+kN+pZmLSQqOCoG17XZejotHVysF40pgwklu0lhC1ahDLqxvutLdLhsFjoOnBAosgET6g8biJ1WhTB4Sq3nG9CJz05CRqmJmjYduaa1KEI7mJucHVfzrv/1u/FT4P4XLGLK4A0dzdT1lSGLkN3y/cmR04mOzJblLgCiK3JRHdZGVrdrfdbnZODOicbc4loTBkoutqtXKtqJ9sNu7YGTOikB6A4P4ld55votYkSV0CoeAfkSphePPT38zbBxRKwDT22RPAvO2p3oJArWJW2asjvF2YUUnqllN5+UdIMBBaDAZRKNGtWD/l9TVERnbt34+gV9zsQVJ0wIZfLyJwV57ZziqRnVjJdfXb2XBj/TA/BB5zbDJNXQUjU0N/Pux/6OqFyh3fjEjzCYDSwKGkREeqIIb+vy9DR3d/N/vr9Xo5M8ARzSQnhS5agiBj6fmuLinB0d9O5b5+XIxM8obrMRFpuNMFh7iltgUh6yIwNIy9Zy7azYheX3+u4Clc+cD2wPJzYbEicKWZxBYDGrkZOmk6iy7y11DEgIyKDadHT0NeIkoe/szU00HPyJNr1RcMeo87MRD19umhUGAAsrb00VHe4bdfWgAmf9ABsyE/i/QoT3X1idotfK98KiiCYOvwvRcBV4rpkAGunV8ISPGOHcQcquYqVqStve1xhRiH7ru6j29btpcgETzCX6JEFBRG+auhS5gCtTkdn6V4c3eJ++7PqEyYUSrlbS1sgkh4Aimcm02Ozs7tClLj8WvkWyF4LwUMvfQ/Kux/6e+CS+PTvzwxGA0tTlqIJ0tz2uMKMQnrtvey7Kkoe/sys1xO2fBmK8PDbHqddX4Szp4fOvWLWnj+rPG4iLS+aoBClW88rkh4gLSaUWZMixC4uf9ZWC/XHb1/aGhCdCclzxS4uP1bfWc+ZljMUZtx5BE2qJpW8mDz0RpHk+qu+q1fpPXPmhoaEwwlKTSV4xgzRqNCPmVt6MBnN5MxPcPu5RdLzoeL8ZPZcbMbSK2b1+KXyLaAMhinDP99xgxmboHIn9Jo9G5fgEQajAbVCTUFqwYiO12Xo2H91P519oqTpj8wlJciCg9EUFIzoeG1REZ379mHv7PJsYIJHVJWZUKrkpM+MufPBoySSng9tyE+ir9/BroomqUMRxqJ8M+SsA/Xtl74H5d4Hdqtr+7rgdwxGA8snLSdMFTai4wszCulz9LHnyh4PRyZ4grmkhPAVK5CHjex+a3WFOK1WOveI++2PqspMpM+MISjYvaUtEEnPoOTIEOalR/GemMXlf65XQ8PpkZW2BkSmwqS7xCwuP1RnruP89fMjKm0NSApPYlbcLNGo0A/1GY1Yz1eMqLQ1QJWSQsisWWIXlx9qN3XTXGche577S1sgkp4bbJiZxN5LzXT0iBKXXynfAqowyBn5X4KAK0mq2g09bZ6JS/AIg9FAiDKEZSnLRvU+XYaOg9cO0mHt8FBkgieY9XpkoaGEr1g+qvdp1xfRtX8/drMoYfuTqjITSrXCI6UtEEnPDTbkJ9HvcLKjvFHqUITRKN8CU3UQFDq69+XeB45+uLDdI2EJnqE36lkxaQWhqtHd77Xpa7E77KLE5WfM20vQFBQgDwkZ1fs0Oh1Omw3L7vc9FJngCVXHTWTOjEEVpPDI+UXS8xEJ2mAWZESzTZS4/EfzJWg6N/SsrTvRJkH6YlHi8iOXOy5zqe3SkLO27iQhLIE58XPELi4/Yq2uxnrp0m0bEg5HlZBAyLx5mPWixOUv2hq7uF7fSbYHdm0NEEnPTTbmJ3GwqoW2rj6pQxFGonwLBGlc/XnGIu9+uFwK3a1uDUvwDIPRQKgylKWTlo7p/bpMHUeuHaG9t929gQkeYS7RIw8PJ2zZ6EqZA7RFRXQdPIS9vd29gQkeUXnchCpYQVpetMeuIZKem+hmJOFwOtGLEpd/KN8M09aDKnhs78+9F5wO16BSwecZagysTFuJWqEe0/vXpq/FgYNddbvcHJngbk6nE3NJCZrVq5Crx3a/tYXrwOHAskvcb39QVWYic1YsSpVnSlsgkp5bxGnU3J0VI3Zx+YOm89B8wTVWYqzC4yFjqZjF5Qcq2yqp7qgeU2lrQGxILAsSFogSlx+wXqqkr7oajW7s91sZF0foggWiUaEfuF7fSVtDFzke2rU1QCQ9QyjOT+ZQdQstnVapQxFup3wzqCNg8u1nL91R3iYw7odOMYbElxmMBjQqDYuTF4/rPIWZhRxrPEZLT4ubIhM8wVyyHblWS/iSJeM6j7ZIR9eRI/S3ihK2L6sqM6EOVZKa67nSFoikZ0i6GYnIZDJKzokSl89yOl3P80wvBuXYlr4HTb8HkIkSlw9zOp0YjAZWpa0iSBE0rnOtSVuDDBm7a3e7KTrB3ZxOJ5YSPZo1a5AFje9+a9atA8CyY6c7QhM8wOl0Unm8iczZcSiUnk1LRNIzhOiwIJZkx7LttJjF5bMaz8L1qvGVtgaExUBWAZwTs7h81cW2ixjNxlE1JBxOVHAUC5MWihKXD7NWVNBXWzuqhoTDUUZHE7ZwoWhU6MNarnbSYeohe168x68lkp5hFOcncdTYSpO5V+pQhKGUb4aQKMha4Z7zzdgEtQfBLJ7l8kX6Gj0R6gjuTr7bLefTZegoayrD1C1Kmr7IXFKCIjKSsLsXuuV82vVFdB87Rn9zs1vOJ7hX1XETwWEqJk2L8vi1RNIzjMLcRJRyGSVnxV+CPsfpdD14PH0jKFTuOee0DSBXwvm33XM+wW0GSltr0tagkrvnfq9KW4VCrmBnrSh5+Bqn0+lqSLh2LTKVe+63Zs0akMsx79jhlvMJ7uN0OqkqayJrThwKhedTEpH0DCMiVMWynDjRqNAXXTsJ7bXuKW0NCImCyatEo0IfdP76ea52XnVLaWtAhDqCxcmL0deIEpev6T13Dlt9/ZgaEg5HERlJ2OJFosTlg0y1FswtvWTP93xpC0TSc1vF+Ukcr23jWnuP1KEIH1W+GUJjIWNsDcuGNWMTXDkCHVfde15hXPRGPdHB0SxIXODW8+oydJxqPkVjl9iw4EvM20tQxMQQusC991tbtJ6eshPYmprcel5hfKrKTIRoVKTkRHrleiLpuY21uQkEKeVsFyUu3+F0QvlWyL0HFEr3nnvqelCoXecXfMJHS1tKuXvv98rUlQTJg8TkdR/idDgw6/Vo1q1FpnTv/dasXoVMqcSiF6t7vmKgtDV5TjxyL5S2QCQ9t6UJVlEwJY53RYnLd1w9Bh1X3FvaGhCshZy1osTlQ860nKGhqwFd5tgb1A0nPCicJSlLRNLjQ3pOnaa/ocEtu7ZuptBqCVu6FHOJSHp8RVONmc5Wq9dKWyCSnjsqnpXM6SvtXGntljoUAVy9ecITXINCPSHvfqgvgzajZ84vjIq+Rk9sSCxz4+d65Py6DB1nW85y1SJKmr7ArC9xdVGeN88j59euL6Ln1Cls10Q7El9QebyJ0IggkrIjvXZNkfTcwepp8QSr5LwnSlzSczg+LG3dB3IPzWaZogNliCu5EiTlcDrYUbuDtelrUXjofhekFhCsCBarPT7A6XBg0RvQ6HTIFJ653+ErVyFTq8Vqjw9wOpxUl5mYPDceuVzmteuKpOcOwtRKVk2LZ9sZ8clAclc+AMs112qMp6jDYco6MYvLB5w0ncTUbRrXrK07CVWFsmzSMpH0+ICesjL6TSa0RZ6734rwMMKXLxe7uHxAQ3UHXR195HihIeFHiaRnBIrzkzlXb8bY0iV1KBPbuc2gSYZU9zQsG1beJmg8A9erPXsd4bYMRgPxofHMjp/t0evoMnRUtFZQa6716HWE2zOXlKBMTCRk9myPXkdbpKP33Dn6rlzx6HWE26s63kR4lJrErAivXlckPSOwcmo8oUEKsdojJYfd1Tgw736Qe/g/25x1oAoTDzRLyO6ws7N2J4UZhchlnr3fyyYtI0QZIlZ7JOS02zEbdqDV6ZB5+Oc7vKAAWUiIKHFJyOFwUnWymcnz4pF5sbQFIukZkZAgBWumJ4hGhVKqPQhdJlcvHU8LCoWpRWIWl4TKmspo6Wlxa0PC4YQoQyiYVCBmcUmo+9gx7Nevu7Uh4XDkoaGEF6wQJS4JXatsp8fc55VZWzcTSc8IFecncaHRQpXJInUoE9O5zRCRBime2dVxixmbwFQOzRe9cz3hBnqjnuSwZPJj871yvcLMQirbKrncftkr1xNuZN5egiolheCZM71yPW1REdaKCqw1NV65nnCjquNNaGKCScjQev3aIukZoeVT4tColWK1Rwr2fqh4B/LuA5mXlkInrwa1VjzQLIF+Rz+7andRmFGIzEv3e2nKUsJV4WK1RwJOmw3Ljh1oi3Reu9/hy5cjDw0VjQol4LA7qD7ZTPa8eK/d748SSc8IBasUrM11lbicTqfU4Uwsxn3Qfd07pa0BqmBXh+byza4u0ILXHG08Spu1jcJMz5e2BqgValamrkRv1Iufby/rOnIUe3s7Gg80JByOPDiY8FWrMG8XJS5vu3qxjd5OGznzEyS5vkh6RqF4VhJVpk4uNokSl1ed2wxRmZA027vXnbEJWi5BU7l3rzvBGYwGJoVPIjc616vX1WXqqOmoobK90qvXnejMJdtRpacRnOvd+61dX4S1shJrVZVXrzvRVZWZ0MaFEJsaLsn1RdIzCkuz44gIUbHttChxeU1/H1S869q15e2l0KyVEBwpGhV6kc1uY1ftLnSZ3it1DFiUtAhNkEZMXvciZ18flp270OqKvH6/w5YuRR4eLlZ7vMje7+DyyWZyJCptgUh6RiVIKacwL4FtZ66JJXBvuVwKve3eLW0NUAbB9GJR4vKiDxo+wNxn9mhDwuGoFCpWp63GYDSIn28v6Tx0CIfZ7JVdWzeTBwWhWb0as16UNL3lSkUr1u5+siUqbYFIekatOD8Z4/Vuyq+ZpQ5lYijfAjE5kDBDmuvnbYLWy9BwWprrTzB6o54MbQZToqZIcn1dho46Sx0VrRWSXH+isZToCcrKQj1FmvutXV9E3+XLWC9dkuT6E01VmYmoxFBiUsIki0EkPaO0aHIMUaEqsYvLG/qtcOE91yqPREuhZC6HkGjRqNAL+ux97Knb49VdWze7K+kuItWRYheXFzisViy7d6Mt8n5pa0DYokXIIyJEicsL7DYHNac+bEgo1e9zRNIzaiqFHN2MJFHi8oaq3WDt8OysrTtRqCD3HteKk7jfHnWw/iAWm0WS0tYAlVzFmvQ17DDuED/fHtZ14ACOzk6Pztq6E1lQEJq1azCXlIj77WF156/T12snZ550pS0QSc+YbMxP4mpbD6evdkgdSmAr3wxx0yF+urRx5G2C9jqoL5M2jgBnqDWQHZlNdlS2pHHoMnTUd9ZzruWcpHEEOvP2EtQ5Oaizpb3fWl0Rtro6es+flzSOQFd53ER0chjRydKVtkAkPWOyMCuG2HA1206LWVweY+uBiyXSPMB8s4ylEBYvdnF5UG9/72BpS2rzEuYRHRwtSlwe5OjtxbJnjyQPMN8s7O6FKKKisIixFB7T32fHeKaFnPneHztxM5H0jIFCLmP9zETeO9uAwyGWRD2icif0dUpb2hogV0Duva6kx+GQOpqAdKD+AN393T6R9CjlStamr8VgNOBwivvtCZ179+Hs7kajk660NUCmVKJZtw5zidjF5Sm15dexWe1kS1zaApH0jFlxfjINHb2cqGuTOpTAVL4ZEmZCbI7UkbjM2ATmerh6VOpIApLeqGdq1FQyIzKlDgVwlbiaups43Sx27XmCuaQE9fTpqDN9435ri4qw1dfTe+aM1KEEpKrjJmJTw4lMCJU6FJH0jNX89CgStGqxi8sT+rrgkgFm+MAqz4DUu0GTJGZxeUC3rZt9V/ehy5T+U/+AuQlziQ+JF40KPcDR1UVnaSlaL46duJPQBfNRxMZiLhH3291sVjvGsy2STFQfikh6xkgul7F+ZhLbzzZgFyUu97pkAFu36wFiXyGXQ+59cH4rOOxSRxNQ9tXvo6e/h8J06UtbA+QyOesy1rGjdgd2cb/dqnPvXpy9vZLu2rqZTKFAu26dq1GhKGG7lfFsC/19Dp8obYFIesalOD8Zk8XKMWOr1KEElvLNkDwHon1j6XvQjE3Q2QS1h6SOJKAYagzkxuSSqk2VOpQbFGYU0tLTwgnTCalDCSjmkhKCZ84kKNW37rd2fRH9jY30nDoldSgBparMRHy6hoi4EKlDAUTSMy5z0yJJiQxh2xmxi8ttrBbXQ8y+8ADzzSYtgIhUsYvLjbpsXeyv3y9pb57h5MflkxiWiMFokDqUgGHv7KRz7z60PvAA881C5s5FGR8vGhW6UV9vP7XnrvvMKg+IpGdcZDIZG/KTKDnbSL9dLIm6xcUS6O/1zaRHJoO8++D822DvlzqagFB6pRSr3eoTu7ZuJpfJKUwvZGftTvod4n67Q+eePTj7+nyqtDVAJpej0RViMRhw2kVJ0x1qTrdgtznI9oGt6gNE0jNOxflJXO/q44PLosTlFuVbXCsqkWlSRzK0vE3Q3QLG/VJHEhD0Rj35cfkkhydLHcqQdJk6WntbOdZ4TOpQAoJ5ewkhs2ejSvbN+60tKqK/uZnuMtGI1B2qykwkZmnRRAdLHcogkfSM08yUCNKiQ3nvrChxjVtPO1Tt8q0HmG+WPAeiMsQsLjcw95k5WH/Qpx5gvlleTB6TwieJEpcb2M1mOg8c8ImGhMMJmT0bZXISZtGocNys3TbqzvtWaQtE0jNugyWuc43YRIlrfC5uB3ufqxGgr5LJXKW3infBbpM6Gr+2p24PNoeNdRnrpA5lWDKZjMKMQnbV7cLmEPd7PCy7dkN/P5pC301yZTIZWl0RFsMOnP2ipDkeNadbcNidTJ7rO6UtEEmPWxTnJ9HebeNgVYvUofi3c5shbRFEpEgdye3lbYKeNrhcKnUkfs1gNDA3fi6JYYlSh3JbukwdHdYOjjQckToUv2bWlxAyby6qBN/65H8zbZEOe2sr3cdESXM8Ko+bSJocQXiUWupQbiCSHjfITdKSFRsmGhWOR3crXN7j26WtAYkzISZb7OIahw5rB4evHfbJB5hvNjVqKunadNGocBz629roOnTYpxoSDid4xgxUqaliF9c49HbauFrRSs5830twRdLjBjKZjOL8JAzljVj7xVP/Y3Jhm6vpny+XtgbIZK7krGIb9FuljsYv7a7bjd1pZ236WqlDuaOBEtf7de/TZ++TOhy/ZNm1CxwOtOt8t5Q5wFXi0mHZsQOnTZQ0x+Ly6WacTidZc+KkDuUWIulxk+JZyVh6+zlQKUpcY3Jus2uaucb3PhkMacYmsHZA9ftSR+KX9DV65ifOJy7U934pDkWXocNis3DommhMORaWkhJCFyxAGecf91u7vgh7RwddH4iS5lhUHW8ieUokYRG+VdoCkfS4zZQEDTnx4aLENRZdLVCzzzd78wwnfjrETROzuMagtbeVo41HfbIh4XByonKYHDEZvVGUuEarv7WVrg+O+EVpa4B62jSC0tPFLq4x6LH0cfViu8/t2hogkh43Ks5PZuf5JnptosQ1KhXvuP7XH0pbH5W3ybXjzNYjdSR+ZVftLpw4WZO+RupQRqUws5A9dXvo7e+VOhS/YtmxA2QyNIW+X9oaIJPJ0KwvwrJrF84+UdIcjeqTzQBM9sHSFoikx62KZyXRae2n9GKz1KH4l3ObIXM5hMVKHcnozNgEfZ2u3kLCiBmMBu5KvIvo4GipQxmVwoxCuvu7OVh/UOpQ/Ip5ewlhd9+NMipK6lBGRVtUhMNspvOguN+jUVXWxKSpkYRogqQOZUiSJz2/+c1vyMjIIDg4mIULF3L06NHbHv8f//EfTJ06lZCQEFJTU/nmN79Jb69vfPKaHBfO9CStmMU1GpYmqD3oX6WtAbE5kDBTlLhGoaWnheNNx/2qtDUgKyKLKVFTRIlrFGwmE93Hjvnk2Ik7UefkEDR5Mha9uN8j1dVh5dqldrJ9cNfWAEmTnrfeeosnnniC5557jhMnTjBr1iwKCwsxmUxDHv/mm2/y9NNP89xzz1FRUcFrr73GW2+9xb/+6796OfLhFecnsbvCRHefaGw1IuffBpkcpm+UOpKxmXE/XNJDX5fUkfiFnbU7kSP3u9LWAF2Gjr1X99Jt65Y6FL9g2bETFAo0a/zvfstkMrRFRVh27cZhFbs0R6L6RDMymYys2b5Z2gKJk55f/OIXfPGLX+Rzn/scubm5/P73vyc0NJQ//vGPQx5/6NAhlixZwoMPPkhGRgbr1q3jgQceuOPqkDcV5yfRY7Oz54IocY1I+RbIWgmh/lXqGJR3P9i64ZIYUzAS+ho9dyffTYQ6QupQxkSXoaOnv4d99fukDsUvmEtKCFuyGEVkpNShjIl2fRGOri669otZeyNRVdZEam40wWEqqUMZlmRJT19fH2VlZaz5yCcAuVzOmjVrOHz48JDvWbx4MWVlZYNJzuXLl9m+fTvr168f9jpWqxWz2XzDlyelx4QxMyVClLhGwnwN6g67no3xV9FZkDRbzOIagaauJk6aTvpFQ8LhpGpTyY3JxVAjktw7sTU20lNW5le7tm6mzspCPXWqaFQ4Ap1tVhqqO8ie51tjJ24mWdLT0tKC3W4n4aaW5AkJCTQ2Ng75ngcffJB/+7d/Y+nSpahUKiZPnkxBQcFty1svvvgiERERg1+pqalu/XMMpTg/ifcvmOi0ihLXbZVvBYUKpg6ftPqFGZugcidYLVJH4tN21O5AKVeyKm2V1KGMiy5Dx/76/XTZREnzdsx6PTKVCs3q1VKHMi7aIh2W0lIcPWKX5u1UnzAhV8jI9OHSFvjAg8yjUVpaygsvvMBvf/tbTpw4webNm3nvvff44Q9/OOx7vvOd79DR0TH4deXKFY/HuSE/CWu/g90VTR6/ll8r3wyTV0NIpNSRjE/e/dDfCxfFA4+3YzAaWJK8BG2QVupQxqUwoxCr3UrplVKpQ/FplhI9YcuWodBopA5lXLRFRTi7u+ncK0qat1N5vIm03BjUIUqpQ7ktyZKe2NhYFAoFTU03JgZNTU0kJg49gPB73/sen/nMZ3j00UeZOXMm999/Py+88AIvvvgiDsfQE87VajVarfaGL0+bFBXKnLRI3j0tGhUOq70Orh7z79LWgMg0mLRAlLhuo6GzgdPNpynM9N/S1oDk8GTyY/PFLq7bsNXX03P6tF+XtgYEpacTnJsrGhXehvl6D001Zp8vbYGESU9QUBDz5s1j9+7dg685HA52797NokWLhnxPd3c3cvmNISsUCgCcTqfngh2D4vxk9l1qpqNHzG4ZUvlWUKhhqv//UgRcjQqrdkFPu9SR+CSD0UCQPIiCSQVSh+IWhRmFHKw/iLnPs88I+iuzXo9MrSZ85UqpQ3EL7foiOvfuxdElSppDqS5rRqGSkznL93utSVreeuKJJ3j11Vf505/+REVFBV/+8pfp6uric5/7HAAPP/ww3/nOdwaP37hxI7/73e/461//Sk1NDTt37uR73/seGzduHEx+fMX6mYn02R3sOi9KXEMq3ww5a0Ht30vfg3LvBXufq0OzcAu9Uc+yScsIDwqXOhS3WJexDpvDxp66PVKH4pPM20sIX74cRXiY1KG4hUanw9nbi6W0VOpQfFJVWRPpM2IICvbt0haApBF+8pOfpLm5mWeffZbGxkZmz56NXq8ffLi5rq7uhpWd7373u8hkMr773e9SX19PXFwcGzdu5Pnnn5fqjzCspIgQFmREse3MNf7fvElSh+NbWi/DtZOw+J+ljsR9IlIgbZGrUeHsB6WOxqdcsVyh/Ho5j+Q9InUobpMYlsjc+LnojXruzfaz8Ske1ldXR295OTGPfkHqUNwmaNIkgvPzMZeUELFhg9Th+JSO5m5MtRZmr02TOpQRkTwte/zxx3n88ceH/F7pTVm1Uqnkueee47nnnvNCZONXnJ/MD7edp727j8hQ32zJLYnyraAKhSn+16X1tvI2geE70N3qv32HPMBgNBCsCGb5pOVSh+JWhRmF/PTYT+mwdvht3yFPMJfokYWEEL5ihdShuJW2qIjml17C3tmJIjwwVizdoarMhDJITsZM3y9tgZ/t3vI3RTMTcTidGMqH3oI/YZVvhimFEBQYS9+Dcu8FpwMubJM6Ep9iMBpYPmk5oapQqUNxq7Xpa7E77eyu233ngycQc0kJmpUFyEMD635rdYU4+/ro3C3u90dVlZnImBmLSu1bj5gMRyQ9HhSvCWZhZgzbzohdXINaqqDxrH/O2roTTQKkLxGzuD7C2GHkQusFdJkBtqoHxIXGMT9xPvoasYtrgPVyDdYLF9DoAu9+q5KSCJkzB3OJuN8D2pu6abnSSfZ839+1NUAkPR5WPCuJQ9XXud4pZrcArlWeoHDIWSd1JJ4xYxPU7IOuFqkj8QkGo4FQZSjLUpZJHYpH6DJ0HG08Smtvq9Sh+ASzvgR5aCjhywOrlDlAW1RE58GD2Ds6pA7FJ1Qeb0KlVpCeFyN1KCMmkh4P0+W5eg7pRYnLpXyLa5u6KkTqSDxj+j2u/z3/trRx+Ai9UU9BagHBymCpQ/GIgcGpu2p3SRyJb7CUlBC+ejXy4MC835rCQujvx7JLlLjgw9JWfizKIP8obYFIejwuJlzN4skxbBONCsF0AUznXQ/8BqqwWMhc7kruJrjq9mqq2qv8etbWnUQHR3NX4l2iUSFgrazEWlkVEA0Jh6NKiCd0/nzRqBBovdZF67UucvyotAUi6fGK4vwkjtRcx2TplToUaZVvBrUWsv17Fs8dzdgExgNgmdire3qjnnBVOEtTlkodikfpMnUcbzxOS8/ELmmaS0qQazSELV0idSgepSnS0XX4MP1tbVKHIqnKsiaCQpSk5fpPaQtE0uMVhXmJyGUySs5O4L8EnU7XA77TNoBSLXU0njWtGOQKOP+O1JFIxul0YjAaWJW2iiBFYLdrWJ22GoVMwQ7jDqlDkYzT6cRcokezejXyoMC+39p168DpxLJzp9ShSMbpdFJ13ETWrFgUKv9KI/wrWj8VGRrEspxYtp25JnUo0mkqh+uVgV3aGhAaDZNXTehZXJfaLlHTURPQpa0BEeoI7k6+G4PRIHUokrFevEhfTQ3a9YFb2hqgjI0ldOFdE7rEdb2+i/ambib7waytm4mkx0uK85M5ZmyjoaNH6lCkUb4ZgiMhq0DqSLwjbxPUHYaOeqkjkYTBaEAbpGVR0tBz9AKNLkPHCdMJGrsm5mqueXsJ8ogIwoaZmxhotEVFdB85Sn/LxCxpVh1vQh2qJHW6/zVhFUmPl6zNSyBIIWf7RCxxDZS2pheDMrCXvgdNWw+KIDi/VepIvM7pdKI36lmdthqVQiV1OF6xKm0VKrlqQpa4XKWtEjRr1yBTTYz7rVm7FmSyCVnicjqdVJaZyJoTh0LpfymE/0Xsp7TBKpZPiZuYJa6G09BWMzFKWwOCIyB7zYRsVFjRWsEVyxV0GYHXoG44miANS1KWTMgSV2/5eWxXrgT0rq2bKaOiCFu0CPP2iVfiaq6zYG7uIWdegtShjIlIerxo46wkTta1c7WtW+pQvKt8M4TGQGZgzeK5o7xNUH8c2mqljsSr9EY9kepI7kq6S+pQvEqXoeNMyxnqOydWSdNcsh1FdDRhCxdKHYpXaYuK6D5+HFuTSepQvKqqzERwuIqUqZFShzImIunxotXTE1Ar5bw3kcZSOJ2unjXT7wGF5PNtvWuqDpTBE6rE5XQ62WHcwZr0NSjlE+t+F6QWoFaoJ1SJy+l0YinRo1m3FplyYt1vzZrVoFRiMUyc1T2n00lVmYnJc+KQK/wzffDPqP1UuFrJqmnxE2sWV30ZtNcF5qytO1FrXOM2JlCJ62zLWeo76ydUaWtAmCqMZSnLJlSjwt7Tp7Fdu4ZWN3FKWwMUERGEL16MWT9x7neT0Yzlei/Z8/2ztAUi6fG6DflJnK3voPZ6l9SheEf5FgiLh4zAblA3rBmboOEUXK+WOhKvMBgNxATHMD9hvtShSKIws5Dz189TZ66TOhSvMJfoUcTFErpgYt5v7foiek6cwNYwMT7IVh03EaINIjknUupQxkwkPV62alo8ISrFxFjtcThcSU/uva5mfRNRzjpQhU6IsRQOpwOD0cDa9LUoJuj9Xp6ynBBlyIR4oNnpcGDW69GuK0SmmJj3O3z1amRBQZj1E+F+O6k+YSJ7ThxyuUzqcMZMJD1eFhqkZPX0CVLiunoUzPWu1Y6JKigMpugmRNJzuvk0Td1NE6Ih4XBCVaGsmLRiQiQ9PSdP0t/UhLZo4pUyByjCwwlbvmxCNCpsvNxBZ5vVr0tbIJIeSRTnJ1PRYKa6uVPqUDzr3GbQJEHq3VJHIq0Zm6DpHDRfkjoSj9LX6IkPiWduwlypQ5GULkPHxbaL1HTUSB2KR5m3l6BMSCBk7sS+31pdEb1nztB3NbB37VWWmQiLVJM0OULqUMZFJD0SKJgaR7haGdiT1x12OP825N4H8gn+n1n2WgjSBPRqj91hZ2ftTtZlrEMum9j3e0nKEkKVoQH9QLPTbse8w4BWV4hsgv98a1YWIAsOxqIP3NUeh8NJdZmJ7LnxyPy4tAUi6ZFEsErB2tyEwG5UWHcYOhsndmlrgCrY1aE5gGdxnTCdoLmneUKXtgYEK4NZmbYSQ03glri6j5dhb26ZUA0JhyMPCyN8xYqAblTYUNVOt7mP7Pn+N2vrZiLpkciGmUlUmjq51GSROhTPOLcZIlJh0gKpI/ENeZug+QI0nZc6Eo8wGA0khiWSH5cvdSg+QZeho7qjmsq2SqlD8QhzyXaUyUkEz5oldSg+QVtURO/58/TVBmYj0qrjJsKj1SRkaqUOZdxE0iORZVNi0QQr2XY6AFd77P0flrbuBZl/L4W6zeSVoI4IyNWefkc/O2t3UpheOOFLWwMWJy9Go9IEZInL2d+PZcdOtLoiZOLnG4DwFcuRhYZiLgm8++2wO6g+aSJ7XkJA3G/xG0oiaqWCwrxEtp1pwOl0Sh2Oe9UegO4WUdr6KKXaNXD13GZXl+oAcrzpOK29regyJ+4unpsFKYJYlbaKHcYdAffz3X30KPbWVlHa+gh5SAiagoKA3MVVf6mdHouNnAAobYFIeiRVnJ/E5ZYuzjeYpQ7Fvc5thqgMSJ7YuzpukbcJWquh8YzUkbiVvkZPSngKeTF5UofiU3SZOoxmIxfbLkodiluZS0pQpaYSPEPc74/Sri/CevEi1suXpQ7FrarKTGhjg4lL00gdiluIpEdCS7JjiQpVBVbPHrsNKt5xjZ0IgKVQt8paASHRAbWLy+awsatuF4UZhQGx9O1OC5MWEqGOQF8TOCUPp832YWlLJ+73TcKWLUMeFhZQDzTbA6y0BSLpkZRKIUc3I5FtZ64FzhL45b3Q0zYxZ23diUIF0zcGVInrSMMROqwdE3LW1p2o5CrWpK1Bb9QHzM931+HD2Ds60K4Xpa2bydVqwlevwhxAW9evXmjD2tUfELu2BoikR2IbZiZzpbWHs/UdUofiHuVbIHoyJIpdPEOasQnaa+HaCakjcQuD0UC6Np1p0dOkDsUnFWYUUt9ZT/n1cqlDcQtziZ6gjAzU08T9Hoq2qIi+qmp6LwVGI9Kq401EJoQSOylc6lDcRiQ9Ers7K5qYsKDAKHH198GFd11/sQfIUqjbpS+F0NiAmLxus9vYXbdblLZuY0HiAqKDowOixOXo68Oyaxfa9WLX1nDClyxBrtUGxAPN9n4Hl0+1kD0vPqDut0h6JKZUyCmamch7gbCLq/p96O1wPbArDE2hdG3lL9/qGsjqxw5dO4SlzyIaEt6GUq5kbfpaDLUGv//57jpwEIfFgkYnSpnDkQUFoVmzBsv2Er+/31fOt9LX00/2vMApbYFIenxCcX4y9e09nKhrlzqU8SnfDLFTIX661JH4thmbwHwVrh6TOpJx0Rv1ZEVkkROZI3UoPq0wo5DGrkZON5+WOpRxMZeUEJQ9meApU6QOxadpi3T01dZivXBB6lDGpbKsiaikMGJSAqe0BSLp8QkLMqKJ16j9eyyFrRcubBelrZFIWwThiX69i8tqt7Lnyh50GWIXz53MjZ9LbEisX09ed/T20rl7t+jNMwJhd9+NIjLSr3dx9dvs1JxuCZjePB8lkh4foJDLWD8zie1nG3A4/HRJtGoX9FlEaWsk5ArIuw/Ob/XbEteB+gN02bpEaWsEFHIF69LXscO4A4fTP+935/79OLq7RdIzAjKVCs3atZhL/LfEVVfeiq3XHnClLRBJj88ozk+iyWzleG2b1KGMTflmSJgBcWLpe0TyNoGlwTWY1Q8ZagzkROWQFZkldSh+QZepw9Rj4kSTf+7as5SUoJ46FXWWuN8joV1fhO3qVXrPnZM6lDGpOt5ETEo4UYlhUofidiLp8RFz06JIigj2zxJXXzdc1LtWL4SRmbQAtCl+OYurp7+H0qulojfPKMyKm0VCaIJfzuJydHdj2VMqVnlGIXTBAhTR0X45i8vWZ6fm7PWA6s3zUSLp8RFyuYwNM5PYfrYRu7+VuCp3gK1LlLZGQy53NXA8/7ZrQKsf2X91Pz39PSLpGQW5TE5hRiE7a3did9ilDmdUOvftw9nTIxoSjoJMqURTuA6z3v9KXLVnr9NvDczSFoikx6cUz0qmpdPKkcvXpQ5ldMo3Q9IsiJksdST+JW8TdDW7BrT6Eb1Rz/To6aRp06QOxa8UZhTS2tvK8abjUocyKubtJQTn5RGUJu73aGiLiui/1kDPqVNShzIqVWVNxKVpiIwPlToUjxBJjw+ZNSmCSVEhvOtPjQqtnXBph1jlGYuUuRCZ7le7uLpt3ey/ul88wDwGM2NnkhKe4lclLntnF51796ItEqt6oxU6bx7KuDi/alTY19tP7dnrAbvKAyLp8SkymYwN+UnozzVgs/vJLo9LeujvEc/zjIVM9mGJ6x3XoFY/UHqllF57r0h6xkAmk7EuYx27andhc/jH/e7cswen1YpGJ0pboyVTKNAUFmLRG3D6yS5N49kW+m0OkfQI3rMxP5m2bhuHq/2kxFW+BVLmQVSG1JH4p7z7oacVavZKHcmIGIwGZsbOZJJmktSh+CVdho52aztHG45KHcqImPV6gmflEzQpRepQ/JJ2fRH9JhM9J/xj117VcRMJmVq0sSFSh+IxIunxMXnJWjJiQv1jF1evGSp3itLWeCTNgugsOOf7Ja7Ovk4O1B8QqzzjMD16OmmaNL9oVGi3WOjat0/s2hqHkNmzUSYm+kWjwr6efmrLA7u0BSLp8TkymYzi/GT05xrp6/fxJdGL28FuFaWt8ZDJXEnjhXddA1t92J4re+hz9ImkZxxkMhmFGYXsqtuFzcdLmpbdu3HabGgLxf0eK5lcjlanw7xjB067b+/aqzndjKPfyeS5IukRvKx4VhLm3n4OVDVLHcrtndsMqQshQpQ6xmXGJteg1st7pI7ktvRGPbPjZpMYlih1KH6tMKMQS5+Fww2+3ZjSXFJCyNy5qJKSpA7Fr2mLdNhbWug+5tu79irLTCRNjkATHSx1KB4lkh4fNDVBQ3Z8ONtO+/Aurp4211R1Udoav/hc16DWc77bqLDD2sGha4fQZYpdPOM1JWoKmRGZ6Gt8dxeXvaODroOHRGnLDYLz81GlpPj0Lq7eLhtXzrcGbEPCjxJJjw+SyVyNCnecb6LX5qNLohfeA0c/5N4rdST+TyZzrfZceM81uNUHvV/3PnaHnbXpa6UOxe/JZDJ0GTrev/I+VrtV6nCGZNm1C+x2NIXrpA7F78lkMrRFOiw7duDs981GpDWnm3E4nEyeI5IeQSIbZyXRae1n3yUfLXGd2wzpS0Arlr7dIu9+18DWql1SRzIkg9HA3IS5xIcG/i9Fb9Bl6OiydXGg3jcbU5q3lxA6fz6qeHG/3UFTVIS9rY2uD45IHcqQqo6bSM6OJCxSLXUoHqeUOgBhaNnxGqYlath2poF1eT72DEXXdbhcCkU/kTqSwBE3FeLzXN2tpxd79dJOp5P+23wCbe9tp6K5gsdnP47N5tsP3/qL1LBU5sTMYW/tXpYnLb/tsQqFArnce59P+1tb6frgAxK/+4zXrhnognNzUaWlYdaXEL50idTh3KCns48rF9pY/skcqUPxCpH0+LDi/CR+W1pNT5+dkCCF1OH8w4V3AacobbnbjPth/0uuAa5B3mkB39/fT3Nz823nA9V21PJA6gPMC59Hc7OPrjz6oc9nfJ5L7ZdoaGpAKb/9r+LQ0FAiIiKQyWQej8uycxc4nWjWidKWu7hKXEW0/fWvOJ99FllQkNQhDbp8shmcTrImQGkLRNLj04rzk/nZjkvsuWhi/UwfKiOd2wwZyyB8YvyQeE3eJnj/R64Brl5oA+B0Omlvb0culxMVFTXsX6gnuk4wKXESqUmpHo9pIgnSBlFZWYk12EpSxNA/306nk76+PsxmMwCRkZEej8tcUkLY3QtRxsR4/FoTiXZ9Eddffpmuw4cJX7FC6nAGVZWZSJkaRajWdxIxTxJJjw/LiA1jRoqWbWeu+U7S02kC434ofknqSAJPzGRXs8LyzV5JehwOB319fURFRRE0zCfPbls3V7qvsHzSclQqlcdjmkhiVbFEhkZyufMyObHDlxYG7o3ZbEar1Xq01NXf0kL30aMkfv85j11jolJPmUJQVhbm7SU+k/R0m/uov9jGigenSh2K14gHmX3chpnJvH/BRJfVR576P/82IINpG6WOJDDlbXINcLV2evxSjg/nASkUw5dOL3dcRoaMrIgsj8czEU2OnEytufaOjQoHEh+7hxvcmQ0GkMvRrBW79NxNJpOh1emw7N6No883GpFWnzCBTDYhdm0NEEmPjyvOT6LX5mD3BZPUobiUb4WsAggTS98ekXefa4DrJe/1cLndcyJV7VVMCp9EiDJwZ/FIKTsym35HP0az8bbHeeNZHgBLiZ6wRYtQRkV55XoTjXZ9EY7OTroO+MauvaoyE6nToggOnziruCLp8XGp0aHMSo1k22kfmMVlboDag66eMoJnRGW4Brj6QKPCLlsXDZ0NTI6cLHUoAUur1pIQmkBVe5XUoWBrMtFdViYaEnqQOjsbdU6OT8zi6mq3cq2qfUI0JPwokfT4gY35SZReasbSK/F24fNvg1wJ0zZIG0egy9sEVTtdoykkVN1ejUwmIzMiU9I4At3kyMnUmevos0tb8rAY9KBUolm9StI4Ap12fRGd77+Po1faRqRVJ0zI5TIyZ8VJGoe3iaTHD6yfmURfv4Od55ukDaR8M0xeBSFi6duj8u4Dex9clPbTYFV7FamaVIKVvjWLp6CggG984xtSh+E22ZHZ2J12ajpqJI3DXKInfMkSFBERksYR6DQ6HY7ubjr37ZM0jqrjJtJyowkOmzilLRBJj19IjgxhfnoU285IOIur4ypcOSJKW94QMQlS75a0xNXZ10ljVyPZkdmSxTBRhAeFkxiWKGmJy9bQQM/Jk2jXi9KWp6kzM1FPny7pLC5Lay+NlzvInjexSlsgkh6/sSE/if2VzXR0S1TiKt8KCjVMXS/N9SeaGZtcA1172iS5fFV7FQqZQpS27qDPTbtwsiOzuWK5Qm+/NCUPc4keWVAQ4atEacsbtEVFdJbuxdHdLcn1q0+YUCjlE660BSLp8RvrZybR73BiON8oTQDlmyFnLQRrpbn+RDP9HtdA14ptkly+ur2aNG0aQQrfbljW1tbGww8/TFRUFKGhoRQVFVFZWQm4GvvFxcXx97//ffD42bNnk5T0j55XBw4cQK1W0/3hXz7t7e08+uijxMXFodVqWbVqFadPnx48/vvf/z6zZ8/mD3/4A5mZmQQHu6f0NzlyMk6nU7ISl7mkhLDly1CEh0ty/YlGW6TD2dND5969kly/8riJtLxogkImXqu+ifcn9lMJ2mDuyohm25kGPjHfy51x24xQXwb/7zXvXnci0ya5BrqWb4a5n/HaZXv67Jyub+L01TbuTprCuXrvPEw9OS58TKNWHnnkESorK3nnnXfQarU89dRTrF+/nvPnz6NSqVi+fDmlpaV87GMfo62tjYqKCkJCQrhw4QLTpk1j7969LFiwgNBQ19iPj3/844SEhFBSUkJERAQvv/wyq1ev5tKlS0RHRwNQVVXF//3f/7F58+bb9jgajTBVGEnhSVS3VzM9ZrpbzjlSfVev0nv2LMmP/Myr153IglJTCZ4xA/P2Eq/vljO39GAymln3hTyvXtdXiKTHjxTPSub775TT2tVHdJgXP4GXbwVlCEzRee+agmsW1/YnoasFwmK9csnq5k4+9fJJIIk/UwfUeeW62/55KTNSRvcA7UCyc/DgQRYvXgzAG2+8QWpqKlu3buXjH/84BQUFvPzyywDs27ePOXPmkJiYSGlpKdOmTaO0tJQVH3bHPXDgAEePHsVkMqFWu6ZN/+xnP2Pr1q38/e9/57HHHgNcJa0///nPxMW5tzSQHZnNgfoD9PT3eLUvkrmkBFlwMJqCAq9dU3CVuJr/8z+xd3ahCA/z2nWrykwoVXLSZ07MXmsi6fEjRTMSee7tc+jPNfLgwjTvXbh8M0xZB2qx9O1V0++F7f8CFe/C/M955ZKT48L5+sYewoPCWZS8yCvXHLjuaFVUVKBUKlm4cOHgazExMUydOpWKigoAVqxYwde//nWam5vZu3cvBQUFg0nPF77wBQ4dOsSTTz4JwOnTp+ns7CTmpplTPT09VFdXD/5zenq62xMegKyILPbX7+dyx2XyYrz3KdxcUkJ4QQHyMO/9xSu4Slymn/6Uzj3vE7HRex3uq8pMpM+MISh4Yv71PzH/1H4qNlzN4smxbDtzzXtJz/VqaDgNS5/wzvWEfwiPg8zlrqTTS0lPn7MTdZiJlRmzyY70/63LM2fOJDo6mr1797J3716ef/55EhMT+clPfsKxY8ew2WyDq0SdnZ0kJSVRWlp6y3k+OugzzEPJQagqlJTwFKrbqr2W9PQZjVjPVxD72D955XrCP6iSkwmZPRtzid5rSU+7qZvmOgtzC9O9cj1fJB5k9jMb8pP44PJ1mi1W71ywfDOowiBnnXeuJ9wobxMYD7gGvXpBVXsVKrmKdK3v/1KcPn06/f39HDlyZPC169evc/HiRXJzcwHX+IZly5bx9ttvU15eztKlS8nPz8dqtfLyyy8zf/78wSRm7ty5NDY2olQqyc7OvuErNtY75cXsyGzqu+rptnlnV49Zr0cWGkr4iuVeuZ5wI22Rjq79+7GbzV65XtVxE0q1YsKWtsAHkp7f/OY3ZGRkEBwczMKFCzl69Ohtj29vb+erX/0qSUlJqNVqpkyZwvbt270UrfR0eYnIZTL057zUs6d8K0zVQVCod64n3Gj6RpDJPxz06nlV7VVkaDNQyX2/YVlOTg733nsvX/ziFzlw4ACnT5/m05/+NCkpKdx7772DxxUUFPCXv/yF2bNnEx4ejlwuZ/ny5bzxxhuDz/MArFmzhkWLFnHfffexY8cOjEYjhw4d4plnnuH48eNe+TNlRWQhQ0Z1R/WdD3YD8/YSNCtXIg8Rs9WkoNHpcPb3Y9n9vleuV1XWRObMGFRj2DQQKMac9OzevZvi4mImT57M5MmTKS4uZteuXaM6x1tvvcUTTzzBc889x4kTJ5g1axaFhYWYTEN/qu3r62Pt2rUYjUb+/ve/c/HiRV599VVSUlLG+sfwO1FhQSzJjuVdbzQqbL4ETedcqw2CNEKjXQNevdCosK23jes915kc5T+ztv7rv/6LefPmUVxczKJFi3A6nWzfvh2V6h9J24oVK7Db7RR85EHdgoKCW16TyWRs376d5cuX87nPfY4pU6bwqU99itraWhISErzy5wlWBjNJM4nqds8nPdbqaqyXLomGhBJSJSQQMm8u5hLPf3Bvbejien0X2fO989+yz3KOwW9+8xunUql0fupTn3L+8pe/dP7yl790PvDAA06VSuX89a9/PeLz3HXXXc6vfvWrg/9st9udycnJzhdffHHI43/3u985s7KynH19fWMJ2+l0Op0dHR1OwNnR0THmc0jtb8fqnBlPb3M2dvR49kJ7XnQ6n09xOvs8fB3h9k78j9P5XITT2VHv1tP29fU56+vrB3+ejjYcdb565lWnzW5z63WE0Tnfct7525O/dXb2dQ6+dvO9cgfTf/7KeWHefKe9t9dt5xRG7/r//I/zfN4MZ39bm0evc+Tdy85Xvl7qtPX1e/Q6vm5MKz0vvPACL730En/5y1/42te+xte+9jXefPNNXnrpJV544YURnaOvr4+ysjLWrFkz+JpcLmfNmjUcPnx4yPe88847LFq0iK9+9askJCQwY8YMXnjhBex2+7DXsVqtmM3mG7783bq8RJRyGe95crXH6XStLkxbDyrfmr004UzbAAqVR0tcTqdzsLSllIv9DVLKjMhEJpN5dLXH6XRi1uvRrF6F/MPt+YI0tOvWgcOBZZSVktFwOp1UHW8ic1YcStXELW3BGMtb7e3t6HS39mxZt24dHR0ja2bW0tKC3W6/Zdk4ISGBxsahuw5fvnyZv//979jtdrZv3873vvc9fv7zn/OjH/1o2Ou8+OKLREREDH6lpnq5sZ8HRISoWJ4Tx7Yz1zx3EVMFtFwUpS1fEBIJk1d7tMTV2ttKW2+bmLXlA4KVwaRp0jw6i8t6qZK+6mo0Xm6MJ9xKGRdH6IIFmLd7bhZX67Uu2hq7J+SsrZuNKem555572LJlyy2vv/322xQXF487qOE4HA7i4+N55ZVXmDdvHp/85Cd55pln+P3vfz/se77zne/Q0dEx+HXlyhWPxedNxbOSOFHXTn17j2cuUL4Z1BGuqeqC9GZsgqtHod0z//1WtVehVqhJ1fj/h4JAMDlyMo1djVj6LB45v7lkO3KtlvAPt+sL0tIWFdF15Aj9ra0eOX9VmQl1qJLU3GiPnN+fjGkdOzc3l+eff57S0lIWLXI1MPvggw84ePAg3/rWt/jP//zPwWO/9rWvDXmO2NhYFAoFTU1NN7ze1NREYmLikO9JSkpCpVLd0Pp9+vTpNDY20tfXR1DQrV2K1Wr1YHfVQLJmegJBSjnbzzTwxeVZ7j35QGlrejEofXv20oQxReca+Fq+BZYM/TM1Vk6nk+r2ajIjMlHIJ/bSt6/IjMhEIVNQ3V7N7PjZbj230+nEXFKCZs0aZEP8zhS8T7NuLY0//CGWHTuJ+tQn3Xpup9NJ5fEmMmfHoVBKvmFbcmP6N/Daa68RFRXF+fPnee2113jttdcoLy8nMjKS1157jZdeeomXXnqJ//iP/xj2HEFBQcybN4/du3cPvuZwONi9e/dgInWzJUuWUFVVhcPhGHzt0qVLJCUlDZnwBDJNsIqVUz1U4mo8A63VorTlS4K1roGv5e4vcbX2tNJubRelLR8SpAgiXZvukRKXtaICW22d12c+CcNTRkcTtnAh5hL3l7harnTSYeohR5S2gDEmPTU1NSP6unz58m3P88QTT/Dqq6/ypz/9iYqKCr785S/T1dXF5z7n6j778MMP853vfGfw+C9/+cu0trby9a9/nUuXLvHee+/xwgsv8NWvfnUsfwy/V5yfzOmrHdRdd3Mjs/ItEBINWSvufKzgPTM2wbWT0Hr7n6vRMpqNBCuDSdFMnNYP/mBy5GRM3SY6rO4d+mouKUERGUnY3QvvfLDgNdr1RXQfO0Z/c7Nbz1tVZiI4TEXKtCi3ntdfSbrW9clPfpKf/exnPPvss8yePZtTp06h1+sHH26uq6ujoeEfO5RSU1MxGAwcO3aM/Px8vva1r/H1r3+dp59+Wqo/gqRWT48nWCVn21k3rvYMlrY2unYMCb5jig5Uoa6GkW7idDoxmo1kRWShkInSli8Z2Ennzl1cTqfT1ZBw3TpkKvHz7Us0a9aAXI7ZsMNt53Q6nVSVNZE1Jw6FQpS2YBTP9DzxxBP88Ic/JCwsjCeeuP0cpl/84hcjDuDxxx/n8ccfH/J7Q83AWbRoER988MGIzx/IQoOUrJ6WwLbTDXylwE2liWsnoL0W8u53z/kE9wkKgymFrhLXMvfMQmu3tmPps7Akcolbzie4j0qhGixxzYye6ZZz9p49i62+Hm3RrbtvBWkpIiMJW7IYs76E6E8/5JZzmmotmFt6yZ4vSlsDRpz0nDx5EpvNNvj/hyOTycYflTBixflJfPmNE1xu7iRrDJOqb3FuM4TGQsay8Z9LcL+8TfC3z0BLFcSOP9G91nnNVdoKF6UtX5QdmY3BaKCj1z0lLnOJHkVMDKELFrjlfIJ7aXVFNPzrv2JrakLlhi7gVcebCNGoSMmJHH9wAWLESc+ePXuG/P+CtFZOiycsSMF7Zxr459U54zuZ0+kqneTeCwrRoM4n5ayFoHDXas+KJ8d1KqfTSX1XPZOTJyOX+c/Sd0FBAbNnz77tRolAka5NRyVXYTQbSZYlj+tcTocDs16PtnAdMqX4+fZFmjWraXxWiUWvJ/qznx3XuVylLROT58QjF6WtQeLfhJ8LVilYk5vANnd0Z756DMxXXQ/MCr5JFQJTi9zSqLD8ejk9th7SI3x/ovpEpZQryYjIoKajZtzn6jl1mv6GBrFry4cpNBrCli1zS6PCphoznW1WUdq6yZiSnq6uLr73ve+xePFisrOzycrKuuFL8K7i/GQuNlmobBpnI7NzmyE8AdKGbhkg+Ii8TdBc4eqaPQ6lV0pRK9UkhE7wAYQ+Ljsym3ZrO+a+8Y3QMZeUoIyLI2TuXDdFJniCtqiIntOnsdXXj+s8lcebCI0IIik70j2BBYgxJT2PPvoor732GsuWLePxxx/n61//+g1fgnctnxKLRq0c3+R1hwPOb4Xc+0A0qPNt2atd3bLLb+2KPlIOp4O9V/aSEpbiV6Wtm7W1tfHwww8TFRVFaGgoRUVFVFZWAq7l/bi4OP7+978PHj979mySkpIG//nAgQOo1Wq6u93c9sGN0jRpqBQqrnWOfZem0+HAotej0emQKcTPty8LX7kSmVqNWW8Y8zmcDifVZSay58Yjl4vnbD9qTIXdkpIS3nvvPZYsETs+fIFaqWBtXgLbzlzjm2tyxvYw+ZUPwNIgSlv+QKl2DSE9txkKvgNjuN8nTSdp6W0hOfym50T6uqHlkpsCHYXYKRAUOuq3PfLII1RWVvLOO++g1Wp56qmnWL9+PefPn0elUrF8+XJKS0v52Mc+RltbGxUVFYSEhHDhwgWmTZvG3r17WbBgAaGho7+2tyjkCtI0adQ31eN0Osd0jp6yMvqbm0Vpyw8owsMIX74cc0kJMV/4/JjO0VDdQVdHn5i1NYQxJT1RUVFER4sZHr5kY34ym0/Uc6HRwvQk7ehPcG4zaFNg0l3uD05wv7z74fSb0HQOEke/nVlfoycuJI7o4Jt+jlsuwSsSNKV8bC8kzx7VWwaSnYMHD7L4wxlSb7zxBqmpqWzdupWPf/zjFBQU8PLLLwOwb98+5syZQ2JiIqWlpUybNo3S0lJWrPD9JpyZEZlcvHKR6vZqpsdPH/X7zSUlKJOSCJk9ywPRCe6mXV9E/TefoK+ujqC0tFG/v+p4E+FRahKzIjwQnX8bU9Lzwx/+kGeffZY//elPPv0JaSJZkh1LRIiKbWeujT7pcdjh/Nsw8+Mg999Sx4SSVQDBka5kdZRJj91hZ2ftTu7Luu/WVcHYKa4ExNtip4z6LRUVFSiVShYu/Edn4ZiYGKZOnUpFhet5pxUrVvD1r3+d5uZm9u7dS0FBwWDS84UvfIFDhw7x5JPj2wXnDUlhSagUKkqvlI466XH292M27CBi40Zk4ufbL4SvWIEsJASz3kDsY18c1XsdDidVJ5uZclcCMlHausWIk545c+bc8AuyqqqKhIQEMjIyUN3U2fPEiRPui1AYkSClHF1eItvONPDtdVNHV+IyHoAukyht+RNlkKtrdvlmWP3sqEpcZU1lXO+9zsrUleC46ZtBoaNecfFlM2fOJDo6mr1797J3716ef/55EhMT+clPfsKxY8ew2WyDq0S+TCFXkByWzOu1r/OluV8a1c939/Hj2K9fR7telLb8hTw0lPCCFZhLSkad9Fy71EaPuY+ceWKDwlBGnPTcd999HgxDcIfiWUm8dfwK5+rNzJw0imXN8i0QmQYp8zwXnOB+MzbByf92zeNKGfmOHL1RT0p4CtOjp9PS0uLBAD1r+vTp9Pf3c+TIkcHE5fr161y8eJHc3FzA1Sx12bJlvP3225SXl7N06VJCQ0OxWq28/PLLzJ8/n7CwMCn/GCOWHJbMtc5rnG89T15M3ojfZ95egmrSJIJnuqers+Ad2qIi6r/2daw1NagzM0f8vqoyE5qYYOIzNB6Mzn+NOOl57rnnPBmH4AaLsmKIDgti25lrI0967P1Q8Q7M+fSYHogVJJSx3NU9u3zLiJOefkc/u2p3cV/OEKUtP5OTk8O9997LF7/4RV5++WU0Gg1PP/00KSkp3HvvvYPHFRQU8K1vfYv58+cTHu7qWr58+XLeeOMN/uVf/kWq8EctNjSWyKBIDDWGESc9TpsNy44dRH78Y35/vyea8OXLkYeGYi4pIe4rXxnRexx2B9Unm5m+OEnc72GMqcB75coVrl69OvjPR48e5Rvf+AavvPKK2wITRk+pkKOb4SpxjXiXR81e6L4uZm35I4UScu9xddEe4f0+2nCUNmsbhRmFno3NS/7rv/6LefPmUVxczKJFi3A6nWzfvv2GkvuKFSuw2+0UFBQMvlZQUHDLa75OLpOzbNIyDEbDiH++uz44gr29HY1OzNryN/LgYMJXr8ZSoh/xe65ebKO300bOfFHaGs6Ykp4HH3xwcBRFY2Mja9as4ejRozzzzDP827/9m1sDFEanOD+J+vYeTl1pH9kbyjdDVCYkzfZkWIKn5N0PHXVw9fiIDjfUGkjVpJIbnevhwDyntLR0cARFVFQUf/7zn2lvb6e7uxu9Xk9Ozo3jWGbPno3T6eTHP/7x4Gvf+MY3cDqdFBb6V/K3MnUl17qucablzIiON+tLUKWnEZzrv/d7ItMW6bBWVmKtqhrR8VXHTUTEhRCb6oY5jAFqTEnPuXPnuOsu19bmv/3tb8ycOZNDhw7xxhtv8Prrr7szPmGUFmbGEKdRj2wsRX8fVGxzPRsilkL9U/oSVxft8juPpbDZbeyq3YUuQyeWvv1Uflw+McExGIx3blzn7OvDsnMX2qIicb/9VNjSpcg1mhGNpbD3O7h8qpnsefHift/GmJIem82GWq0GYNeuXdxzzz0ATJs2jYYGN8yAEsZMIZexfkYi751pwOG4wxL45VLobXeNNRD8k1zhGhBbvtXVVfs2DjccxtxnDpjS1kSkkCtYm74Wg9GAw3n7+9156BAOs1k0JPRj8qAgNKtXYy4puWNJ80pFK9bufrJFaeu2xpT05OXl8fvf/579+/ezc+dOdB/Wi69du0ZMTIxbAxRGr3hWMo3mXsrq2m5/YPlmiMmBhJHvBBF8UN4msFyDK0due5jBaCBDm8GUqNH3xBF8hy5Th6nbxCnTqdseZykpISgrC/UUcb/9mbZIR19NDdZLt++UXlVmIioxlJgU/9iNKJUxJT0/+clPePnllykoKOCBBx5g1ixXl8933nlnsOwlSGdeWhSJ2mC2nb7NrB5bL1x4T5S2AkHqQtAk37bE1Wfv4/2699FlitKWv5sTP4f40Hj0xuEfcHVYrVh2vy9KWwEgbNEi5BERty1x9dvs1IjS1oiMOulxOp1kZWVRV1dHS0sLf/zjHwe/99hjj/H73//erQEKoyeXy1g/M4nt5xqxD1fiqn4frGZR2goEcrnrgebzb7u6aw/hYP1BOm2d6DLELh5/J5fJWZe+jp21O7EPc7+7DhzA0dmJtkjcb38nCwpCs3bNbUtcV8630tdrJ1s0JLyjMSU92dnZNDY2EhUVdcP3MjIyiI8XA858QfGsJJotVo7WtA59QPlmiM+F+GneDUzwjLz7obMJag8O+W29UU92ZDaTIyd7OTDBE3SZOlp6WjhhGrr7vXl7CeqcHNTZ2V6OTPAEbVERtro6esvPD/n9yuMmopPDiE4Wpa07GXXSI5fLycnJ4fr1656IR3CTOamRpESGsO3MECUuWw9cLBG9eQLJpPkQkeaaxXWT3v5eSq+UigeYA0h+bD5JYUnoa24tcTl6erDs2SPGTgSQsIULUURFYdHfWuLq77NjPNNCznyx4DASY3qm58c//jH/8i//wrlz59wdj+AmMpmM4vwk9Oca6bfftMujcgf0dYrSViCRySDvPld3bXv/Dd86UH+A7v5uUdoKIDKZjMKMQnbV7aLfceP97ty3H2d3t9i1FUBkSiWadeswl+hvKXHVnruOzSpKWyM1pqTn4Ycf5ujRo8yaNYuQkBCio6Nv+BJ8Q3F+Mte7+jh8+aZVufItrsncsWLpO6DM2OTqrm3cd8PLeqOeadHTyIjIkCYuwSN0GTpae1s52nj0htfNJSWoc6cTlJEhTWCCR2iLirDV19N75sbGlFVlJmJTw4lMCJUoMv8y4tlbHzXQDVXwbTNStKRFh7LtdAPLcuJcL/Z1wSUDLPefmUPCCCXNdnXXPrcZJq8CoNvWzb6r+3gs/zFpYxPcLjcml0nhkzAYDSxOdg1cdXR10VlaSuwIZzUJ/iN0wXwUsbGYt5cQ8uGOaZvVjvFsC/PXZ0gbnB8ZU9Lz2c9+1t1xCB4wUOJ640gdP7p/BiqFHC7pwdYtnucJRDKZa7Xn2Guw4RegDGLf1X309PeI53kCkEwmQ5ep428X/8Z3F34XlUKFpbQUZ2+v2LUVgGQKBdp16zAbDMQ/9SQyuRzj2Rb6+xyitDUKYypvAVRXV/Pd736XBx54AJPJBEBJSQnl5eVuC04Yv+L8ZDp6bByoanG9cG4zJM+B6ExpAxM8I+9+V5fty6WAqyFhXkweqZpUScPyd3a7HccdOl5LQZehw9xn5oOGDwCw6PUEz5xJUKq434FIu76I/sZGek6dAlyztuLTNUTEhUgbmB8ZU9Kzd+9eZs6cyZEjR9i8eTOdnZ0AnD59mueee86tAQrjMz1JQ1ZcGNtON4DVApU7xQPMgSxhhqvLdvlmumxd7K/fH5APMOv1epYuXUpkZCQxMTEUFxdTXV0NwOLFi3nqqaduOL65uRmVSsW+fa7nnaxWK9/+9rdJSUkhLCyMhQsXUlpaOnj866+/TmRkJO+88w65ubmo1Wrq6uo4duwYa9euJTY2loiICFasWMGJEzduG79w4QJLly4lODiY3Nxcdu3ahUwmY+vWrYPHXLlyhU984hNERkYSHR3Nvffei9FoHPW/hylRU8jQZqA36rF3dtK5d594gDmAhcydizIhAfP2Evp6+6k9d12s8ozSmMpbTz/9ND/60Y944okn0Gg0g6+vWrWKX//6124LThg/V4krmf86WIMtpwKV3era5SMEpoES1we/Y09eIVa7lXUZ60b89p7+Hmo6ajwY4NAyIzIJUY7802pXVxdPPPEE+fn5dHZ28uyzz3L//fdz6tQpHnroIf793/+dH//4x4Pdad966y2Sk5NZtmwZAI8//jjnz5/nr3/9K8nJyWzZsgWdTsfZs2cHp7R3d3fzk5/8hD/84Q/ExMQQHx/P5cuX+exnP8uvfvUrnE4nP//5z1m/fj2VlZVoNBrsdjv33XcfaWlpHDlyBIvFwre+9a0bYrfZbBQWFrJo0SL279+PUqnkRz/6ETqdjjNnzhAUFDTifw8Du7jerHiT9pZ5OPv60OpEKTNQyeRytLpCOrZvp2P157D3O8gWW9VHRea80xSzIYSHh3P27FkyMzPRaDScPn2arKwsjEYj06ZNo7e31xOxuoXZbCYiIoKOjg60Wq3U4XjFpSYL617ax7GsPxAnt8Cju6QOSfAk0wX47UL+eU4hrSoVb6x/Y8jDbDYbzc3NxMXFoVKpADh//Tyf3PZJb0YLwFvFb5Ebkzvm97e0tBAXF8fZs2dJSEggOTmZ999/fzDJWbx4McuXL+fHP/4xdXV1g13lk5OTB8+xZs0a7rrrLl544QVef/11Pve5z3Hq1KnBMTtDcTgcREZG8uabb1JcXIxer2fjxo1cuXKFxMREwDWUee3atWzZsoX77ruP//mf/+FHP/oRFRUVg0lZX18fkZGRbN26lXXrbk1Sh7pXA6raqrj/nfv58/vTiLIqyfjrX8b871Hwfd0nT1L7wINUfub32FRh/L8n50sdkl8Z00pPZGQkDQ0NZGbe+FzIyZMnSUlJcUtggvtMSdAwJx6iru2Dwh9KHY7gafHTMMdP52D7Bb65YHS79DIjMnmr+C0PBXb7645GZWUlzz77LEeOHKGlpWXweZu6ujpmzJjBunXreOONN1i2bBk1NTUcPnyYl19+GYCzZ89it9uZctMgTqvVesPA5KCgIPLz8284pqmpie9+97uUlpZiMpmw2+10d3dTV1cHwMWLF0lNTR1MeIBb5hGePn2aqqqqG1bJAXp7ewdLdKORHZXNDHUmquPlaJ96etTvF/xLyOzZOCdlcPWKjSUfF6Wt0RpT0vOpT32Kp556iv/93/9FJpPhcDg4ePAg3/72t3n44YfdHaPgBl9OvIS8w07vlI0ESx2M4HF70mfT33yAdSnLR/W+EGXIuFZcvGXjxo2kp6fz6quvkpycjMPhYMaMGfT19QHw0EMP8bWvfY1f/epXvPnmm8ycOZOZM2cC0NnZiUKhoKysDIVCccN5w8PDB/9/SEjILcMbP/vZz3L9+nV++ctfkp6ejlqtZtGiRYPXHYnOzk7mzZvHG2/cugIXFxc34vN81CeaMpDZKwlaXTCm9wv+QyaTYVn0MZwmyJol+uKN1piSnhdeeIGvfvWrpKamYrfbyc3NxW638+CDD/Ld737X3TEKbrC0dx/HnFNpa1Cii7nz8YJ/08t6mGO1klB/CiLSpQ7Hra5fv87Fixd59dVXB8tXBw4cuOGYe++9l8ceewy9Xs+bb755w4exOXPmYLfbMZlMg+8fqYMHD/Lb3/6W9evXA64HkltaWga/P3XqVK5cuUJTUxMJCa5P4ceOHbvhHHPnzuWtt94iPj7ebSX23FNtnEuFhv5LrCHNLecUfFdjyFQiOs4jvxQKsYulDsevjGn3VlBQEK+++irV1dVs27aN//mf/+HChQv893//9y2fnAQf0N1K6NV9lIWt4N0zDVJHI3hYe287H7ScoVAeOeQsLn8XFRVFTEwMr7zyClVVVbz//vs88cQTNxwTFhbGfffdx/e+9z0qKip44IEHBr83ZcoUHnroIR5++GE2b95MTU0NR48e5cUXX+S999677bVzcnL47//+byoqKjhy5AgPPfQQISH/eAB77dq1TJ48mc9+9rOcOXOGgwcPDn4QHFg1euihh4iNjeXee+9l//791NTUUFpayte+9jWuXr066n8f/W1tOI6d4vK8JPTGW2dxCYGlt9PGtas2km2XMZeI+z1aY+7TA5CWlkZRUREf//jHB3c8CD6o4l1wOgiZvYn3K0x09/Xf+T2C33r/yvs4cLAu+15X921rp9QhuZVcLuevf/0rZWVlzJgxg29+85v89Kc/veW4hx56iNOnT7Ns2TLS0m5c/fiv//ovHn74Yb71rW8xdepU7rvvPo4dO3bLcTd77bXXaGtrY+7cuXzmM5/ha1/7GvHx/9g9o1Ao2Lp1K52dnSxYsIBHH32UZ555BoDgYFdhOTQ0lH379pGWlsamTZuYPn06X/jCF+jt7R3Tyo9l1y5wOIjfcC/7ru6j29Y96nMI/uPyqWacTifZdyVj2bEDp80mdUh+ZUy7t8D1w//SSy9RWVkJuD4BfeMb3+DRRx91a4DuNhF3b/Hn+8DRT93Gv7H8p3v41QNz2Dgr+Y5vE/zTYzsew+6089qC78J/zoaP/RFm/L9bjrvdjiDBfQ4ePMjSpUupqqpi8uTJYzrH7e5V3ec/j9PhRP6rf2P95vX8dPlP0WUGXm8mweWdX57E4XCi04VQc/8mUl99hfBRlmknsjGt9Dz77LN8/etfZ+PGjfzv//4v//u//8vGjRv55je/ybPPPuvuGIXx6GqBmn0wYxNpMaHkT4pg25lrUkcleMjAAMrCjEJX1+3kuQFZ4vJlW7ZsYefOnRiNRnbt2sVjjz3GkiVLxpzw3E7/9et0fXAErU5HqiaVvJg8UeIKYD2WPq5ebCd7XgLqadMIysjAvL1E6rD8ypiSnt/97ne8+uqrvPjii9xzzz3cc889vPjii7zyyiv89re/dXeMwnicf9v1v9PvAaA4P4k9F5vptIoSVyDaVevqwbQmfY3rhRmbXF24e80SRjWxWCwWvvrVrzJt2jQeeeQRFixYwNtvv+2Za+3YATIZmkJXbx9dho79V/fT2RdYJU3BpfpkMwCT58Qhk8nQFOmw7NqFcxS7Bye6MSU9NpuN+fNvbYg0b948+vvFX6Y+pXwLZC6HsFgANuQn09fvYNf5JokDEzzBYDRwV+JdRAd/uJU19z6wW+Gi+DToLQ8//DCXLl2it7eXq1ev8vrrr9/Q/8edzCV6wu6+G2VUFACFGYX0OfoovVrqkesJ0qo63sSkqZGEaFxdu7VFRTgsFjoPHpQ4Mv8xpqTnM5/5DL/73e9uef2VV17hoYceGndQgptYmsB4wPVp/0MpkSHMTYsUJa4A1NLTwvGm4zc+zxGZCpPugnJR4go0NpOJ7mPH0K7/x6ytpPAkZsXNwlBjkDAywRO6OqzUV7aTPf8fDQmDp0whKHsy5hLxoWakRtyn56NbQmUyGX/4wx/YsWMHd999NwBHjhyhrq5ONCf0JeffBrkCphXf8HJxfjIvllTQ0WMjIkQ8wBoodhh3IEfO6rTVN35jxibY8T3oaYOQKGmCE9zOYtgBCgWa1Tfe78KMQn5R9gvMfWa0QRNks8YEUH2iGblMRtbsGxtYaouKaP3jf+GwWpGr1RJF5z9GvNJz8uTJwa+zZ88yb9484uLiqK6uprq6mtjYWObOnUt5ebkn4xVGo3wzZK2E0Bu7dq6fmUS/w8mO8kaJAhM8wWA0cHfy3USoI278Ru594OiHC9sliUvwDHNJCWFLFqOIjLzh9XXp67A77Lxf9740gQkeUVXWRGpuNMFhN35Q1RYV4ejqomv/foki8y8jXunZs2ePJ+MQ3K2jHuoOw323liETI4JZkB7Ne2cb+Pj8VAmCE9ytqauJE6YT/GjJj279pjYJ0he7kuA5ovwcCGyNjfScOEHSj1+85XsJYQnMiZ+D3qjnvuz7vB+c4Hadbb00VHWw+rPTb/meOisL9dSpmLeXoFmzRoLo/Mu4mhMKPuz826AIgmkbhvx28awkDlS20NYlnvoPBDtqd6CSq1iVtmroA/Luh8ul0N3q1bgEzzDr9chUqltKWwN0mTqOXDtCe2+7dwMTPKL6RDNypYzM2UPPZtMWFWEpLcXR0+PlyPzPmJKe3t5efvrTn7J+/Xrmz5/P3Llzb/gSfED5ZsheA8ERQ367aEYSDqcTgyhxBQS9Uc+SlCVogjRDH5B7LzgdUPGOdwMTPMJcUkLYsmUoNEPf77Xpa3HgYHfdbi9HJnhC5fEm0nJjUIcMXZzRFulwdnfTuXevlyPzP2NKer7whS/w7//+76Snp1NcXMy99957w5cgsfY6uHrM9el+GHEaNXdnxbBNzOLye9c6r3Gm+YyrIeFwwuMhY2lANCosKCjgG9/4xrDfl8lkbN26dcTnKy0tRSaT0d7ePu7YvKHvaj29p8+gLSoa9pjYkFgWJCwQjQoDgPl6D001ZnLmxw97TFB6OsG5uWIW1wiMacr6tm3b2L59O0uWLHF3PII7lG8BZTBMHf6XIrh2cX1361laOq3Ehoun/v3VDuMO1Ao1K1NX3v7AvE3w3hPQaXIlQQGqoaGBqKjA3aVmMeiRqdWEr7z9/V6XsY7njzzP9Z7rxIR4pk+Q4HlVZSYUKjkZ+bG3PU67vojmX/8GR1cX8rAwL0Xnf8a00pOSkoJmmGVVwQeUb4GctaC+/T3SzUhEJpNRck6UuPyZ3qhnWcoywlR3+EU3/R5AFvAlrsTERNQBvHXXvL2E8BUrUITf/n6vTV+LDNlgl27BP1WXmUifEUNQ8O3XKDS6Ipy9vVj2lHonMD81pqTn5z//OU899RS1tbXujkcYr9bLcO2k61P9HUSHBbF4cgzviUaFfuuK+Qrl18spzLxNaWtAWAxkFcC5LR6Py9McDgdPPvkk0dHRJCYm8v3vf3/wezeXtw4dOsTs2bMJDg5m/vz5bN26FZlMxqlTp244Z1lZGfPnzyc0NJTFixdz8eJF7/xhRqHv6lV6y8vRFt15oGhUcBQLkxaKEpcf62juxlRrIXvenVdmgyalEDwrXzQqvIMxlbfmz59Pb28vWVlZhIaG3jL1t7VV7BCRTPkWUIXClBH8JQhszE/mqc1nMJl7idcGezg4wd0MtQZClCEsT1k+sjfM2ARvPw7mBgi5dbnc0dOD9fJlN0d5Z+qsLOQhISM+/k9/+hNPPPEER44c4fDhwzzyyCMsWbKEtWvX3nCc2Wxm48aNrF+/njfffJPa2tphnwd65pln+PnPf05cXBxf+tKX+PznP89BH2vvb3l/D7KQEMJXrBjR8boMHc8deo7m7mbiQofe+SP4rqoyE8ogORkzb1/aGqDVFdH8i19g7+xEER7u4ej805iSngceeID6+npeeOEFEhISkMlk7o5LGKvyLa6EJ2hkNd3CvESe2XqW7WcbeGRJpoeDE9zNYDSwfNJyQlWhI3vDtA3w7jdcLQ3mfeGWb1svX8b4/z7m3iBHIOP//k5IXt6Ij8/Pz+e5554DICcnh1//+tfs3r37lqTnzTffRCaT8eqrrxIcHExubi719fV88YtfvOWczz//PCs+TCaefvppNmzYQG9vL8HBvvNhoHPPHjQrC5CHjux+r0pbxb998G/sqN3BQ9NFjyZ/U3ncRMbMWFRqxYiO1+oKMf3kJ3Tu3k2E2FQ0pDElPYcOHeLw4cPMmjXL3fEI49FSBY1nYfmTI35LRKiKZTlxbDsjkh5/Y+wwcqH1Av+U/08jf1NIFExe5WppMETSo87KIuP//u7GKEdGnZU1quPz8/Nv+OekpCRMJtMtx128eJH8/PwbEpe77rrrjudMSkoCwGQykZaWNqrYPMVusdBXVUX8Z0c+6idCHcGipEUYjAaR9PiZtsYurl/tZMGGjBG/R5WURMjcuZi3l4ikZxhjSnqmTZtGj2iC5HvKN0NQuOsh5lEozk/iib+d5lp7D8mRIy8xCNLSG/WEKkNZmrJ0dG+csQm2/BOYrwE3lqblISGjWnGRys0ldZlMhsPhcNs5B1avx3tOd7LV17tKW8uWjep9ukwdzxx4hsauRhLDEj0UneBuVWUmVGoF6Xmj23mnLSqi6d//HXtHB4qIofu0TWRjepD5xz/+Md/61rcoLS3l+vXrmM3mG74EiZzb7Nqmrhpd4rImN4EghZztZ0XPHn9iMBooSC0gWDnK8svU9aBQw8XAf8B16tSpnD17FqvVOvjasWPHJIxo7Gz19YQtXYp8lOW2lakrUclVGIxi8ro/qSozkTkrFmXQyEpbAzTr1kF/P5ZdojHlUMaU9Oh0Og4fPszq1auJj48nKiqKqKgoIiMjA7o/hk8zVUBzxYh2bd1MG6xixdQ40ajQj1S1VVHVXoUu4867eG4RrHWtBl4M/AGkDz74IA6Hg8cee4yKigoMBgM/+9nPAPzqWcT+1lbsZjOaVcOMGbkNTZCGpSlLRdLjR65f66T1WteIdm3dTJUQT+j8+WIX1zDGVN4Sw0d9UPkWUEdA9tCzeO6kOD+Jr//1FFdau0mNHuFDsYJkDLUGNCoNS1LG2CA0737Y9i9g7QQCd1ePVqvl3Xff5ctf/jKzZ89m5syZPPvsszz44IM+9YDynfQZjchUKkLvWjCm9+sydDy1/ynqO+tJCU9xc3SCu1WVmQgKUZKWO7amktr1RTT+6Hn629pQioWIG4wp6Vkxwu2Sgpc4na7S1rQNoBxbU7Y10xMIVsl572wDX1ox2c0BCu7kdDrR1+hZmbaSIEXQ2E4yRQfK77lGlkzyrwfYS0tLb3nto315nE7nDd9bvHgxp0+fHvznN954A5VKNfiAckFBwS3vmT179i2vScXpdGKtqUGVlIQ8aGz3uyC1ALVCjcFo4PMzPu/mCAV3cjqdVB03kTUrFoVqbDPBNevW0fjDH2HZuZOoT3zCzRH6tzFPWd+/fz+f/vSnWbx4MfX19QD893//NwcOHHBbcMIINZ2D65W3nbV1J2FqJaumxbNNNCr0eZfaLmE0G28/a+tO1OGQtQLaA7/B6J///GcOHDhATU0NW7du5amnnuITn/gEIaPoCyQl+/XrODo6UKWMfYUmVBXK8knL0dcE/nNc/u56fSftTd1kz08Y8zmUMTGELrxLlLiGMKak5//+7/8oLCwkJCSEEydODD4k2NHRwQsvvODWAIURKN8CwZGubrvjUJyfzLl6M8aWLreEJXiGwWhAG6RlUdKi8Z1o6nroaYPuNvcE5qMaGxv59Kc/zfTp0/nmN7/Jxz/+cV555RWpwxoxa2UlsiA1yvjxzUsrzCikorWCOnOdmyITPKHyuAl1qJJJ08ZXltIWFdF95Cj9LS1uiiwwjCnp+dGPfsTvf/97Xn311Ru2eS5ZsoQTJ064LThhBAZKW9M3gnKMpY4PrZwaT2iQQqz2+DCn04neqGdN+hpUCtWd33A7mStAroTWSvcE56OefPJJjEYjvb291NTU8NJLLxE6wuZ+UnM6nVgrqwjKSEcmH/PCPADLJy0nRBkixlL4MKfTSVWZiaw5cSiU47vfmrVrQS7HvGOHm6ILDGP6t3rx4kWWL7+17X1ERATt7e3jjUkYjYZT0Fbj6r0yTiFBClZPTxC7uHzY+dbzXLFcGV9pa0BQKESkuJpaCj6p39SM3dxBUEbGuM8VogyhYFKBSHp8WHOdBXNzDznzxl7aGqCMiiJs0SIsJeJ+f9SYkp7ExESqqm79RXngwAGyRtlZVRinc5shNAYyRjh76Q6K85O40GihytTplvMJ7mWoMRCljuKuxKG7Co9aRDp0t0CXWAL3RdaqSuQhIaiSk91yvsLMQirbKrnc7v35asKdVR03ERyuImVqpFvOp9Xp6D5+HFvTrd3KJ6oxJT1f/OIX+frXv86RI0eQyWRcu3aNN954g29/+9t8+ctfdneMwnCcTijfCtPvAcWYNuLdYsWUODRqpShx+SCn04nBaGBN+hqUcvfcb7RJIFe7+jwJPsXpdNJXVUXQ5MnjLm0NWJqylDBVmOjZ44MGSluT58QhV7jnfmvWrAalEotB3O8BY/o3+/TTT/Pggw+yevVqOjs7Wb58OY8++ij/9E//xD//8z+7O0ZhOPVl0FHnltLWgGCVgrW5rhKXr2zZFVzOtpzlWte1sTUkHI5cATGZrsaW4n77lP6mJuwWC+rsHLedU61QszJ1JXqjXvx8+5gmoxlLa++4dm3dTBERQfiSJWIX10eMKemRyWQ888wztLa2cu7cOT744AOam5v54Q9/6O74hNs5txnC4iF9jA3qhrEhP4kqUycXmyxuPa8wPnqjnpjgGOYlzHPviWNyoPs6dDW797zCuFgrK5GHhqJKTnLreXUZOi53XKayPbAfYPc3VcdNhGqDSM6JdOt5teuL6Dl5EluDeFYTRtmc8POfH1lTqz/+8Y+jCuI3v/kNP/3pT2lsbGTWrFn86le/GnYS8kf99a9/5YEHHuDee++9oTnZhOBwuLaq597r+rTuRsty4tAGK9l2uoFpiVq3nlsYG4fTgcFoYG36WhRuvt9EpoEy2FXiCh/ftmjBPZxOJ9aqatSTs12lLbvdbedenLwYTZAGfY2eKVFT3HZeYeycjg9LW3PjkcvdOx4lfNUqZEFBmPUGYj73iFvP7Y9GtdLz+uuvs2fPHtrb22lraxv2azTeeustnnjiCZ577jlOnDjBrFmzKCwsxGS6/YNXRqORb3/72ywb5cThgHH1KFiuubW0NSBIKacwL5H3zooSl6843XwaU7cJXaYbS1sD5AqIneI3Ja6CggK+8Y1vDPt9mUw2qg9BpaWlyGQyn9p52t/QgKOrE3VOttvPrVKoWJ22GoPRIH6+fUTD5Q662q1jmrV1J4rwcMKWLxMlrg+NKun58pe/TEdHBzU1NaxcuZLXXnuNLVu23PI1Gr/4xS/44he/yOc+9zlyc3P5/e9/T2ho6G1Xi+x2Ow899BA/+MEP7rhbzGq1BuYU+HObQZMMqXd75PTFs5Kpaemi/FqA/Pvyc/oaPfGh8cyJn+OZC8RPdzUq7GzyzPm9qKGhgaKiIqnDGBdrZRXysHCUSe4tbQ3QZeios9RxofWCR84vjE5VmYmwSDVJkyM8cn5tURG9Z87Qd/WqR87vT0aV9PzmN7+hoaGBJ598knfffZfU1FQ+8YlPYDCM7RNDX18fZWVlrFmz5h8ByeWsWbOGw4cPD/u+f/u3fyM+Pp4vfOELd7zGiy++SERExOBXamrqqOP0OQ47nN8KefeBm3Z13Gzx5BiiQlWiZ48PsDvs7Kjdwbr0dchlnrnfRKaDMiQgdnElJiaiVo9tBp072Wy2Mb3P6XBgra5CnT3ZY5Pg70q6i0h1pOjZ4wMcDifVZSay58Yjc3Npa4CmoABZcDAWvbjfo/4NqlareeCBB9i5cyfnz58nLy+Pr3zlK2RkZNDZObreLi0tLdjtdhISbnxaPSEhgcbGxiHfc+DAAV577TVeffXVEV3jO9/5Dh0dHYNfV65cGVWMPqn2kOsT+Thmbd2JSiFHNyOJbWeuiSVwiZ0wnaClp8U9DQmHI1dA3FS/KXE5HA6efPJJoqOjSUxM5Pvf//7g924ubx06dIjZs2cTHBzM/Pnz2bp1KzKZjFOnTt1wzrKyMubPn09oaCiLFy/m4sWLN3z/7bffZu7cuQQHB5OVlcUPfvAD+vv7b7ju7373O+655x7CwsJ4/vnnx/Rns11rwNHdjTrHfbu2bqaSixKXr2iobKfb3Ef2fM89TycPCyN8xQrM20WJa1zNPuRyOTKZDKfTid2ND9oNx2Kx8JnPfIZXX32V2NjYEb1HrVb7xKc+tyrfAhGpMGmBRy9TnJ/EX47WcfpqB7NTIz16LWF4BqOBpLAkZsXN8uyF4qdju3KG9ooaCI/z7LVuEpkYiipo5A9o/+lPf+KJJ57gyJEjHD58mEceeYQlS5awdu3aG44zm81s3LiR9evX8+abb1JbWzvs80DPPPMMP//5z4mLi+NLX/oSn//85zl48CDgGrD88MMP85//+Z8sW7aM6upqHnvsMQCee+65wXN8//vf58c//jH/8R//gVI5tl+v1qpKFBoNygT3bV0eii5Tx/9V/h/nWs4xM26mR68lDK+qzER4tJqETM9uGtEWFVH/jW/QV1tLUHq6R6/ly0b9U2m1Wtm8eTN//OMfOXDgAMXFxfz6179Gp9MhH2WpJTY2FoVCQVPTjc8RNDU1kZiYeMvx1dXVGI1GNm7cOPiaw+Fw/UGUSi5evMjkyZNH+0fyL/Z+OP82zH4APLT0PWBhZjSx4UFsO31NJD0S6Xf0s7N2J/dMvsdjpY5BkWm0d0fxt/80AkbPXusmn/jXBcSlaUZ8fH5+/mCykZOTw69//Wt27959S9Lz5ptvIpPJePXVVwkODiY3N5f6+nq++MUv3nLO559/nhUrVgCuXmQbNmygt7eX4OBgfvCDH/D000/z2c9+FoCsrCx++MMf8uSTT96Q9Dz44IN87nOfG/Wff4DT4aCvuhr1tGkev9/zE+YTHRyN3qgXSY9EHHYH1SdNTL07yeP3O3zFcmShoZhLSoj90pc8ei1fNqqk5ytf+Qp//etfSU1N5fOf/zx/+ctfRrziMpSgoCDmzZvH7t27ue+++wBXErN7924ef/zxW46fNm0aZ8+eveG17373u1gsFn75y18GxvM6d2Lc7xobkOf+XVs3UyrkFM1IYvvZBv51/XS3b6UU7uxY4zFae1vd25BwODI5kZMz+ERxDcz8uMeT6o+KTBzdAND8/Pwb/jkpKWnIHZ8XL14kPz+f4ODgwdeGa4fx0XMmffgAsclkIi0tjdOnT3Pw4MEbSlZ2u53e3l66u7sHB5jOnz9/VH+Om9muXsXR0+PWhoTDUcqVrE1fi8Fo4Fvzv+W558WEYdVfaqfHYiPHg6WtAfKQEDQrV2Iu0YukZ6R+//vfk5aWRlZWFnv37mXv3r1DHrd58+YRn/OJJ57gs5/9LPPnz+euu+7iP/7jP+jq6hr8tPTwww+TkpLCiy++SHBwMDNmzLjh/ZGRkQC3vB6wyjdDVAYke2gXz02K85P47w9qOXmljXnp0V65pvAPBqOBSeGTyI3J9cr1VCnTiGsug0gzREzyyjXHQqW6ccK8TCYbXPV1xzkHPnUPnLOzs5Mf/OAHbNp064eNjyZUYWFh44rBWlWFQhuBMt475UVdho63Lr7FmeYzzI6f7ZVrCv9QdbwJbWzwqFY5x0NbpOPq4/+M9fJl1BN0Tuaokp6HH37Y7Utwn/zkJ2lububZZ5+lsbGR2bNno9frBx9urqurG3XZLGDZbVDxLsx7xGufwhdkRJOgVfPu6QaR9HiZzWFjV90uPpbzMc+XtgZEpEKQxrWLy4eTnpGaOnUq//M//4PVah18tu/YsWOjPs/cuXO5ePEi2dnu75szwGm301d9meAZeV6733MT5hIXEofeqBdJj5fZ7Q6qTzWTtzTFa/c7bNky5OHhmLeXEPf4V71yTV8zqqTn9ddf90gQjz/++JDlLHA1DrsdT8Xkky7vdfVS8UJpa4BcLmP9zCTeO9PA94pzUYgSl9ccaThCh7XDMw0JhyOTQdw01y6u7NXg5yWPBx98kGeeeYbHHnuMp59+mrq6On72s58BjOovmmeffZbi4mLS0tL42Mc+hlwu5/Tp05w7d44f/ehHbonVdvUqDmuvR3dt3Uwuk7MuYx07jDv4l/n/4v5u38Kwrl5ow9rV79FdWzeTq9VoVq9yPdfz1a9478OUD/Hv32gTTflmiMmGRO8+dFicn4TJYuWYsdWr153o9DV6MrQZTI2a6t0Lx0+Hvk7o8P9GZlqtlnfffZdTp04xe/ZsnnnmGZ599lngxrLUnRQWFrJt2zZ27NjBggULuPvuu3nppZdId+MuGGtlJYrISBQxMW4750joMnQ09zRzwnTCq9ed6KqONxGZEErspHCvXldTVERfdTXWyok5e21cW9YFL+q3QsU2WPiYVx8wBZiTGkVyRDDvnWng7izv/kKeqPrsfbxf9z4PTH/A+5/GtMmgjnCVuCLTvHvtERhq9fejfXlu7juzePFiTp8+PfjPb7zxBiqVirQ015+toKDglvfMnj37ltcKCwspLBy+V9J4+t047Xasl2sImZXv9fudH5dPYlgiBqOBBYmebYMhuNhtDi6faiF/5SSv3+/wxYuRa7WYS0oInjLxZq+JlR5/Ub0HrB1eLW0NkMtlbMhPouRcA/328T0sKozM4WuHsdgs3tm1dTOZDOKnQfMF12BbP/fnP/+ZAwcOUFNTw9atW3nqqaf4xCc+QUhIiNShDeqrq8PZZ0XtwWeGhiOXySlML2Rn7U76Hf13foMwblcqWunr6ffIrK07kQUFoVmzBsv2kgnZmFIkPf6ifLPrWYsE7+ziuVlxfjItnX0cqRElLm/QG/VMjphMTpT3nu+4Qdw0sHVDe60013ejxsZGPv3pTzN9+nS++c1v8vGPf5xXXnlF6rBuYK2sQhkdjdLLpa0Bukwdrb2tHG86Lsn1J5rKsiaiksKISfFuaWuAtqiIvtparBX+P3ZmtETS4w9svXBhuySrPAPyJ0WQFh3KtjPXJIthorDarey5sofCTA+OnbgTTRIER7oeaPZzTz75JEajkd7eXmpqanjppZcG++r4Amd/P301lwmSYJVnQF5MHinhKehrxGwmT+u32ak53eKV3jzDCbt7IYrISMwlE+9+i6THH1TthD6LR2dt3YlMNlDiasQmSlwedeDqAbpsXZ6dtXUnMpnrgebmS64Bt4LH9NXW4rTZvLpr62YymYzCjEJ21e3C5hjboFRhZOrOtWLrtUtS2hogU6nQrF2LuWTilbhE0uMPyrdAwgyIk/ahsw0zk2jvtnGwqkXSOAKdwWhgStQUsiK80zxs2F96cdOhvwfa/L/E5cusVVUoY2NRRkUNe4w3/mLSZejosHZwpOGIx681kVWVNRGTEk5U4vgaWY6Xdn0RtqtX6T13TtI4vE3s3vJ1fd1wUQ/LnpA6EvKStWTGhvHemQYKpkr3KSWQ9fT3UHq1lC/OvHU2lLspFApkMhkWiwWNRnPrLhJ1FIQkQNNF0E6AES8ScNpsdF+tJ2TWLGy2W1dYBoY5m81mZDLZmIeYjsS06Gmka9PR1+hZmrLUY9eZyGx9dmrOXmeeTvqBn6ELFqCIicG8vYSQmRNn9ppIenxdpQFsXZKWtgbIZDKK85P40yEjz98/kyClWCh0t31X99HT3+OV0pZcLic6OprW1lZaWoZZvVMmw5WLoJ0BonGd2/XV19Pd24NGq6GruXnY44KCgoiJifHo9uaBEtdfKv6CzW5DpVDd+U3CqNSevU6/VdrS1gCZUom2cB1mvZ74J/9lwjQqFEmPrzu3GZJmQYxvTI8vzk/mV+9Xsb+ymdXTE6QOJ+AYjAamR08nTeud/jhqtZqEhATs9uGe20mFHV+GtGmQvcorMU0k1375n6gbGkh87LFhj5HL5cjlcq/8paTL0PHKmVc4dO0QK1JXePx6E03V8Sbi0jRExvvGg/QanY62N/9Cz6lThM7xzjxHqYmkx5dZO6FyBxR8R+pIBk1N1JATH862Mw0i6XGzbls3+67u4yuzv+LV6w78pTqk5DzQxsP5v8N0CR+sDkD2zi569HrivvbPtwxQlUp2ZDZZEVnojXqR9LhZX28/xnPXuas4U+pQBoXOm4cyLg5zScmESXpEfcKXXdJDf69PlLY+akN+EjvPN9FrE7t63Kn0SilWu1XaXVtDydsEF7eDrUfqSAJK5549OK1WNIUSNKAchkwmQ5ehY8+VPVjtVqnDCSjGsy3YbQ6fKG0NkCkUaHQ6LHoDzgBoRDoSIunxZec2Q8p8iJL+obePKs5PptPaT+nF4Z9BEEZPb9STH5tPSniK1KHcaMYm1yyuql1SRxJQzCUlBM/KJ2iSb93vwsxCumxdHLh6QOpQAkrVcRMJmVq0sb7TCRxcjQr7TSZ6TkyM2Wsi6fFVvR2u/jw+tsoDkB0fzrREDe+dbZA6lIBh6bNwoP4A6zLWSR3KrWJzIGGmKwkX3MJusdC1fz/aoiKpQ7lFVkQWU6KmoDdOvMZ1nmLt6ae2/LpPrfIMCJk9C2ViIubtJVKH4hUi6fFVF0vA3gd590kdyZA2zkpmd0UTPX2ixOUOpVdKsTlsvlfaGjDjfle5ta9L6kgCgmX3bpw2G1qd75S2PkqXoWPv1b309IuSpjsYTzfj6Hcyea7vJT0yuRytTod5xw6cw25oCBwi6fFV5zZD6t0QMUnqSIZUnJ9Ed5+d9y+YpA4lIOiNeubEzyExLFHqUIaWd79rFtclg9SRBARzSQkhc+eiSvTN+12YUUhPfw/7ru6TOpSAUFlmImlyBJroYKlDGZJ2fRH2lha6jx2TOhSPE0mPL+ppg+r3Xc9S+Kj0mDBmpkSIWVxu0GHt4NC1Q767ygMQnQVJs12Db4Vxsbe303XwkE+WtgakadOYHj0dg1EkuePV22XjyvlWsiWctXUnwTNnokpJmRCzuETS44sqtoGjH6bfI3Ukt7UhP4n3L5jotPZLHYpfe7/ufewOO2vT10odyu3N2ASVO8FqkToSv2bZvRvsdjSFPvj81kfoMnXsu7qPLpsoaY7H5VPNOBxOJs/x3aRHJpOhLdJh2bEDZ39g/z4XSY8vKt8C6UtAmyR1JLe1YWYS1n4HuyuapA7FrxmMBuYlzCM+1Hd/KQKuEld/r2ssijBm5u0lhC5YgCret+93YUYhVruV0iulUofi16rLTCRnRxIWqZY6lNvSFBVhb2uj64PAnr0mkh5f03UdLpe6Hhz1canRocxOjWTbGbGLa6zaetv4oOEDdBm++UDrDSLTYNICUeIah/7WVro++ABtke/f75TwFPJj88UurnHo6ezjyoU2cny4tDUgODcXVXoa5pLtUofiUSLp8TUV7wBOmH6v1JGMSHF+EnsvNmPuvXVYonBnu+p24cTJmvQ1UocyMnmbXP16etqljsQvWXbsBKcTzTrfLm0NKMwo5GD9QSx9oqQ5FpdPNoPTSZYPl7YGuEpcRVh27cbZ1yd1OB4jkh5fU74ZMpZBeJzUkYzIhvwk+uwOdpaLEtdYGGoMLEhcQExIjNShjEzuva5WChcD+9Ogp5j1esLuXogyxj/u97qMddgcNvZc2SN1KH6p8riJlKlRhGqDpA5lRLRFRTg6Oug6fFjqUDxGJD2+pNMExgM+vWvrZkkRISzIiBK7uMagpaeFY03H/KO0NSAiBdIWiUaFY9Df0kL30aNofHjX1s0SwxKZEz8HfY0ocY1Wt7mPa5fafLIh4XDUU6YQlJUV0I0KRdLjS86/DTK5z+/autmGmUnsr2yhvTtwl0Q9YVftLuTIWZPmJ6WtAXmb4PIe6G6VOhK/YjYYQC5Hs8a/7ndhRiGHrx2mw9ohdSh+pfqECZlM5tO7tm42WOLavRuHNTBnr4mkx5eUb4GsAgiNljqSUVk/Mwm704mhvFHqUPyK3qhnYfJCIoMjpQ5ldHLvBacDLmyTOhK/Yi4pIWzRIpRRUVKHMirr0tdhd9rZXbdb6lD8SlWZiUnTowgOV0kdyqhoi3Q4OjvpOnhQ6lA8QiQ9vsLcALWHfHLW1p3Ea4NZmBktdnGNgqnbxImmExSm+3BDwuFoElwtFUSJa8RsTU30lJ3w6YaEw4kLjWN+4nzRqHAUutqtXKtq96vS1gB1djbqnJyALXGJpMdXnH8b5EqYtkHqSMakOD+ZQ9XXud4ZmEui7razdicKuYJVaaukDmVs8u6Hmn3Q1SJ1JH7BYjCAUolmzWqpQxkTXYaOIw1HaO0VJc2RqDphQi6XkTnLPzak3Ey7vojO99/H0dsrdShuJ5IeX1G+GbJXQ4h/LX0PKJrhmiGkFyWuEdHX6FmSvIQIdYTUoYxN7octFc6/LW0cfsK8vYTwJUtQaLVShzIma9LX4MTJrtpdUofiF6qOm0jLjSY4zL9KWwO0RUU4urvp3Bt4s9dE0uMLOq7ClSN+WdoaEBOuZvHkGLadFiWuO2nsauRU8ynfnrV1J2GxkLnc9RyacFu2a9foOXUK7Xr/K20NiA6O5q7Eu0SJawQsrb00Xu4ge36C1KGMWVBGBurc6Zj1gVfiEkmPLyjfAgo1TF0vdSTjsmFmEkdqrmOyBN6SqDsZjAaC5EGsTF0pdSjjM2OTq8WCRazu3Y5Zb0AWFET4Kj8tZX5Il6HjeNNxWnpESfN2qspMKJRyMvNjpQ5lXLS6IjpL9+Lo7pY6FLcSSY8vKN8COWsh2D+XvgfoZiQil8koOSv+Erwdg9HA0pSlhAeFSx3K+EwrBrkCzr8jdSQ+zVxSQviK5SjC/ft+r0lfgxw5O4w7pA7Fp1WVmUjLiyYoRCl1KOOiLdLh7Omhs7RU6lDcSiQ9UmszQn2ZX5e2BkSGBrE0J5b3xC6uYV21XOVsy1l0mX7UkHA4odEweZWYxXUbfVeu0Hv2LBqd/9/vCHUEdyffLUpct2Fu6cFkNJPjx6WtAUGpqQTPnIm5JLBKXCLpkVr5FlCGwBT//6UIrl1cx2pbaewQJa6hGIwGghXBrJi0QupQ3CPvfqg7DB31Ukfik8wlemTBwWgKCqQOxS10GTpOmk7S1CXGzgylqsyEUiUnfaZ/jBm5E21REZ1792Hv7JI6FLcRSY/Uzm2GKetA7d9L3wPW5iagkst576xY7RmKwWhg2aRlhKpCpQ7FPaZtAEUQnN8qdSQ+yawvIbygAHlYmNShuMXKtJUo5Up21IoS11AqjzeRPjOGoGD/Lm0N0OoKcfb10bnnfalDcRuR9EjpejU0nnG19Q8QESEqlk+JFbO4hlBrrqWitcK/Zm3dSXAEZK8RjQqH0Gc0Yj1f4ZcNCYejDdKyJHkJeqOYxXWz9qZuWq50kj3P/0tbA1TJyYTMnh1QjQpF0iOl8s2gCoOcdVJH4lbF+cmcrGvnaltgPfU/XgajgRBlCMsmLZM6FPfK2wT1x6GtVupIfIq5pARZaCjhywPrfhdmFnKm+QzXOsUHm4+qKjOhVCsCprQ1QLu+iM4DB7CbzVKH4hYi6ZHSuS0wVQdBAVLq+NCa3ATUSjnbRYnrBnqjnoLUAkKUIVKH4l5TdaAMFiWum5i3l6BZuRJ5SGDd75WpK1Er1OKB5ptUlTWRmR+LKkghdShupSkshP5+LLsDo8Qlkh6pNF8EU3lAlbYGhKuVrJwaL2ZxfcTl9stUtlX6d0PC4ag1rtVKUeIaZK2qwlpZ6dcNCYcTpgpjWcoykfR8RGtDF9fru/xy1tadqBISCJk3F3PJdqlDcQuR9EilfAuota7nIQJQ8awkzlztoPZ64Dz1Px4Go4FwVThLU5ZKHYpn5N0PDadcz6kJmEv0yMPDCVsamPe7MLOQ8uvlXDFfkToUn1BVZiIoWEFaXrTUoXiEtqiIrkOH6W9rkzqUcRNJjxScTten4qnrQRUsdTQesWpaPCEqhVjtAZxOJ3qjfrAsEJCmFIIqVIylwHW/zSUlaFavQq4OzPu9PGU5IcoQDLVitcfpdFJ1vInMWXEoVYFV2hqgXbcOHA4su/x/9ppIeqRgOg8tFwOiIeFwQoOUrJouSlwAle2VXO64HBgNCYcTFObqNSWSHqyXLtF3+TKaANq1dbNQVSjLJy1HXyN2cbVe66KtsZvs+YFX2hqgjIsjdMECLCX+f79F0iOFc5tdW30n+/csnjvZmJ9ERYOZ6uZOqUORlL5GjyZIw6KkRVKH4lkzNkHTOWi+JHUkkjKXlCCPiCB88WKpQ/EoXYaOi20XqemokToUSVUeb0IdqiR1emCWtgZoi4roOnKE/tZWqUMZF5H0eJvT6fo0PG0jKIOkjsajCqbGExakmNBjKZxOJztqd7A6bTUqhUrqcDwrey0EaSb0as9gaWvNamRBgf3zvTRlKaHK0Ands8fpdFJVZiJzdhwKZWD/daopdLVW+f/t3XlUVHeaN/BvbVQBVcW+FGshCAIKLkRE445UlWI3OjPm2P2O2bt7Op5JxtHT7UwmJpN+x3Ta5Ez3mZz2dKZjZ6ZjTKdfl0SlWFTEIEYBNxAVlAJBoFiEKrZa7/tHtbQYRJaqurU8n3P4w6pb9z7cn8Bzf89v0Re798KUnt1KrqjjGtB7B5jruaWth0QCHtalRXj1QoU3e2+iWdfsWQsSPolABMxZ79V7cY3cuAFTcwukSs8tbT0k4ouwOm61V29A2n1vAP3aYcz2wFlbj+MHBcF/yRK3X6iQkh5nqz0M+AYDCR6y99JT5GdE4XbnAG536tkOhRVqjRqBwkAsli1mOxTnSN8EdN0EOm+wHQkr9IWF4AUGwn9JNtuhOIVSrkRjXyMaHzSyHQorGqs7IfIXIHpOENuhOIVUpcTQpUswd3WxHcq0UdLjTAxjewpO3Qh4eqnjL5Ynh0Ii4uP4Ve/r7WEYBkWaIltpi+sd7Y3ENYAwwCt7e2ylLTUkeXngCLyjvZdGLYVEIPHKEhfDMGio0mLWgjDweN7xp1SSmwvweNAVuW/vnne0lKu4XwP0tdgGfHoJIZ+HvLRIHL/WDoZh2A7Hqep66tA20ObZs7YexxcCqfm2Hk0va++R69dhamvzyAUJn8SH54PVcatRpCnyup9vbbMe+p4Rj5619TheYCD8ly2FrtB9S1yU9DhT7WHAPwyI98wFy54kP1OGu92DuNHuGXu3TJa6SY1gUTCyIrLYDsW50jfbxq11XGc7EqfSnSwELyQEflne1d5KuRIanQa3HtxiOxSnaqzqhK9EgOjZgWyH4lRSlQrD1dUwdXSwHcq0UNLjLFYrUHcUSP0ewOOzHY1TPZsUikA/gVfN4rIyVhQ1F2Fd/Drwud7V3pi10jZuzYtKXIzVCl1REaSKPHD43tXeS6KWIEAY4FVr9jBW26ytxIXh4HpJaeshydq14AgE0Be558KU3tVabGq9BOhavaq09ZCAx4Uy3btKXNe6rqFjsMMz99p6Gp7ANm7Ni0pcw1euwtzeDqkHL0j4JAKuALlxuV5V4upo0mHggcEj99p6Gp5EAv/ly912FhclPc5SdwQQRwJxHr5A3RPkZ0ShpXcI19v62Q7FKYo0RQjzDcPC8IVsh8KO9E1AX7NtHJsX0BUWgh8WBt9Fi9gOhRUKuQKtA6240eMds/YaqzvhF+ADWVIg26GwQqpSYfjqVZja2tgOZcoo6XEGqxW4cRRILwC4nrk3y9MsmRWMEH8fr9iWwspYUawpRp48DzwvbW/IlwN+oV6x8zpjsUCvVkOiVILD9c5fqc9EPoNgUbBXzOJirAzuVGuRtDAcXC6H7XBYIV69GhyhEDq1+5W4vPMn1NlaKgF9u0fvtfU0fB4XyrmROOEFJa6azhpoh7XesSDhk/D4QNr3bePYrFa2o3Go4ZoamLu6vLK09RCfy/eaElf7nT4M9huRlBXBdiis4Yn9IV6xwi1ncVHS4wx1hwFpNBDjJQvUPUF+RhTa+oZR09LHdigOpdaoEeEXgYywDLZDYdfczbZxbG1VbEfiULrCQvBlMvjOz2Q7FFYpE5RoH2zH1a6rbIfiUA1VWoiDhIhMkLIdCquk61UYqa2FsaWF7VCmhJIeR7NagBvHbL08Xtr1/dDihGCESYQePYvLYrWgpLkECrkCXI53tzficmzj2Dy4xMWYzdAVFUPqxaWthxaGL0SobyiKNO5X8pgsq5XBnRotEheFg+Olpa2HxCtXguPrC52b7bzu3T+lzqD5Bhjssq1d4uV4XA42zJPh5PV2WK2e2QVe1VmF3pFe7y5tPcTl2cax3TjqsSWuoUuXYOnpgVRF7c3j8pAXn4fi5mJYGc9s7/u3H2BYb8LsRd5b2nqI6+cHyepV0Kkp6SGPqjsMBMYB0V46i+cx+RkydOhGUNX8gO1QHEKtUSNaHI25oXPZDsU1pG+yjWdrqWQ7EofQFaohiImBaN48tkNxCcoEJbRDWlzWXmY7FIdoqNZCEiJCuFzCdiguQaJUwlBfD0NTE9uhTBolPY5kMQE3vrL94ud4d1foQwvjghApFXnkzusmqwmlzaXIk+eBQ+1tE7PYNp7NAxcqZEwm6IuLIVUpqb3/IjMsE+F+4R65UKHFYsXdmi4kLQqn9v4L8YoV4Pr5udWAZkp6HKmpHBjupdLWI7hcDjZkyHDyegcsHlbiutR+CX2GPiptPYrLtSX9N44BFjPb0djV4IVvYenr8+pZW4/jcrhQyBUoaS6BxWphOxy7arv1ACODJsz24llbj+OKRBCvXQs9JT0EgO3pNngWIPPuWR2Py8+QoXvAgG/v9rAdil2pNWrESeKQGpzKdiiuJX2zbVxbcwXbkdiVrrAQgvg4CFOpvR+llCvRM9KDqk7PmrXXWKVFQJgvQmPFbIfiUqQqFQwNjTA0NLAdyqRQ0uMoZiNQ/zWVtsYxPzYQMUG+OH7dc2ZxmSwmlLaUQiFXUNf346IXAoHxHlXiYoxG6EtLIVWpqL0fMy90HqLF0R41i8tituLulS4kZVFp63H+zy4DVyJxm1lclPQ4yt0zwEg/lbbGweHYSlzq2g6YLZ4xy6OyvRJ6o94799p6Gg7nLyWur2zj3DzAwPnzsOp0kKrWsx2Ky+FwOMiT56G0uRRmq2eUNO/V98IwZEYSzdr6Dq6PDyRr10JXWOgWC1O6RNLz0UcfQS6XQyQSITs7GxcvXnzisR9//DGWL1+OoKAgBAUFITc3d8LjWVN3BAhNBiLS2Y7EJW3MiELvoBHn73hGiatIU4SEgAQkByWzHYprSt9kG9/WdJbtSOxCX1gIn8RECJNnsx2KS1LKlXhgeICL7S74u3kaGqu1CIr0Q0i0P9uhuCTpehWMTU0w3LrFdihPxXrS88UXX2DHjh3Ys2cPampqkJmZCYVCAa1WO+7xZWVl2Lp1K86cOYPKykrExsYiLy8Pba608ZlpBLh5wtbLQ12h40qPkiI+xM8jZnEZLAacbjkNpZxm8TyRLNM2vq32CNuRzJjVYIC+9JRtQUJq73GlBqciVhLrEXtxmU0WNF2hWVsT8c/JATcgwC1KXKwnPR9++CFeffVVvPjii0hLS8P+/fvh5+eHTz75ZNzjP/vsM/z0pz/F/PnzMWfOHPz3f/83rFYrTp065eTIJ3DnFGDQefVeW0/D4XCQ/5cSl9Hs3iWuirYKDJgGqLQ1EQ7H9hBw82vbeDc3NvjNN7AODkK6nmZtPQmHw4FSrkRpSylMbl7SbKnrhXHEQqWtCXAEAkjW5bpFiYvVpMdoNKK6uhq5ubmjr3G5XOTm5qKycnKLmQ0NDcFkMiE4OHjc9w0GA3Q63Zgvh6s9DISnAeFzHH8tN5afEQXdiBkVjd1shzIjao0aSYFJSAxMZDsU1zZ3s22c290zbEcyI7qThRAmJ0OYSO09EYVcAb1Rj8p2916YsrFai+AofwRHUWlrIlKVCqaWFozU3WA7lAmxmvR0d3fDYrEgImJsBh0REYGOjo5JneNnP/sZoqKixiROj9q7dy8CAgJGv2JjY2cc94RMw8CtQhrAPAlzIiVIDPPH125c4hoxj6DsXhmtzTMZ4WlAaIpb78VlHR6G/swZ6uWZhOSgZCQEJLj1LC6z0YKma92YnRXOdiguzz87G7zgYOgKT7IdyoRYL2/NxHvvvYdDhw7hyJEjEIlE4x6ze/du9Pf3j37du3fPsUE1FAOmQSptTYKtxBWFkrpOjJjccyGzc23nMGwehjKBkp6n4nBsvT03T9jGvbmhgbPlYIaGIFVSez/NwxLX6ZbTMFgMbIczLc21PTAbqLQ1GRw+H5K8ddAXql26xMVq0hMaGgoej4fOzs4xr3d2diIyMnLCz+7btw/vvfceiouLkZGR8cTjhEIhpFLpmC+Hqj0MRM4DQpMcex0PkZ8hg95gRvntLrZDmRZ1kxqpwamIl8azHYp7SN8EGPVAYynbkUyLTq2GMC0VPnI526G4BYVcgQHTACra3HNhyoYqLUJjxQiM8GM7FLcgVapgun8fI9eusR3KE7Ga9Pj4+GDRokVjBiE/HJSck5PzxM+9//77ePfdd6FWq5GVleWMUCfHMADcLqLS1hTMjpAgJUKC49fcb6HCIdMQylvLkSfPYzsU9xGWAoSnu+VChdbBQQyUldG2E1OQGJiIpMAkt5zFZTJY0Hy9G0mLqLQ1WX7PZIEXFgrdSdfdloL18taOHTvw8ccf49NPP0V9fT3+4R/+AYODg3jxxRcBANu2bcPu3btHj//lL3+Jf/u3f8Mnn3wCuVyOjo4OdHR0YGBggK1v4a8aigDzMJW2pig/Q4bS+k4MG92rxFXeWo4RywjN2pqquZuAW2rAOMR2JFOiLysDMzJCSc8UKeVKlN0rw7B5mO1QpkRzvRtmk5VKW1PA4fEgzVNAp1aDsbrmrFzWk57nnnsO+/btw1tvvYX58+fjypUrUKvVo4ObW1pa0N7+116A3/72tzAajfjbv/1byGSy0a99+/ax9S38Ve1hIGohEJzAdiRuJT8zCkNGC8pujb82k6tSa9SYGzIXsRIHD473NOmbbePeGorZjmRKdIWFEM2bB5+YGLZDcSvKBCWGzcM413qO7VCmpLFKi/B4CQLCfNkOxa1I16tg7uzE8JUrbIcyLtaTHgDYvn07mpubYTAY8O233yI7O3v0vbKyMvzhD38Y/bdGowHDMN/5evvtt50f+KNGdEBDCfXyTENCqD/So6RuVeIaMA7gXOs5GsA8HSGJtsUK3ajEZRkYwGD5OerlmYZ4aTxSg1PdahaXcdiM5toe6uWZBt8FC8CPiHDZEpdLJD0e4VYhYDFQ0jNN+RlROHWzE4MG99ir58y9MzBajciLp/E805K+CbhdbBsH5wYGTp8GYzRCqqIkdzoUcgXKW8sxZHKPkmbTtW5YzFYk0VT1KeNwuZAqFdAVqcFYXG/IAiU99lJ3BIhZDARSqWM68jNkGDFZceqme5S4ijXFyAzLhEwsYzsU95S+yTb+7bZ7DHDVnSyE74IFEMiovacjT56HEcsIzra6x95rjdVaRM6SQhI8/lIoZGJSlQqWrm4MVVWzHcp3UNJjD8N9tim4c2nW1nTFBvshMyYAx6+6/kKFOqMO39z/hhYknIkgORC9yC0WKrT092OgooJ6eWYgVhKLuSFzoW5y/STXMGRCSx2VtmZClJkJfpQMOrXrlbgo6bGHmycAqxlI+z7bkbi1/IwolN3ugn7EtffqOd1yGharBevi17EdintL3ww0lti2pnBh+lOnAbMZEgUlPTOhTFDim7ZvMGB07ZLm3SvdsFoZJC6k0tZ0cTgcSJUq6IuKwZhda8gCJT32UHcYiMsBpFFsR+LWNmTIYDRbUVrf+fSDWaTWqLEgfAEi/OlJcEbSCwCL0TYezoXpCgvht2gRBBH0R3AmFHIFjFYjztxz7b3XGqu1kCUGQBwkZDsUtyZVqWDp7cXQxYtshzIGJT0zNdQL3C2j0pYdRAX6YlF8EI5fdd1ZXH0jffj2/rc0a8seAmKA2CUuXeIyP3iAwcpKSGivrRmL9I/E/LD5Lj2La2TAhNb6XszOogeamRLNTYcgNha6Qtd6qKGkZ6bqvwYYK5D6PbYj8Qj5GTKUN3Shf8g1S1ynWk7BCiuVtuwlfRNw5zQw/IDtSMalLykBrFZI82iWnj0oE5SouF+BfoNrljTvXukCwzCYtSCM7VDcHofDgVSlgr64BIzJdX6fU9IzU3WHgfhlgISeDOxh/TwZzFYGRTc62A5lXGqNGs9EPINQ31C2Q/EMad+3jYerP852JOPSq9XwW7wY/FBqb3tYF78OFqsFp1tOsx3KuBqqOhGVHAj/ACpt2YNUpYSlvx+DFy6wHcooSnpmYqALaCqn0pYdRUhFeEYe7JILFfYM9+Bix0Xaa8uepDLbQ4MLLlRo7unB4IVvaUFCOwr3C8fCiIUuWeIa1hvRdusBzdqyI+GcOfCRy11qoUJKemai/isAHCCVZm3Z08YMGSoau9E7aGQ7lDFOtZwCBxwqbdnb3E3A3bPAYA/bkYyhLy4GOBxI8qi97UkpV+JC+wU8GHGtkuady10Ah4PEhVTashcOhwPpehX0paWwGl3j9zklPTNRdwSYtRLwD2E7Eo+inCsDwzAoqnOtEpdao0a2LBtBoiC2Q/Esqd8HwPzlIcJ16E4Wwn/JEvCDqL3tKTc+FwwYnGo5xXYoYzRWdSJmThB8xT5sh+JRpCoVrHo9Bisq2A4FACU906fvADTf0LYTDhAmESInMQTHr7nOQoVdQ12o6qiiBQkdQRwGJKxwqRKXSavFUFUVpDRry+5CfUPxTOQzUGtcZ6HCwX4D2hr6kLSIliWwN+Hs2fBJSnSZWVyU9EzXja8ALg+Yk892JB4pPyMKlXd60KU3sB0KAKC4uRg8Dg9r4tawHYpnSt9ke4gYcI1tSPRFxQCfD0luLtuheCSlXIlLHZfQPdzNdigAgDs1XeByOJg1n0pbjiBVqTBw6jSsBvZ/n1PSM111h4HENYBfMNuReCRFeiQ4HA7Uta4xoLlYU4ycqBwECAPYDsUzpX4P4HCBG8fYjgSAbUFC/6U54AVQezvC2ri14ICD0uZStkMBADRWdyI2LRgifwHboXgkqWo9rIODGCgvZzsUSnqmpb8NaKm0LaNPHCLY3wfLkkLxtQvM4uoY7ECNtoYWJHQkv2Bg1iqXWKjQ1N6O4ZoamrXlQEGiICyRLXGJEtfAgxG0N/bTjuoOJJyVAOGcOdAXst/elPRMx42jAM8HmLOe7Ug8Wn6GDJc0vejUjbAaR7GmGAKuAKtjV7Mah8dL32x7mNCxO5ZLV1QEjkAAydq1rMbh6RRyBWo6a6AdYrek2VitBZfPQUImlbYcSapUQl9WBuvwMKtxUNIzHXVHgKRcQERd346kSIsEn8vByevs9vYUaYqwLHoZJD4SVuPweHM2ADwB6yUuXWEh/FesAE9C7e1Ia+LWgMfloaS5hNU4Gqu1iEsLgdCXz2ocnk66XgVmaAgDZ8+yGgclPVPV1wK0XqLSlhME+AmwYnYYqwsVtg204Vr3NZq15Qy+gUDiWlZLXMbWNoxcvQapktrb0QKEAVgWtQzqJvZKHrqeYXQ26TCbSlsO5xMXB1F6OusLFVLSM1V1RwC+CEihX4rOkJ8pQ3XzA9zvY6dLtFhTDCFPiFWxq1i5vtdJ3wS0XgT67rFyeb26EByhEOLVVMp0BoVcgStdV9AxyM6aXI3VWvAEXMgzaJsRZ5CuV2Hg7FlYBwdZi4GSnqmqPQzMXgcIqevbGXJTI+DD5+IES709ao0aK2JWwF/gz8r1vU6KCuAJbQ8XLNAVqiFeuRI8MbW3M6yOXQ0frg9r21I0VmkRPzcEPiIqbTmDRKEEYzBAf6aMtRgo6ZmK3rtA+xUqbTmRRCTAquQwVhYqbNG14EbPDdpry5lEUttDBQsLFRqbmzFSV0cLEjqR2EeMZ6OfZaXE1d81hK4WPS1I6EQ+MdEQZWawulAhJT1TUXcEEPgByQq2I/Eq+ZlRuNraj5aeIadet7i5GL58X6yIXuHU63q9uZuB+5eB3ianXlZXqAbH1xfiFdTezqRMUKK2pxb39M4taTZWa8H34UI+j0pbziRVqTBYXg6LXs/K9SnpmYraI0CyEvChrm9nWjsnHCIBFyecPItL3aTGypiV8BP4OfW6Xi9ZaXu4cHKJS1dYCMnqVeD6UXs708qYlRDxRCjWFDv1ug1VWsgzQiEQ8px6XW8nVSrBmEwYOH2aletT0jNZ3Q1A53Xaa4sF/kI+1s6JcGqJq6m/Cbce3IJCTr16Tufjb+tNdWKJy3D3Lgy3bkFCCxI6nZ/ADytiVjh1XM+DjkH0tA5QaYsFgshI+C5cyNosLkp6JqvuCOAjto03IE6XnyFD3X0dmrqdM+pfrVHDj++HZ6Ofdcr1yGPSNwEd14HuRqdcTldYCK6fH5W2WKKQK1DfW49mXbNTrtdYrYVAyEN8eohTrkfGkqpUGDh/Hpb+fqdfm5Keyao9DKSsBwS+bEfilValhMPPh4fjV53T21OsKcbquNUQ8UVOuR55zOw820OGk3p7dIWFEK9dC65Q6JTrkbGWxyyHL9/XaQOaG6u1SMgMBd+HSltskCjyALMZ+lLn771GSc9kaOuBrnrbAEvCCl8fHnJTI5yyUGHjg0Y09jXSgoRsEvjapq87YaHCkdu3YWy8Q3ttsciX74tVsaucshdXz/0B9N4fRFJWhMOvRcYnCA+H3zPPQMfCXlyU9ExG7WFAGGDbVZ2wJj9DhludejR0OnbUv1qjhkQgwdKopQ69DnmK9M22hw1tvUMvo1erwZVI4P/sModeh0xMKVeisa8Rd/ruOPQ6jVVa+PjyEZca7NDrkIlJVUoMVlbC/OCBU69LSc/TMIxtPM+cDQCfur7ZtDIlDBIh36G9PQzDoEhThNVxq+HD83HYdcgkJK21PWw4cBYXwzDQnSyEJDcXXB9qbzY9G/0sxAKxQwc0MwyDxmotZmWGgiegP39skuTlAQwDfbFz916jVn+azlqgp4FKWy5AyOdhXbptFhfDMA65xu0Ht6HRaai05Qr4QtvDRu1h28OHAxhu3oRRo4FURe3NNh+eD9bErYFao3bYz3dP2wD6OoeotOUC+CEh8F+S7fSFCinpeZraw4AoEJi1iu1ICICNGVG40zWImx2OKXGpNWpIfaRYErXEIecnU5S+yfbQ0VnrkNPrThaCFxAA/5wch5yfTI1CrkBTfxNuP7jtkPM3VGkh9OMjJjXIIecnUyNRqTB08SLM3d1OuyYlPRNhGNvskdSNAE/AdjQEwLKkUAT4ChyyZg/DMFA3qZEbnwsBl9rbJcxaZXvocMCAZoZhoFOrIclbB46A2tsV5MhyIPWROqTExTAMGqs6MWtBGHg8+tPnCiS5uQCXC12x8xampJafSPsV4IGGSlsuxIfPhSLdNovL3l3gN3puoHWglRYkdCV8H9tDR539S1wjtXUw3btHs7ZciIAnwNq4tQ4pcXW16KHrHsHsRVTachX8oCD45+RA78SFCinpmUjtYcAvFJDTgmWuJD8jCs09Q6i7r7PreYs0RQgWBWNx5GK7npfM0NzNtoeP9it2Pa2usBC84GD4Lab2diVKuRL39PdQ32vfWXuNVVr4SgSITgm063nJzEhVKgxVV8PUqXXK9SjpeRKGAeqOAmnfA3h8tqMhj1iaGIJgfx98bccS18NZW7lxueBzqb1dinyF7eHDjiUuW2mr0Fba4lN7u5LFssUIEgbZdc2e0VlbC8LBpdKWS5HkrgX4fOiLnLMNCbX+k7RWAf0ttNeWC+LzuFDOjcQJO5a4rnVfw/3B+1TackU8vu3ho+6o3UpcI1evwny/HVLVerucj9gPn8tHbnwuijXFdvv57mzSQd87QnttuSCeVArxsmVOm8VFSc+T1B0BxBFAPC1Y5ory58nQ+mAYV+712eV86iY1Qn1DsShikV3OR+wsfZPtIaS1yi6n0xUWghcWCr8sam9XpJAr0DbQhuvd1+1yvsZqLfykPoiaHWiX8xH7kq5XYfjyZZjaHb/iPiU947FabUlP2vcBLu3N4oqyZ4UgVCy0y0KFVsaK4uZirItfBx61t2uKX2Z7CLHDXlyM1QqdugjSPAU4PGpvV5QVkYUQUYhdSlyM1VbaSlwYDi6XY4foiL2J16wBx8fHKdtSUNIznnvfAvr7tmXwiUvicTlYP89W4rJaZ9YFfkV7BdohLS1I6Mq4PNtDSN1R20PJDAzX1MDc2Qnpepq15ap4XB7Wxa9DkaYIVmZm7d1+tx+DfQYkZVFpy1XxxGKIV66ATk1JDzvqDgOSKCA2m+1IyATyM6LQoRtBTcvM9m5Ra9QI9wvH/PD59gmMOEb6ZtvDyL1vZ3QaXaEa/IgI+C5YYKfAiCMoE5TQDmlxtevqjM7TWKWFf6AQslkBdoqMOIJEqcTItWswtrY69DqU9DzOagFuHAPSCwAu3R5XlhUfhEipaEYlLovVgpLmEuTF54HLofZ2abHZtoeRGZS4GIsFuuIiSJVKcOjn26UtCF+AcL9wqJum//RvtTK4U6NF0sJwcKi05dIkq1aBIxI5fEAz/dQ/rvk8MNBJpS03wOVysH6eDCeut8MyzRJXjbYG3cPdUCZQacvlcbm2Ac03jtkeTqZh6FIVLF3dtNeWG+ByuMiLz0NxczEs02zv9oY+DOmMVNpyA1x/f4hXraKkx+nqDgMBsUBMFtuRkEnYkCFDl96Ai0290/q8ukkNmb8MGaEZdo6MOET6JttDSXPFtD6uKyyEICoKosxMOwdGHEEhV6B7uBs12pppfb6hWgtxsBARCVI7R0YcQapSwXCjHkaNxmHXoKTnURYzcOMrW2mLQ12h7mBhXCCiA32ntReX2WpGaUspFHIFONTe7iEmCwiIm9ZChYzZDH1xMSQqJbW3m8gMy4TMXzatEpfVYsXdy1okLYqg9nYT4hXLwfHzc+iAZkp6HqU5Bwx1U2nLjXA4HGzIkEFd2wGzZWqzPC52XETvSC/N2nInHI7toaT+K9tDyhQMfvstLA8e0IKEboTD4UAhV6C0pRRm69Tau+12H4b1Jsym0pbb4Pr6QrJ6NXQO3IuLkp5H1R0GguRAFM3qcCf5GTL0DBpx4e7USlzFmmLEiGOQFpLmoMiIQ8zdDAz1AJryKX1MV1gIQWwsROnU3u5EKVeid6QXlzouTelzjVWdkIaKEBYncVBkxBGk61Uw3L4Nw507Djk/JT0PWUxA/de2Xh7qCnUr86IDEBfsN6USl8lqQmlLKZQJVOpwO7L5QFDClEpcjNEIfUkppCoVtbebSQtJQ4w4BkWaye/NZLFYcedKF5W23JD/s8+CKxY7bKFCSnoeulsGDD+gvbbcEIfDQX6GDOq6DpgmWeK6cP8C+g39tNeWO+JwbD+n9V8DZuOkPjJ44QKs/f20IKEb4nA4UCYoUdpSCpPVNKnPtNY/gGHQTLO23BBXKIRk7RroCgvttvfamPPb/Yzuqu4IEJIERM5jOxIyDRsyZOgbMuGbxu5JHa/WqCGXypESlOLgyIhDzN0MjPTZHlYmQXeyED4JCRCmUHu7I4VcgX5DPy7cvzCp4xurOxEY4YfQGLGDIyOOIFGpYLxzB4bbDXY/NyU9AGA2APXHqbTlxtJkUswK9cfxq09fqNBoMeJMyxmateXOIuYCIbMntVCh1WiE/tQpSGnWlttKCUqBXCqf1F5cFpMVd690I2lROLW3mxIvXQpuQAB0avsPaKakBwDunAYM/banR+KWHpa4im90wGCeeCGz8/fPQ2/S06wtd8bh2H5eb54ATCMTHjr4TQWsej2kKiptuauHs7jOtJyB0TJxSbOlvhfGYTOSFlFpy11xfHwgyV0L/Un7l7go6QFsAyLD5gDhqWxHQmYgPzMK+hEzzt2euMSl1qiRGJCIpKAkJ0VGHCJ9M2DQ2R5aJqArLIRwdhKEs2c7KTDiCEq5EnqTHufvn5/wuMaqTgTJ/BESTaUtdyZVqmBsboahvt6u56WkxzQM3DpJa/N4gOQICZIjxBPO4hoxj9hKWwk0gNnthc8BwtMmLHFZR0YwcOoUJNTL4/aSgpKQFJg0YYnLbLSg6Wo3rc3jAfyXZIMXGGj3bSko6WksBYwDVNryEPkZUSi50YkR0/glroq2CgyZh6i05SnSNwG3Cm0PL+MYKC+HdWgIUiUlPZ4gT56HMy1nMGIev6TZUtcLk8FCpS0PwBEIIMnLg65QbdcSFyU9tYeBiHlAKHV9e4INGTIMGi0ou6Ud9321Ro2UoBQkBCQ4OTLiEOmbbQ8tDcXjvq1XqyGcMwfCWdTenkApV2LIPIRv2r4Z9/2G6k6ERIsRFOnv5MiII0jXq2BqbcVIba3dzundSY9xELitti1rTzxCYpgYqTIpvr723VlcQ6YhnG09S2vzeJLQvywzMc5ChdahIejPlNEAZg+SEJCAlKCUcUtcJoMFmmvdtDaPB/HLygIvJMSu21J4d9LTUAyYhqi05WHyM2Q4Xa/FkHHsXj3lbeUYNg9TacvTpG8GbhfZHmIeMXD2LJjhYUhV1N6eRJmgRHlrOYZMQ2Neb67tgdlopfE8HoTD50OqyINOrQZjndreik/i3UlP7WHbkvbBs9iOhNjRxowoDJssOH1zbImrWFOMtJA0xEpjWYqMOET6JsA8bOu1fYTuZCFE6enwiYtjKTDiCAq5AsPmYZS3jd17rbGqE2FxEgSE+bEUGXEEqUoFc3s7hq9etcv5vDfpMehtPT3Uy+Nx4kL8kBETMGahwkHTIMpby6mXxxMFJwBRC8eUuCwDgxgoL6dtJzxQrCQW6SHpKGr6615cxhEzNLU9NIDZA/kuWgR+WJjdZnF5b9LTUAqYR4C0ArYjIQ6wYZ4MZ25pMWCwlbjK7pXBYDEgT57HbmDEMdI3AQ0lwIgOADBw5gwYgwFSJSW5nkghV+Bc2zkMmmwlTc21blhMVkp6PBCHy4VEqYReXWSXEpf3Jj31x4HoLCAonu1IiANsyJDBYLai9EYnANusrYzQDESLo1mOjDhE+ibAYrBNX4dtQULfzEwIoqm9PZFCroDBYsCZe2cAAI3VWkQkSCEN9WU5MuIIUpUKZq0Ww9XVMz6X9yY9d09TacuDxQT5YUFcII5fuw+9UY+KtgqateXJAmOBmMVA3WFYdDoMnjsHCQ1g9lhR4ihkhGWgqKkIhmEzmuuotOXJfOdngi+TQVf49L3XnsYlkp6PPvoIcrkcIpEI2dnZuHjx4oTHf/nll5gzZw5EIhHmzZuHkydPTv2iVhOVtjxcfkYUym9348SdUpisJiptebq5m4HGU9Crj4Mxmai05eGUciUq7lfgRnULrGYGiQsp6fFUHC4XUqUSuqKipx/8FKwnPV988QV27NiBPXv2oKamBpmZmVAoFNBqx19c7vz589i6dStefvllXL58GQUFBSgoKEDtVBcvin4GCKCub0+2YZ4MJqsVf7rxNRaEL0CkfyTbIRFHSisArGboDn8O30WLIIik9vZkefF5MFvNqKlohCwxAJJgEdshEQeSqpSw9PTM+Dx8O8QyIx9++CFeffVVvPjiiwCA/fv348SJE/jkk0/w85///DvH//rXv4ZSqcSuXbsAAO+++y5KSkrwX//1X9i/f//kL5y20S7xz8R4S2szGOe1yR43zmvjv8R857wTXncyx01imXAGtuPGXHe87+2x10avyTx+zMTXFHKAhdFGNPXW4J8T/wnmEcMEwT12rvFOPYXvcVIePe5JH5nkuSZ32MN2t8PJpvA9Tv96j/0/eOqJBLBKlqK/9h7Cd22FccT8lOPtYJqr40/rY9Ncit/Om1RP4oLT/djUPihFELL9l2NYw8UzW6iXx9OJ5s2DICZmxufhMPbet30KjEYj/Pz88Oc//xkFBQWjrz///PPo6+vDsWPHvvOZuLg47NixA2+88cboa3v27MHRo0dxdZx5/AaDAQbDX//Y9ff3Iy4uDr/Y+keIfKayngNnCsf+FTO9j037etO7FOsdfoQQMi1WWPH/Mv8vRnz0bIdCHGzzOSv+af8lSCQScDjT+xvJak9Pd3c3LBYLIiIixrweERGBmzdvjvuZjo6OcY/v6OgY9/i9e/finXfe+c7rb37+f6YZNSGEEEKc7RqAtz8PQH9/P6RS6bTOwXp5y9F2796NHTt2jP7barWit7cXISEh084UZ0Kn0yE2Nhb37t2bdqORyaP77Vx0v52L7rdz0f12rifdb4lEMu1zspr0hIaGgsfjobOzc8zrnZ2diHzCIMTIyMgpHS8UCiEUCse8FhgYOP2g7UQqldIPjRPR/XYuut/ORffbueh+O5c97zergzl8fHywaNEinDp1avQ1q9WKU6dOIScnZ9zP5OTkjDkeAEpKSp54PCGEEEII4ALlrR07duD5559HVlYWFi9ejP/8z//E4ODg6Gyubdu2ITo6Gnv37gUAvP7661i5ciU++OADbNiwAYcOHUJVVRV+97vfsfltEEIIIcTFsZ70PPfcc+jq6sJbb72Fjo4OzJ8/H2q1enSwcktLC7jcv3ZILV26FAcPHsSbb76Jf/mXf8Hs2bNx9OhRzJ07l61vYUqEQiH27NnznZIbcQy6385F99u56H47F91v53LE/WZ1yjohhBBCiLPQAi2EEEII8QqU9BBCCCHEK1DSQwghhBCvQEkPIYQQQrwCJT12Vl5ejo0bNyIqKgocDgdHjx6d8PjDhw9j3bp1CAsLg1QqRU5ODoqKipwTrAeY6v1+VEVFBfh8PubPn++w+DzNdO63wWDAv/7rvyI+Ph5CoRByuRyffPKJ44N1c9O515999hkyMzPh5+cHmUyGl156CT122JnaG+zduxfPPPMMJBIJwsPDUVBQgFu3bj31c19++SXmzJkDkUiEefPm4eTJk06I1v1N535//PHHWL58OYKCghAUFITc3FxcvHhxStelpMfOBgcHkZmZiY8++mhSx5eXl2PdunU4efIkqqursXr1amzcuBGXL192cKSeYar3+6G+vj5s27YNa9eudVBknmk693vLli04deoUfv/73+PWrVv4/PPPkZKS4sAoPcNU73VFRQW2bduGl19+GXV1dfjyyy9x8eJFvPrqqw6O1DOcPXsWr732Gi5cuICSkhKYTCbk5eVhcHDwiZ85f/48tm7dipdffhmXL19GQUEBCgoKUFtb68TI3dN07ndZWRm2bt2KM2fOoLKyErGxscjLy0NbW9vkL8wQhwHAHDlyZMqfS0tLY9555x37B+ThpnK/n3vuOebNN99k9uzZw2RmZjo0Lk81mftdWFjIBAQEMD09Pc4JykNN5l7/6le/YmbNmjXmtd/85jdMdHS0AyPzXFqtlgHAnD179onHbNmyhdmwYcOY17Kzs5kf//jHjg7P40zmfj/ObDYzEomE+fTTTyf9GerpcTFWqxV6vR7BwcFsh+KxDhw4gLt372LPnj1sh+LxvvrqK2RlZeH9999HdHQ0kpOTsXPnTgwPD7MdmsfJycnBvXv3cPLkSTAMg87OTvz5z3/G+vXr2Q7NLfX39wPAhL+LKysrkZubO+Y1hUKByspKh8bmiSZzvx83NDQEk8k0pc+wviIzGWvfvn0YGBjAli1b2A7FIzU0NODnP/85zp07Bz6f/vs72t27d/HNN99AJBLhyJEj6O7uxk9/+lP09PTgwIEDbIfnUZYtW4bPPvsMzz33HEZGRmA2m7Fx48Ypl36J7eHzjTfewLJlyyZc7b+jo2N094CHIiIi0NHR4egQPcpk7/fjfvaznyEqKuo7iedEqKfHhRw8eBDvvPMO/vSnPyE8PJztcDyOxWLBD37wA7zzzjtITk5mOxyvYLVaweFw8Nlnn2Hx4sVYv349PvzwQ3z66afU22NnN27cwOuvv4633noL1dXVUKvV0Gg0+MlPfsJ2aG7ntddeQ21tLQ4dOsR2KF5hOvf7vffew6FDh3DkyBGIRKJJf44edV3EoUOH8Morr+DLL7+cUtZKJk+v16OqqgqXL1/G9u3bAdj+KDMMAz6fj+LiYqxZs4blKD2LTCZDdHQ0AgICRl9LTU0FwzBobW3F7NmzWYzOs+zduxfLli3Drl27AAAZGRnw9/fH8uXL8Ytf/AIymYzlCN3D9u3bcfz4cZSXlyMmJmbCYyMjI9HZ2Tnmtc7OTkRGRjoyRI8ylfv90L59+/Dee++htLQUGRkZU7oe9fS4gM8//xwvvvgiPv/8c2zYsIHtcDyWVCrF9evXceXKldGvn/zkJ0hJScGVK1eQnZ3NdogeZ9myZbh//z4GBgZGX7t9+za4XO6kf8GRyRkaGhqzOTMA8Hg8AABDWyw+FcMw2L59O44cOYLTp08jISHhqZ/JycnBqVOnxrxWUlKCnJwcR4XpMaZzvwHg/fffx7vvvgu1Wo2srKwpX5d6euxsYGAAjY2No/9uamrClStXEBwcjLi4OOzevRttbW34n//5HwC2ktbzzz+PX//618jOzh6tBfv6+o55Oibjm8r95nK536kXh4eHQyQSTamO7M2m+v/7Bz/4Ad599128+OKLeOedd9Dd3Y1du3bhpZdegq+vL1vfhluY6r3euHEjXn31Vfz2t7+FQqFAe3s73njjDSxevBhRUVFsfRtu47XXXsPBgwdx7NgxSCSS0d/FAQEBo/9Xt23bhujoaOzduxcA8Prrr2PlypX44IMPsGHDBhw6dAhVVVX43e9+x9r34S6mc79/+ctf4q233sLBgwchl8tHPyMWiyEWiyd34alNKiNPc+bMGQbAd76ef/55hmEY5vnnn2dWrlw5evzKlSsnPJ5MbKr3+3E0ZX1qpnO/6+vrmdzcXMbX15eJiYlhduzYwQwNDTk/eDcznXv9m9/8hklLS2N8fX0ZmUzG/PCHP2RaW1udH7wbGu9eA2AOHDgweszKlSu/87v5T3/6E5OcnMz4+Pgw6enpzIkTJ5wbuJuazv2Oj48f9zN79uyZ9HU5f7k4IYQQQohHozE9hBBCCPEKlPQQQgghxCtQ0kMIIYQQr0BJDyGEEEK8AiU9hBBCCPEKlPQQQgghxCtQ0kMIIYQQr0BJDyGEEEK8AiU9hBCXsGrVKrzxxhtOudbbb7+N+fPnO+VahBDXQUkPIcTr7Ny5c8xGkS+88AIKCgrYC4gQ4hS04SghxOtMaYNCQojHoJ4eQojTDQ4OYtu2bRCLxZDJZPjggw/GvG8wGLBz505ER0fD398f2dnZKCsrG33/D3/4AwIDA1FUVITU1FSIxWIolUq0t7ePHlNWVobFixfD398fgYGBWLZsGZqbmwGMLW+9/fbb+PTTT3Hs2DFwOBxwOByUlZVhzZo12L59+5i4urq64OPjM6aXiBDiPijpIYQ43a5du3D27FkcO3YMxcXFKCsrQ01Nzej727dvR2VlJQ4dOoRr167h7/7u76BUKtHQ0DB6zNDQEPbt24f//d//RXl5OVpaWrBz504AgNlsRkFBAVauXIlr166hsrISP/rRj8DhcL4Ty86dO7Fly5bRpKm9vR1Lly7FK6+8goMHD8JgMIwe+8c//hHR0dFYs2aNA+8OIcRRqLxFCHGqgYEB/P73v8cf//hHrF27FgDw6aefIiYmBgDQ0tKCAwcOoKWlBVFRUQBsiYlarcaBAwfwH//xHwAAk8mE/fv3IzExEYAtUfr3f/93AIBOp0N/fz/y8/NH309NTR03HrFYDF9fXxgMBkRGRo6+vnnzZmzfvh3Hjh3Dli1bANh6mF544YVxkydCiOujpIcQ4lR37tyB0WhEdnb26GvBwcFISUkBAFy/fh0WiwXJycljPmcwGBASEjL6bz8/v9GEBgBkMhm0Wu3o+V544QUoFAqsW7cOubm52LJlC2Qy2aTjFIlE+Pu//3t88skn2LJlC2pqalBbW4uvvvpqWt83IYR9lPQQQlzKwMAAeDweqqurwePxxrz36OBjgUAw5j0OhwOGYUb/feDAAfzjP/4j1Go1vvjiC7z55psoKSnBkiVLJh3LK6+8gvnz56O1tRUHDhzAmjVrEB8fP83vjBDCNhrTQwhxqsTERAgEAnz77bejrz148AC3b98GACxYsAAWiwVarRZJSUljvh4tP03GggULsHv3bpw/fx5z587FwYMHxz3Ox8cHFovlO6/PmzcPWVlZ+Pjjj3Hw4EG89NJLU7o+IcS1UNJDCHEqsViMl19+Gbt27cLp06dRW1uLF154AVyu7ddRcnIyfvjDH2Lbtm04fPgwmpqacPHiRezduxcnTpyY1DWampqwe/duVFZWorm5GcXFxWhoaHjiuB65XI5r167h1q1b6O7uhslkGn3vlVdewXvvvQeGYbBp06aZ3wBCCGso6SGEON2vfvUrLF++HBs3bkRubi6effZZLFq0aPT9AwcOYNu2bfjnf/5npKSkoKCgAJcuXUJcXNykzu/n54ebN2/ib/7mb5CcnIwf/ehHeO211/DjH/943ONfffVVpKSkICsrC2FhYaioqBh9b+vWreDz+di6dStEItHMvnFCCKs4zKNFcEIIIWNoNBokJibi0qVLWLhwIdvhEEJmgJIeQggZh8lkQk9PD3bu3ImmpqYxvT+EEPdE5S1CCBlHRUUFZDIZLl26hP3797MdDiHEDqinhxBCCCFegXp6CCGEEOIVKOkhhBBCiFegpIcQQgghXoGSHkIIIYR4BUp6CCGEEOIVKOkhhBBCiFegpIcQQgghXoGSHkIIIYR4hf8Pb21wZ+2sE4IAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -508,7 +610,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJKElEQVR4nOzdd1RU19rH8e/QQRFBFCzYe8OOii2xd00sSUw0/WrsJVbEil1jEls0xdybZovYey/YBRv2AhbEBihInXn/OO/lxlgCOLCnPJ+1Zi0dzpzzw+PRh7PP3o/OYDAYEEIIIYSwIjaqAwghhBBC5DQpgIQQQghhdaQAEkIIIYTVkQJICCGEEFZHCiAhhBBCWB0pgIQQQghhdaQAEkIIIYTVkQJICCGEEFZHCiAhhBBCWB2rK4AMBgNxcXHIAthCCCGE9VJaAO3du5f27dtTqFAhdDodwcHB//iZ3bt3U6NGDRwdHSldujRLly7N1DEfP36Mm5sbjx8/zlpoIYQQQpg9pQVQfHw8vr6+zJ8/P0PbX7t2jbZt2/LGG28QGhrKoEGD+PTTT9myZUs2JxVCCCGEJdGZSjNUnU7H6tWr6dSp00u3GTFiBBs2bODMmTPp773zzjvExMSwefPmDB0nLi4ONzc3YmNjyZMnz+vGFkIIIUQOMBgM6HQ6o+3PrJ4BCgkJoVmzZs+817JlS0JCQl76maSkJOLi4p55ATxOTMnWrEIIBc6uhqXtIDFOdRIhhJGtubLGqPszqwIoKioKLy+vZ97z8vIiLi6Op0+fvvAzU6dOxc3NLf3l4+MDwKwtF7I9rxAiB8XehLUD4Po+2BqgOo0Qwoii4qOYfmS6UfdpVgVQVowaNYrY2Nj0V2RkJACrTtxi14VoxemEEEZhMMCafuCQG5pNgBM/w6VtqlMJIYzAYDAQeCAQF3sXo+7XrAogb29v7t69+8x7d+/eJU+ePDg7O7/wM46OjuTJk+eZF0D90vkYueoUsQkyFCaE2Tv2I1zdBR2/Bf+BUKoprO0PTx+pTiaEeE0rLq4g5E4IE+tPNOp+zaoAqlevHjt27HjmvW3btlGvXr1M72tih0okJKcxft1ZY8UTQqjw8BpsHQs1P4LSzUCngw7fQnICbBqhOp0Q4jVEPo5k1rFZdCnbBf/C/kbdt9IC6MmTJ4SGhhIaGgpo09xDQ0OJiIgAtOGrnj17pm/fu3dvrl69yvDhwzl//jwLFixg+fLlDB48ONPH9nZzZnz7Sqw+eYvNZ6KM8v0IIXKYXg/BX0CufNBi0v/edysMrafDqWUQvk5dPiFElukNegL2B+Dh5MGwWsOMvn+lBdCxY8eoXr061atXB2DIkCFUr16dwMBAAO7cuZNeDAGUKFGCDRs2sG3bNnx9fZk9ezbff/89LVu2zNLx36pRmOYVvRiz+jQPniS9/jckhMhZhxdCxEHotBAcXZ/9mu87UK4trBsE8feVxBNCZN0v537hRPQJJvlPIpd9LqPv32TWAcopf18H6N7jJFp8tYe6JfOxoEcNo64xIITIRvcuwncNtaGv1tNevM2TaJjvB8UbQLd/a8NjQgiTdzX2Kt3WdaNr2a6MqJM9Q9lm9QxQdsjv6sjkTlXYdCaKtWG3VccRQmREWioE9wa3ItA08OXb5S4A7eZA+Fo4syrn8gkhsixVn0rA/gC8c3kzoMaAbDuO1RdAAG2rFqRd1YIErjnL3bhE1XGEEP/k4Ndw+yR0WgQO/zA1tlJnqPQWbBgKj+V5PyFM3dKzSzn74CyT/SfjbPfiGd7GIAXQ/5vUsTL2tjaM+vO0dIoXwpRFnYFdU7Xp7j61M/aZtrPB1kFbKFGubyFM1oWHF5gfOp8PK31ItQLVsvVYUgD9P/dcDkx7qwo7z0ez4thN1XGEEC+SmqwNfXmWgSajMv45Fw/o8A1c2gKhv2ZfPiFElqWkpRBwIIDieYrTt1rfbD+eFEB/0ayiF11qFmHi+nPcfJSgOo4Q4u/2zoTocG3Wl51j5j5brjVU6wGbRkJMZPbkE0Jk2XenvuPyo8sENQjCwdYh248nBdDfBLaviKuTHSNWnUKvl1vlQpiMWydg32xo9CUUqpa1fbSaCk55YG0/bQ0hIYRJOHv/LN+f/p7Pq35OxXwVc+SYUgD9TR4ne6a/XZUDlx/w6+EbquMIIQBSEmF1b/CuDA2HZn0/Tm7aKtFXd8OxH4wWTwiRdUlpSYzeP5qy7mX5tOqnOXZcKYBeoFHZ/PTwK8qUjee5fj9edRwhxK4geHQNOn8Htvavt6/STaHWx7AtEB5eNU4+IUSWzT85n8jHkQQ1CMLe5jWv70yQAuglRrepgKerA1+uDCNNhsKEUCfiMBz8Ft4YDQUqGGefzSdBrvxaGw19mnH2KYTItJPRJ1l6dil9q/WljHuZHD22FEAvkcvRjlldfDl24xE/7r+mOo4Q1ik5Xpv1VaQW1DfigmiOubUHqSMOwaGFxtuvECLDElISCNgfQJX8Vfiw0oc5fnwpgF7Br2Q+PvYvwcytF7gc/Vh1HCGsz/YJEHdHW/DQxta4+y7uD3W/gB0T4d4F4+5bCPGP5p6YS3RCNEH+Qdga+/rOACmA/sGXLctRxN2ZocvDSE2TWSNC5Jire+DId9BsPHiWzp5jNB0LeYtqD1inpWbPMYQQzzl85zC/n/+dQTUHUdytuJIMUgD9Ayd7W2Z39eX0rVgW7bmiOo4Q1iExDtb0g+INoc7n2Xcce2fovAjuhMKBr7LvOEKIdE+SnzD2wFhqe9fm3fLvKsshBVAGVC/qTu/Gpfh6xyXO3Y5THUcIy7d1DDx9CB3ngU02/zNVpBb4D4Ld0yHqdPYeSwjBrGOziE2KZWL9idjo1JUhUgBl0MBmZSiVPzdDloeSnCpDYUJkm0vb4MS/ocVkcC+eM8dsMhI8y2pDYanJOXNMIazQ3pt7WXVpFcNqD6OIaxGlWaQAyiBHO1tmd/PlcvQTvtlxSXUcISzT00ewtj+Uago1P8y549o5akNh987D3hk5d1whrEhsUizjD47Hv5A/Xcp0UR1HCqDMqFTIjQFNy7BwzxVCI2NUxxHC8mwaAckJ2mrNOl3OHrtgVWg0HPbNgVvHc/bYQliBqUemkpiayPj649Hl9PX9AlIAZVKfJqWoWDAPQ5eHkpgiC6gJYTTh6+DUMmgzA9wKq8nQcAh4V4HVfSDlqZoMQlig7Te2s+HqBkb5jcI7l7fqOIAUQJlmb2vD7G6+RD58yuytsnaIEEYRfx/WDYJybaFqd3U5bO21obBH12DnZHU5hLAgDxMfMunQJN7weYN2JdupjpNOCqAsKOvlytAWZfl+/zWOXHuoOo4Q5s1ggPWDwaCH9nNzfujr7wpUgDcDIGQ+3AhRm0UIM2cwGJgUMgm9QU9gvUCTGPr6LymAsujThiWpUdSdYSvCiE+SBdSEyLIzqyB8LbSbA7kLqE6jqdcPfOpAcB+tHYcQIks2XtvI9ojtBNQNwNPZU3WcZ0gBlEW2NjpmdfUl+nEi0zadVx1HCPMUdwc2DIXKb0OlzqrT/I+NrdYr7HEUbBunOo0QZik6IZoph6fQunhrWhZvqTrOc6QAeg0lPHMxslV5/nPoBvsv3VcdRwjzYjDAuoHaFPQ2s1SneV6+UtB8AhxdAld3q04jhFkxGAyMPzgeB1sHRvuNVh3nhaQAek096xWnXsl8DF8ZRlxiiuo4QpiPk7/ApS3Q/mtw8VCd5sVqf6a141jTT2vPIYTIkODLwey7tY9x9caR1ymv6jgvJAXQa7Kx0TGjS1Vin6Ywef051XGEMA8xEbB5FFTrAeVaq07zcjY20HG+tkDjFtP8KVYIU3P7yW2mH51Ox1IdaeLTRHWcl5ICyAh8PFwY264iy4/dZOf5u6rjCGHa9HrtjoqTG7SaqjrNP3MvBi2nwMn/wMUtqtMIYdL0Bj2BBwJxdXBlRJ0RquO8khRARtK9tg9NyuVnxKrTxCRILyEhXurYD3BtD3T8ViuCzEGNnlC6OawdAAmy9IUQL7PswjIORx1mQv0JuDq4qo7zSlIAGYlOp2PaW1VJSklj3NqzquMIYZoeXIFtgVDrEyj1puo0GafTQYdvIPUpbBquOo0QJikiLoKvjn9F93LdqV+ovuo4/0gKICPydnNiQsdKrAm9zabTd1THEcK06NNgTV9trZ/mE1Wnybw8haD1TDi9As6tUZ1GCJOSpk8j4EAA+ZzyMaTmENVxMkQKICPrVK0wLSt5MSb4DPefJKmOI4TpOLQAIg5BxwXgmFt1mqyp2g3Kt9NWrn5yT3UaIUzGL+G/EBodyiT/SbjYu6iOkyFSABmZTqcjqHMVAMasPo3BYFCcSAgTcO8C7JgEdb+A4v6q02SdTgft5mq/3jBYW8tICCt3JeYK35z4hvcrvk8t71qq42SYFEDZwDO3I5M7VWbL2busCb2tOo4QaqWlwurekLcoNB2rOs3ry50f2s7RutefXqE6jRBKpepTGbN/DIVyF2JA9QGq42SKFEDZpE2VgnTwLUTgmjNExSaqjiOEOge+gjuhWpd1e2fVaYyjUieo3AU2DtPaeQhhpX44/QPhD8MJahCEk52T6jiZIgVQNprYsRKO9raM/POUDIUJ6xR1GnZPhwaDoYj53BrPkDYzwc4J1vaXoTBhlc4/PM+iU4v4uPLHVM1fVXWcTJMCKBvldXFg+ttV2H3hHsuORqqOI0TOSk3Whr48y0Jj014QLUtcPKDDt3B5m7ZIohBWJCUthTH7x1DCrQR9fPuojpMlUgBlszfLe9GtVhEmrT9H5MME1XGEyDl7psO989rQl52j6jTZo2xLqP4+bB6ttfcQwkosDFvI1ZirTGkwBQdbB9VxskQKoBwQ0K4ibs72DF95Cr1ebpULK3DzOOz/SrvzU9D8bo1nSssp2orWa/pqbT6EsHCn753mhzM/8C/ff1Heo7zqOFkmBVAOyONkz4wuvoRcfcB/Dt1QHUeI7JXyFIJ7a4VPg8Gq02Q/JzfoOA+u7YWj36tOI0S2SkxNZMyBMZT3KM8nVT5RHee1SAGUQxqU8eSDusWYuimca/fjVccRIvvsnAyPbkCnRWBrrzpNzij1BtT+FLaP09p9CGGhvj35Lbce3yLIPwh7G/O+vqUAykEjW5fHK48Tw1aEkSZDYcIS3TgIIfPhzQAoYL63xrOk2QTI7QXBfbS2H0JYmON3j/Ofc/+hX/V+lHYvrTrOa5MCKAflcrRjVldfTkQ84vt9V1XHEcK4kp5o//n7+EG9vqrT5DzH3NBpIUQe0YpAISxIQkoCAfsD8M3vS8+KPVXHMQopgHJY7eIefNqgBLO3XuTi3ceq4whhPNvHwZNo6LQAbGxVp1GjWD2t+Ns5GaLPq04jhNHMOT6H+0/vM7nBZGwt5PqWAkiBoS3K4ePhzNDlYaSkyawRYQGu7tYeAG42AfKVUp1GrTcDwL2Y9iB4WorqNEK8tpDbISy7sIzBNQdTLE8x1XGMRgogBZzsbZndrRrn7sSxcLc8MCnMXGIsrOkHJRppDwJbO3tn7QHwO6e0pQCEMGOPkx8TeDCQOt51eKf8O6rjGJUUQIpU88lLn8al+GbHJc7cilUdR4is2zIansZAx/lgI/+kAFCkprYEwJ7pWiEkhJmacXQGj5MfM9F/IjY6y7q+Leu7MTMDmpahdIHcDFsRRlKqzBoRZujiFjj5C7SaonV7F//TeATkL6+1A0lNUp1GiEzbE7mH4MvBfFnrSwrnLqw6jtFJAaSQg50Nc7pV48q9J3y9/ZLqOEJkTsJDrRFomRZQ/QPVaUyPnYPWBuT+Re1OkBBmJCYxhvEh42lQuAFvlXlLdZxsIQWQYhUL5WFg0zIs2nOFkxGPVMcRIuM2DdfubLT/BnQ61WlMk3cVaDJCexbo5jHVaYTIsClHppCUlsSE+hPQWej1LQWQCejduBRVCrsxdEUYiSkyFCbMwLk1cHoFtJkJeQqqTmPa/AdDwWraUFjKU9VphPhHW69vZdO1TYz2G00BlwKq42QbKYBMgJ2tDbO7+XLz0VNmbrmgOo4Qr/bkHqwfDBXaQ5WuqtOYPls7bSgsJgJ2TFKdRohXuv/0PpMPTaZp0aa0LdFWdZxsJQWQiShdwJUvW5TjxwPXOHz1geo4QryYwQDrB2m/bvuVDH1lVP5y0HQsHFoA1w+oTiPECxkMBiaFaEX62LpjLXbo67+kADIhHzcoQa1i7gxbGUZ8UqrqOEI87/QKOL8e2s2F3PlVpzEvdb+AonW1diFJT1SnEeI566+uZ2fkTsbWG0s+53yq42Q7KYBMiK2Njlldfbn/OJkpG8NVxxHiWXG3YeMwbdirYgfVacyPja3WJiT+HmwLVJ1GiGfcjb/L1MNTaVOiDc2LNVcdJ0dIAWRiiuXLxeg25fn1cAR7L95THUcIjcEAaweAnTO0nqE6jfnyKAnNJ8KxH+DKTtVphAC0oa9xIeNwsnNitN9o1XFyjBRAJqiHXzH8S+djxKpTxD6VXkLCBJz4N1zeBh2+BRcP1WnMW61PoERjrX1IoqwCL9RbdWkVB24dYHz98bg5uqmOk2OkADJBNjY6ZnTx5XFiKpPWn1MdR1i7Rze0dhfVP4CyLVSnMX82NlrbkMQ42DxKdRph5W49ucXMozPpXLozjYo0Uh0nR0kBZKIK53UmsF1FVh6/ybZzd1XHEdZKr4c1fcHZHVpOUZ3GcuT1gVZTIfRXuLBJdRphpfQGPWMPjMXN0Y3htYerjpPjpAAyYV1rFeHN8gUY9edpHsUnq44jrNHR7+H6Pug4D5zyqE5jWaq/D2Vaas9WJTxUnUZYod/P/87RqKNM9J9IbofcquPkOCmATJhOp2PaW1VISdMzds0Z1XGEtXlwRZutVPszKNlEdRrLo9NBh28gLVmbXSdEDroee525x+fyTrl3qFuwruo4SkgBZOIK5HFiYsdKrD91h/WnbquOI6yFPk1br8bVG5pPUJ3Gcrl6Q9vZcGYVnF2tOo2wEmn6NAIOBJDfJT+Daw5WHUcZKYDMQAffQrSu7M3Y4DPce5ykOo6wBiHzIPKI1sLBIZfqNJat8ttQoQOsHwJPolWnEVbg53M/c+reKSb7T8bF3kV1HGWkADIDOp2OyZ0qY6PTMerP0xgMBtWRhCWLDoedk6F+P23lYpG9dDpo9xXobGDdIG3NJSGyyeVHl5l3ch49K/akhlcN1XGUUl4AzZ8/n+LFi+Pk5ISfnx9Hjhx55fZz586lXLlyODs74+Pjw+DBg0lMTMyhtOrky+1IUOfKbA+/y58nbqmOIyxVWorWtdy9BLwRoDqN9cjlCe3nwoUNcGqZ6jTCQqXoUxi9fzQ+rj70r9FfdRzllBZAy5YtY8iQIYwbN44TJ07g6+tLy5YtiY5+8W3g3377jZEjRzJu3DjCw8P54YcfWLZsGaNHW8fKla0qF6RTtUKMX3eWO7FPVccRlmj/VxB1GjovBHsn1WmsS4X2ULU7bBwOsfJDjjC+709/z8VHFwlqEISjraPqOMopLYDmzJnDZ599xkcffUTFihVZtGgRLi4u/Pjjjy/c/uDBg/j7+/Pee+9RvHhxWrRowbvvvvuPd40syYQOlXFxsGX4ylMyFCaM604Y7JkODYdA4Zqq01in1tPBwQXW9pehMGFU5x6cY3HYYj6p8gmVPSurjmMSlBVAycnJHD9+nGbNmv0vjI0NzZo1IyQk5IWfqV+/PsePH08veK5evcrGjRtp06bNS4+TlJREXFzcMy9z5uZiz7S3q7Lv0n1+PxKpOo6wFKlJsLoP5K8AjaxvQTST4eyutRu5sgOOL1WdRliI5LRkxuwfQ6m8pehdtbfqOCZDWQF0//590tLS8PLyeuZ9Ly8voqKiXviZ9957j4kTJ9KgQQPs7e0pVaoUTZo0eeUQ2NSpU3Fzc0t/+fj4GPX7UOGNcgV4p7YPkzecI/Jhguo4whLsngb3L2qzvuwcVKexbmWaQ42esDUAHl1XnUZYgAWhC7ged52gBkHY29qrjmMylD8EnRm7d+9mypQpLFiwgBMnTvDnn3+yYcMGJk2a9NLPjBo1itjY2PRXZKRl3DUZ07YC7i4ODFsRhl4vt8rFa7h5DA7MhSYjwVtujZuEFkHg7AHBfbV2JEJkUdi9MH46+xN9fPtQzqOc6jgmRVkB5Onpia2tLXfvPtvn6u7du3h7e7/wM2PHjuWDDz7g008/pUqVKnTu3JkpU6YwdepU9C/5R8LR0ZE8efI887IErk72zOxSlcPXHrL04HXVcYS5SnmqzfoqVB38B6lOI/7LKQ90mg839sORxarTCDP1NPUpAfsDqOhRkY8rf6w6jslRVgA5ODhQs2ZNduzYkf6eXq9nx44d1KtX74WfSUhIwMbm2ci2trYAVvlAcP3SnvSqV4wZW85z9d4T1XGEOdoxCWIjodMisLVTnUb8VYlGUOdfsH083L+sOo0wQ9+c+IbbT24T1CAIOxu5vv9O6RDYkCFDWLJkCT///DPh4eH06dOH+Ph4PvroIwB69uzJqFGj0rdv3749Cxcu5I8//uDatWts27aNsWPH0r59+/RCyNqMaF0e7zxODF0RRpoMhYnMuH4ADi2AN8dC/rKq04gXaTYO8hSE4N5aexIhMuho1FF+Cf+FATUGUDJvSdVxTJLSkrB79+7cu3ePwMBAoqKiqFatGps3b05/MDoiIuKZOz4BAQHodDoCAgK4desW+fPnp3379gQFBan6FpRzcbBjVldfun4XwuK9V+nTpJTqSMIcJD3Ren0VrQt1+6hOI17GIZd2d+6nVnDwG2hgvX2bRMYlpCQw9sBYahSowfsV3lcdx2TpDFY2dhQXF4ebmxuxsbEW8zwQwNSN4fx04Drr+jegnLer6jjC1K0fDGF/QJ8D4CE/HZq8rWPh8CL4fA94VVSdRpi4SSGTWHd1Havar8Inj/nPfM4uZjULTLzc4OZlKZbPhSHLQ0lJk1kj4hUu74BjP0LziVL8mIs3xmjnavW/tHYlQrzEwVsHWX5xOUNqDpHi5x9IAWQhnOxtmd3Nl/NRj5m/Sx6YFC/xNEZbZbhkE6j1ieo0IqPsnbQ1mu6ehX2zVacRJiouOY7Ag4H4FfSjW7luquOYPCmALEjVInnp26QU83Ze5sytWNVxhCnaMhqSHkOHeWAjl79ZKVQdGg2DvTPhdqjqNMIETT8ynScpT5hUfxI2Orm+/4n8CVmYfm+WoayXK0OWh5KUKrNGxF+c3wihv0LLKZBXbo2bpYbDoEAFbe2m1CTVaYQJ2RWxi7VX1jKi9ggK5i6oOo5ZkALIwjjY2TCnuy/X7sfz1bZLquMIU5HwENYNhLKtoLrMCjFbdg7Q+Tt4cBl2TVGdRpiImMQYJoRMoFGRRnQq3Ul1HLMhBZAFKu+dh0HNyrJ47xWO33ikOo4wBRuGQloytP8adDrVacTr8KoEb4zSpsVHHlGdRpiAoMNBpOhTGF9vPDq5vjNMCiAL9a9GJalSJC/DVoTxNFmGwqzamT/h7J/Qdja4vrjNjDAz9QdCoRraUFiyNES2Zpuvb2bz9c2M8RtDfpf8quOYFSmALJSdrQ2zu/pyO+YpM7acVx1HqPIkWrv7U7EjVH5bdRphLLZ22qywuFuwY6LqNEKR+0/vE3QoiObFmtO6RGvVccyOFEAWrHSB3HzZshw/HbhOyJUHquOInGYwaM/96Gyg7RwZ+rI0nmWg6Tg4vBCu7VOdRuQwg8HAhJAJ2OhsCKgbIENfWSAFkIX72L8EdUp48OXKMJ4kpaqOI3JS2B9wYaP23E8uT9VpRHbw6w3F/GHNF9ryBsJqrLu6jt2RuwmsG4iHk4fqOGZJCiALZ2OjY1YXXx7GJxO0IVx1HJFTYm/BphFQtTtUaKc6jcguNjbQcT7EP4CtAarTiBwSFR/FtMPTaFeyHU2LNVUdx2xJAWQFiuZzYXSbCvx+JII9F++pjiOym8EAa/uBgwu0nq46jchuHiWgxSQ4vhQub1edRmQzg8HAuIPjcLZzZmSdkarjmDUpgKxED7+iNCzjyYiVp4h9Kr2ELNrxpXBlp7bas7O76jQiJ9T6GEq+AWv6a+1OhMVacXEFB28fZHz98bg5uqmOY9akALISOp2O6W9XJT4plQnrzqqOI7LLo+uwZQzU6AVlmqlOI3KKTgcd50HyE9gsdwUsVeTjSGYdm8XbZd6mYZGGquOYPSmArEihvM4Etq/InydusfVslOo4wtj0egjuCy75oGWQ6jQip7kV0YY8w36H8xtUpxFGpjfoCTwQiLujO8NqDVMdxyJIAWRlutQsQrMKBRi9+jQP45NVxxHGdOQ7uLEfOs0HR1fVaYQKvu9C2dba8gfxsvSFJfkt/DeO3T3GJP9J5HbIrTqORZACyMrodDqmvFWFVL2BscFnVMcRxnL/EmwfD3X+BSUaqU4jVNHptGUP9KmwYYjqNMJIrsVeY+6JubxX/j3qFKyjOo7FkALIChVwdWJSx8psOH2HdWG3VccRr0ufBsF9IE9haDZedRqhmquX1vbkXDCcWaU6jXhNqfpUAg4E4OXixcAaA1XHsShSAFmp9r6FaFulIGPXnCH6caLqOOJ1HPwGbh2HTgu1qe9CVH4bKnbS2qA8vqs6jXgNS88u5cz9MwQ1CMLFXq5vY5ICyIpN6lQZOxsdo1adxmAwqI4jsuLuOdg1Ber3h6J+qtMIU9J2DtjYwboB2tpQwuxcenSJBaEL6FWxF9UKVFMdx+JIAWTFPHI5MKVzFXacj2bl8Zuq44jMSkuB1f8Cj5LQZLTqNMLU5MqnPQ90cTOE/qY6jcikFH0KY/aPoahrUfpW76s6jkWSAsjKtajkzVs1CjNx3TluxzxVHUdkxt5ZcPes1hXc3kl1GmGKyrfVZoZtHgmx8kOOOVlyagkXH10kqGEQjraOquNYJCmABOPaVyKXox0jVp2SoTBzcfsk7JsFjYZBoeqq0whT1moaOOSGNf1kKMxMnH1wliWnlvBZ1c+olK+S6jgWSwoggZuzPdO7VGXfpfv8ejhCdRzxT1KTYHUfKFARGsqCaOIfOOeFjt/C1V1w7EfVacQ/SE5LJmB/AKXdS/N5lc9Vx7FoUgAJABqXzc+7dYoyZWM4EQ8SVMcRr7JrCjy4rA192TmoTiPMQelmUPND2DoWHl5TnUa8wvzQ+VyPu05QgyDsbe1Vx7FoUgCJdGPaVsAjlwPDVoSh18utcpMUeUSb9v7GaPCSW+MiE1pM1h6MDv5Ca5siTE5odChLzy6lb7W+lHUvqzqOxZMCSKTL7WjHzC6+HLn+kB8PyE+JJic5AVb3hkI1oP4A1WmEuXF0hY4LIOIgHF6oOo34m6epTwk4EEDlfJX5sNKHquNYBSmAxDPqlcrHR/7FmbnlApejn6iOI/5qxwSIu6UNfdnaqU4jzFGJhuDXB3ZMhHsXVacRf/H1ia+Jio9icoPJ2NnI9Z0TpAASzxnesjyF8jozdEUYqWlyq9wkXNsLhxdB03HgWUZ1GmHOmgZqbVOCe0Naquo0Ajhy5wi/hv/KwBoDKeFWQnUcqyEFkHiOs4Mts7r6cvpmDN/tvao6jkh6DGv6QrEG4NdbdRph7hxctLuIt0/Cwa9Vp7F68SnxBB4MpKZXTXpU6KE6jlWRAki8UM1i7nzeqBRzt18k/E6c6jjWbWsAxD+AjvPARi5ZYQQ+dbTnyHZNhagzqtNYtVnHZvEw8SGT/Cdho5PrOyfJn7Z4qcHNy1DCMxdDl4eRnCpDYUpc2g7Hl0LLyeAht8aFEb0xGvKV1obCUpNVp7FK+2/tZ+XFlQyrNQwfVx/VcayOFEDipRztbJnTrRoX7z5m3s5LquNYn6ePYG1/KPUm1PxIdRphaewctaGw6HDYO1N1GqsTmxTLuIPjqFewHl3LdlUdxypJASReqXJhN/q9WZr5u69w6maM6jjWZdNISI6HDt+CTqc6jbBEhapBoy9h32y4dUJ1Gqsy/ch0ElISmOg/EZ1c30pIAST+Ud83SlOhoCtDl4eRmJKmOo51CF8Pp/6A1tPArYjqNMKSNRwK3pW1NaZSElWnsQo7Inaw7uo6RtYZiXcub9VxrJYUQOIf2dvaMLtrNW48SOCrbbJ2SLaLfwDrB0G5NlonbyGyk609dFoEj67BriDVaSzeo8RHTAyZSJMiTehQqoPqOFZNCiCRIeW8XRncvCyL913l+I2HquNYLoMBNgwGfSq0mytDXyJneFXUHoo++C1EHFKdxmIZDAYmHZpEmiGNcfXHydCXYlIAiQz7vFFJqvnkZejyMBKSZQG1bHFmFZxbA23ngKuX6jTCmtQfAEVqQXAf7dkzYXSbr29m241tBPgF4OnsqTqO1ZMCSGSYrY2O2V19iYpLZMbmC6rjWJ7HUbBxGFTqDJXfUp1GWBsbW20oLO4ObB+vOo3FuZdwj6DDQbQs3pJWJVqpjiOQAkhkUsn8uRnesjxLD17n4OX7quNYDoMB1g0EG3toM1t1GmGtPEtDs/FwZDFc3aM6jcUwGAxMCJmArc6WMX5jVMcR/08KIJFpH9Yvjl8JD75ceYrHiSmq41iG0N/g4mZo/zXkyqc6jbBmdT6H4g219iuJsgq8May5soY9N/cwvt543J3cVccR/08KIJFpNjY6ZnX1JSYhmaAN4arjmL/Ym7B5JPi+B+XbqE4jrJ2NjdZ25ekj2Cp3K15XVHwU049Mp0OpDrxR9A3VccRfSAEkssTHw4UxbSvyx9FIdl2IVh3HfBkM2k/aDrmh1VTVaYTQuBeHFpPhxL/h4lbVacyWwWAg8EAgLvYujKgzQnUc8TdSAIkse7eOD43K5mfkqlPEJshQWJYc+wGu7tZ+4nbOqzqNEP9T80Mo1VRrx5IgS19kxYqLKwi5E8LE+hPJ45BHdRzxN1IAiSzT6XRMf7sKCclpjF93VnUc8/PwKmwN1Pp8lW6qOo0Qz9LptDYsKU9hk9y9yKzIx5HMOjaLrmW74l/YX3Uc8QJSAInXUtDNmfHtK7H65C02n4lSHcd86PUQ3BdyeUKLSarTCPFiboWhzQw4vRzOrVWdxmzoDXoC9gfg4eTB0FpDVccRLyEFkHhtb9UoTPOKXoxZfZoHT5JUxzEPhxdCxEHotAAcXVWnEeLlqnaHcm1h/WCIl6UvMuKXc79wIvoEk/wnkcs+l+o44iWkABKvTafTMaVzFfQGAwHBZzAYDKojmbZ7F2H7BKj7BRRvoDqNEK+m00H7uWDQaz3q5Pp+pauxV/nm5De8X+F9anvXVh1HvIIUQMIo8rs6MrlTFTadiWJt2G3VcUxXWioE94a8PtA0UHUaITImdwFoNwfC18HplarTmKxUfSoB+wMomKsgA2oMUB1H/AMpgITRtK1akHZVCxK45ix34xJVxzFNB+bC7ZNaywF7Z9VphMi4Sp2h8ttau5a4O6rTmKSlZ5dy9sFZJjeYjLOdXN+mTgogYVSTOlbG3taGUX+elqGwv4s6A7ungf9A8JFb48IMtZkFdo6wboAMhf3NhYcXmB86n48qfYRvfl/VcUQGSAEkjMo9lwPT3qrCzvPRrDh2U3Uc05GaDKt7g2cZaDJKdRohssbFQ2vXcmkrnPxFdRqTkZKWQsCBAIrnKc4X1b5QHUdkkBRAwuiaVfSiS80iTFx/jpuPElTHMQ17Z8K9cOi0UPsJWghzVa41VOsBm0dBTITqNCbhu1PfcfnRZYIaBOFg66A6jsggKYBEtghsXxFXJztGrDqFXm/lt8pvHYd9s6HRl1Comuo0Qry+VlPByU1r46LXq06j1Nn7Z/n+9Pd8XvVzKuarqDqOyAQpgES2yONkz/S3q3Lg8gN+PXxDdRx1UhJhdR/wrgwNZUE0YSGc3KDjt3Btr9bOxUolpSUxev9oyrqX5dOqn6qOIzJJCiCRbRqVzU8Pv6JM2Xie6/fjVcdRY9dkeHQNOn8Htvaq0whhPKXehFofw7ZAeHBFdRol5p+cT+TjSKY0mIK9jVzf5kYKIJGtRrepgKerA1+uDCPN2obCIg7BwXnwxhgoUEF1GiGMr/kkyJUfgr8AfZrqNDnqZPRJlp5dSr/q/SjtXlp1HJEFUgCJbJXL0Y5ZXXw5duMRP+6/pjpOzkmO12Z9FakN9furTiNE9nDMrT3YH3kYDi1QnSbHJKQkELA/gKr5q9KrYi/VcUQWSQEksp1fyXx87F+CmVsvcDn6seo4OWP7eHgcpf3nYGOrOo0Q2ae4v9bWZcckiD6vOk2OmHtiLtEJ0Uz2n4ytXN9mSwogkSO+bFmOIu7ODF0eRmqahc8aubobjiyGZuPBU26NCyvQdCzkLQrBfbR2Lxbs8J3D/H7+dwbVHERxt+Kq44jXIAWQyBFO9rbM7urL6VuxLNpjwQ9MJsbBmn5QvCHU+Vx1GiFyhr0zdF4Ed0LhwFeq02SbJ8lPGHtgLLW9a/Nu+XdVxxGvSQogkWOqF3Wnd+NSfL3jEudux6mOkz22jIanj6DjfLCRy0tYkSK1wH8Q7J4OUadVp8kWs47NIjYplkn+k7DRyfVt7pSfwfnz51O8eHGcnJzw8/PjyJEjr9w+JiaGvn37UrBgQRwdHSlbtiwbN27MobTidQ1sVoZS+XMzZHkoyakWNhR2cSuc/A+0DAL3YqrTCJHzmowEz7LaBIDUZNVpjGrvzb2surSKL2t/SeHchVXHEUaQ5QJox44dtGvXjlKlSlGqVCnatWvH9u3bM7WPZcuWMWTIEMaNG8eJEyfw9fWlZcuWREdHv3D75ORkmjdvzvXr11m5ciUXLlxgyZIlFC4sfxnNhaOdLbO7+XI5+gnf7LikOo7xJDyEtf2hdDOoIbNChJWyc9SGwu6dhz3TVacxmtikWMYfHI9/YX/eLvO26jjCSLJUAC1YsIBWrVrh6urKwIEDGThwIHny5KFNmzbMnz8/w/uZM2cOn332GR999BEVK1Zk0aJFuLi48OOPP75w+x9//JGHDx8SHByMv78/xYsXp3Hjxvj6Suddc1KpkBsDmpZh4Z4rhEbGqI5jHJtGQOpT6PAt6HSq0wihTsGq0HgE7P8Kbh5XncYoph6ZSmJaIhPqTUAn17fF0BkMhkyvTlekSBFGjhxJv379nnl//vz5TJkyhVu3bv3jPpKTk3FxcWHlypV06tQp/f1evXoRExPDmjVrnvtMmzZt8PDwwMXFhTVr1pA/f37ee+89RowYga3ti6ciJiUlkZSUlP77uLg4fHx8iI2NJU+ePBn8joWxpaTpeWvBQRKSU9kwoCFO9mY8lfTcWlj+gbbas+87qtMIoV5aCnzfDFIS4F97tYekzdSOGzsYtHsQUxpMoX2p9qrjCCOyy8qHYmJiaNWq1XPvt2jRghEjRmRoH/fv3yctLQ0vL69n3vfy8uL8+RevJXH16lV27txJjx492LhxI5cvX+aLL74gJSWFcePGvfAzU6dOZcKECRnKJHKOva0Ns7v50u7b/czacoGAdmbaRDD+PqwfDOXbQdXuqtNkicFgIDXVsqcumzNbW1tszO2Belt77QeC7xrBzsnac3Fm6GHiQyYemsibPm/SrmQ71XGEkWWpAOrQoQOrV6/myy+/fOb9NWvW0K5d9v0l0ev1FChQgMWLF2Nra0vNmjW5desWM2fOfGkBNGrUKIYMGZL++//eARLqlfVyZWjzskzbfJ4WlbypU8JDdaTMMRhg/SAw6KHdV2Y59JWamsq9e/fIwo1gkYNcXFxwc3Mzr+GXAuXhzTGwbRyUbwvF6qtOlCkGg4HJhyajN+gZW2+sef3ZiwzJUgFUsWJFgoKC2L17N/Xq1QPg0KFDHDhwgKFDh/LNN9+kbztgwIAX7sPT0xNbW1vu3r37zPt3797F29v7hZ8pWLAg9vb2zwx3VahQgaioKJKTk3FwcHjuM46Ojjg6Omb6exQ549OGJdl67i7DVoSxaWBDcjlm6a+kGqdXQvg66Poz5C6gOk2mGQwGYmJisLGxwd3dXf6BN0EGg4Hk5GTi4rRlI/Lmzas2UGbV6wfnN2gLJPY+oLXOMBObrm1i241tzG48G09nT9VxRDbI0jNAJUqUyNjOdTquXr360q/7+flRp04dvv32W0C7w1O0aFH69evHyJEjn9t+9OjR/Pbbb1y9ejX9lvDXX3/N9OnTuX37doYyxcXF4ebmJs8AmZBr9+Np/fVeutb0YVKnyqrjZEzcHVhQF0o3hS4vfmjf1KWlpXH37l3c3d1xdjbfZzSswZMnT4iLi8Pb29v8hsMeXIGF/lC9B7SdrTpNhkQnRNN5TWf8C/kzo/EM1XFENsnSj9vXrhmnqeWQIUPo1asXtWrVok6dOsydO5f4+Hg++ugjAHr27EnhwoWZOnUqAH369GHevHkMHDiQ/v37c+nSJaZMmfLSu0zCPJTwzMWo1hUYt/YsLSt506CMif+0ZTDAugHalN82s1SnyTK9XluH6WUTCITp+O/d7bS0NPMrgPKVguYTYdOX2rNypd5QneiVDAYDE0Im4GDrwGi/0arjiGykdLyhe/fu3Lt3j8DAQKKioqhWrRqbN29OfzA6IiLimYvdx8eHLVu2MHjwYKpWrUrhwoUZOHBghh+8Fqbrg7rF2HwmiuErw9g8uBF5nOxVR3q5k7/Apa3w7jJwMbPnll5Ahr5Mn9mfo9qfQvharU3MFwfByU11opcKvhzM3pt7mffmPPI65VUdR2SjDA+BDRkyhEmTJpErV65nHip+kTlz5hglXHaQITDTFfkwgdZf76NNFW9mdDHRtZ1iImBBfajYETplfM0rU5SSksK9e/fInz8/9vYmXHAKyzhXj25oQ2GVOmqtYkzQ7Se3eWvtWzQv1pxJ/pNUxxHZLMN3gE6ePElKSkr6r1/G7H9SEcr4eLgQ0LYCI/88TavK3rxZ3uufP5ST9HpY01f76bXVFNVphDAv7sW06fDrBkD59lDu+aVUVNIb9AQeDMTVwZXhtYerjiNyQIYLoF27dr3w10IYU/faPmw+G8WIVafZNtidvC7Pz+xT5tgPcG0vfBBs0rfwLV2TJk2oVq0ac+fOVR1FZFaNntrMyXUDwOeQSQ0hL7+wnMN3DrO4+WJcHVxVxxE5wMyephOWTqfTMf3tqiSlpDFu7VnVcf7nwRXYFgi1PjH5hziFMFk6ndYuJjURNn75z9vnkIi4COYcn0P3ct2pV6ie6jgih2SpAIqPj2fs2LHUr1+f0qVLU7JkyWdeQrwOrzxOTOxYmTWht9l0+o7qOKBPg+AvtLV+mk9UnUYI85anoDZ78sxKOBusOg1p+jTGHhhLPqd8DKn56udbhWXJ0iywTz/9lD179vDBBx9QsGBBee5HGF3HaoXYdOYOY4LPULuEB565FS5meWgBRB6Gjzaa1UJu1uDRo0cMHDiQdevWkZSUROPGjfnmm28oU6YMBoOBAgUKsHDhQrp06QJAtWrVuHv3LnfuaIX1/v37adq0KY8ePcLFxUXlt2JdqnSFc2tgwxAo5g+58yuL8kv4L5yMPslPrX7CxV7+DliTLBVAmzZtYsOGDfj7+xs7jxCANhQW1LkKLb7ay5jVp1n0fk01hXb0edgxCer1Nbul/LPiaXIaV+49yfHjlsqfG2eHzK9H9OGHH3Lp0iXWrl1Lnjx5GDFiBG3atOHcuXPY29vTqFEjdu/eTZcuXXj06BHh4eE4Oztz/vx5ypcvz549e6hdu7YUPzlNp4N2c2GBn9ZOpvsvSlrJXI25yjcnvuGDih9Q06tmjh9fqJWlAsjd3R0PD9N5eE1YJs/cjgR1qkyfX0+wJvQ2naoXztkAaanaEv7uxeDNgJw9tiJX7j2h3bf7c/y46/s3oHLhzD1Y/t/C58CBA9SvrxWnv/76Kz4+PgQHB9O1a1eaNGnCd999B8DevXupXr063t7e7N69m/Lly7N7924aN25s9O9HZEDu/FoPveU94dRy8M3ZZsKp+lTG7B9DYdfC9K/eP0ePLUxDlgqgSZMmERgYyM8//yw/OYls1bpKQTpWK0TgmjPULZkPbzennDv4/q/gTih8sh3sraNVRKn8uVnfv4GS42ZWeHg4dnZ2+Pn5pb+XL18+ypUrR3h4OACNGzdm4MCB3Lt3jz179tCkSZP0AuiTTz7h4MGDDB8uU56VqdhRGw7b9CWUaAh5CuXYoX888yPnHp7jl9a/4GSXg/+uCJOR4QKoevXqzwxBXL58GS8vL4oXL/7cwlwnTpwwXkJh9SZ0qETIlQeM/PMUP31YO2eGwu6cgj3TocFgKGI9t8adHWwzfSfGlFWpUgUPDw/27NnDnj17CAoKwtvbm+nTp3P06FFSUlLS7x4JRVrPgGv7YG1/6LEyR4bCLjy8wMKwhXxS+ROq5K+S7ccTpinDBVCnTp2yMYYQL5fXxYFpb1fh46XHWHY0knfqFM3eA6Yma0Nf+ctBY2mzYqoqVKhAamoqhw8fTi9iHjx4wIULF6hYsSKgPUvWsGFD1qxZw9mzZ2nQoAEuLi4kJSXx3XffUatWLXLlyqXy2xAuHtDhG/itG5z4N9Tsla2HS0lLYfT+0ZR0K0lv397Zeixh2jJcAI0bNy47cwjxSm+W96JbrSJMWn8O/9Ke+Hhk49Drnulw7zx8tktreCpMUpkyZejYsSOfffYZ3333Ha6urowcOZLChQvTsWPH9O2aNGnC0KFDqVWrFrlza0NtjRo14tdff+XLL01nLRqrVrYlVH8ftoyGkk205+6yycKwhVyNucrv7X7HwdaEFloVOS5L6wBFRkZy8+bN9N8fOXKEQYMGsXjxYqMFE+LvxrarSF4XB4avPIVen6EWdpl38zjsnwONR0LBqtlzDGE0P/30EzVr1qRdu3bUq1cPg8HAxo0bnxmWb9y4MWlpaTRp0iT9vSZNmjz3nlCs5VRwdtfazej12XKI0/dO8+OZH+nt25vyHuWz5RjCfGS4GepfNWzYkM8//5wPPviAqKgoypYtS+XKlbl06RL9+/cnMDAwO7IahTRDNW8HLt+nx/eHmdChEr3qFzfuzlOewneNwCGX9uCzbZbmCJgNi2iwaSWs5lxd3Q3/7qg9F+T3L6PuOjE1kW7ru+Fi58IvbX7Bzsayr2/xz7J0B+jMmTPUqVMHgOXLl1OlShUOHjzIr7/+ytKlS42ZT4hn+Jf2pGe9YkzdFM61+/HG3fnOyVrH6k6LLL74EcIklWwCtT+DbeO09jNGNO/kPG49vkVQgyApfgSQxQIoJSUFR0ft2Yjt27fToUMHAMqXL5++wqoQ2WVk6/J45XFi2Iow0ow1FHbjIITM19b7KSC3xoVQpvkEcPWG1b21NjRGcPzucf597t/0r96fUnlLGWWfwvxlqQCqVKkSixYtYt++fWzbto1WrVoBcPv2bfLly2fUgEL8nYuDHbO6+nIi4hHf77v6+jtMeqLN+vLx01Z8FkKo45ALOi2Em0chZN5r7y4hJYGA/QFUK1CNDyp+YISAwlJkqQCaPn063333HU2aNOHdd9/F19cXgLVr16YPjQmRnWoX9+DTBiWYvfUiF+8+fr2dbR8HT6Kh0wKwyXw7BiGEkRWrp/0wsnMyRIe/1q7mHJ/Dg8QHTPafjK1c3+IvMj0QajAYKFmyJBEREaSmpuLu7p7+tc8//1xWhhY5ZmiLcuy6cI+hy8P484v62NtmoZ6/sguOfq91p84nt8aFMBlvjoVL27ShsE+3g23mH/4OuR3CsgvLGO03mqJ5snn9MGF2Mv0/hsFgoHTp0kRFRT1T/AAUL16cAgUKGC2cEK/iZG/L7K6+nLsTx8LdWXhgMjEW1vSDEo2g1ifGDyiEyDp7J+i8EKJOw745mf744+THBB4MxM/bj+7lcrbPmDAPmS6AbGxsKFOmDA8ePMiOPEJkiq9PXr5oUopvdlzizK3YzH1482itCOo4H2yyNBoshMhOhWtCwyGwdwbcCcvUR2cencnj5MdM9J+IjU6ub/G8LP2tmDZtGl9++SVnzpwxdh4hMq3/m2Uo4+XKsBVhJKVmcNbIhc0Q+gu0mgJ55da4ECar0XDIX0EbCktNytBH9kTuYfXl1QyvPZxCuXOuwaowL1kqgHr27MmRI0fw9fXF2dkZDw+PZ15C5CQHOxtmd/Xlyr0nfL390j9/IOEhrBsAZVpAdZkVIoRJs3PQhsLuX4Ld0/5x85jEGMaHjKdh4YZ0Lt05BwIKc5Wl1aDmzp1r5BhCvJ6KhfIwsGkZ5my7SPOKXlQv6v7yjTd+qf0k2f6bHOk8LYR4Td5VoMkI2DUFyreFIrVeuumUI1NITktmfP3x6OT6Fq+QpQKoV6/s7dYrRFb0blyKbefuMnRFGBsHNMTJ/gVTXs8Gw5mV8Nb3kKdgjmcUQmSR/2A4v1EbCuu9D+ydn9tk6/WtbLq2iWkNp1HARSbkiFfL8pNhV65cISAggHfffZfo6GgANm3axNmzZ40WTojMsLO1YXY3X24+esrMLRee3+BJNGwYAhXaQ5UuOR9QmK20tDT02dSgU2SQrR10XgQxEbBj0nNffvD0AZMPTaZZ0Wa0KdFGQUBhbrJUAO3Zs4cqVapw+PBh/vzzT548eQJAWFgY48aNM2pAITKjdAFXhrcsx48HrnH46l9mKhoMsH4woIO2X8nQl5nbvHkzDRo0IG/evOTLl4927dpx5Yq2FEL9+vUZMWLEM9vfu3cPe3t79u7dC0BSUhLDhg2jcOHC5MqVCz8/P3bv3p2+/dKlS8mbNy9r166lYsWKODo6EhERwdGjR2nevDmenp64ubnRuHFjTpw48cyxzp8/T4MGDXBycqJixYps374dnU5HcHBw+jaRkZF069aNvHnz4uHhQceOHbl+/Xq2/FlZlPzloGkgHFoA1w+kv20wGJgYMhGdTkdA3QAZ+hIZkqUCaOTIkUyePJlt27bh4OCQ/v6bb77JoUOHjBZOiKz4yL8EtYq5M2xlGPFJqdqbp5bD+fXQ7ivInV9tQFOWnAC3Q3P+lZyQqZjx8fEMGTKEY8eOsWPHDmxsbOjcuTN6vZ4ePXrwxx9/YDD8r0/csmXLKFSoEA0bNgSgX79+hISE8Mcff3Dq1Cm6du1Kq1atuHTpfw/RJyQkMH36dL7//nvOnj1LgQIFePz4Mb169WL//v0cOnSIMmXK0KZNGx4/1lYjT0tLo1OnTri4uHD48GEWL17MmDFjnsmekpJCy5YtcXV1Zd++fRw4cIDcuXPTqlUrkpOTM/XnYJXq9oGidbX2NUnaD9/rr65nZ+ROxtYdSz5nacckMkZn+Ou/EhmUO3duTp8+TYkSJXB1dSUsLIySJUty/fp1ypcvT2JiYnZkNYq4uDjc3NyIjY0lT548quOIbHLjQTyt5u7jrRqFCWqaD+bXhbIt4e0lqqOZjJSUFO7du0f+/Pmxt///VXZvh8Lixjkf5vM9UKhalj9+//598ufPz+nTp/Hy8qJQoULs3LkzveCpX78+jRo1Ytq0aURERKSvZl+o0P+mSDdr1ow6deowZcoUli5dykcffURoaGh6q58X0ev15M2bl99++4127dqxefNm2rdvT2RkJN7e3oDWMLp58+asXr2aTp068csvvzB58mTCw8PT71QkJyeTN29egoODadGixXPHeeG5smYPr8JCf/B9h7tvjKTz2s40KtKIaQ3/eZaYEP+VpYeg8+bNy507dyhRosQz7588eZLChQsbJZgQr6NYvlyMblOesWvOMDR6NB72ztBmhupYps+zrFaMqDhuJly6dInAwEAOHz7M/fv305/PiYiIoHLlyrRo0YJff/2Vhg0bcu3aNUJCQvjuu+8AOH36NGlpaZQt++wxk5KSnmnm7ODgQNWqVZ/Z5u7duwQEBLB7926io6NJS0sjISGBiIgIAC5cuICPj0968QM81x8xLCyMy5cv4+rq+sz7iYmJ6cN44h94lITmEzFsHMa4tJs42Toxqs4o1amEmclSAfTOO+8wYsQIVqxYgU6nQ6/Xc+DAAYYNG0bPnj2NnVGILOnhV4ykwz/hcWcv8V1+J5fzK6bGC42Dy2vdickp7du3p1ixYixZsoRChQqh1+upXLly+hBSjx49GDBgAN9++y2//fYbVapUoUqVKgA8efIEW1tbjh8/jq3tszMFc+fOnf5rZ2fn554l6dWrFw8ePODrr7+mWLFiODo6Uq9evUwNXT158oSaNWvy66+/Pve1/PlleDbDan3Cn+G/cSDmPPMbzsDN0U11ImFmslQATZkyhb59++Lj40NaWhoVK1YkLS2N9957j4CAAGNnFCJLbGIj+Dh+CasMbxISXphZlVUnEsbw4MEDLly4wJIlS9KHuPbv3//MNh07duTzzz9n8+bN/Pbbb8/8YFa9enXS0tKIjo5O/3xGHThwgAULFtCmjTbLKDIykvv376d/vVy5ckRGRnL37l28vLwAOHr06DP7qFGjBsuWLaNAgQIyDP8abiXcYYZtPG/FJdHo1Doo2Vp1JGFmsvQQtIODA0uWLOHKlSusX7+eX375hfPnz/Of//znuZ+ohFBCr4c1fbFx8UDXagorj99k27m7qlMJI3B3dydfvnwsXryYy5cvs3PnToYMGfLMNrly5aJTp06MHTuW8PBw3n333fSvlS1blh49etCzZ0/+/PNPrl27xpEjR5g6dSobNmx45bHLlCnDf/7zH8LDwzl8+DA9evTA2fl/69E0b96cUqVK0atXL06dOsWBAwfSfyj8792kHj164OnpSceOHdm3bx/Xrl1j9+7dDBgwgJs3bxrrj8mi6Q16Ag8E4uaUly/rjIDQX7U1goTIhNfqEFe0aFFat25N165dKVOmjLEyCfH6ji6B6/ug43w61y1P0/IFGPXnaR7Fyywbc2djY8Mff/zB8ePHqVy5MoMHD2bmzJnPbdejRw/CwsJo2LAhRYs+2+/tp59+omfPngwdOpRy5crRqVMnjh49+tx2f/fDDz/w6NEjatSowQcffMCAAQMoUOB/C+7Z2toSHBzMkydPqF27Np9++mn6LDAnJycAXFxc2Lt3L0WLFuWtt96iQoUKfPLJJyQmJsodoQz6/fzvHIk6wiT/SeSu+TGUbQXrBmptboTIoCzNAgPtH4KvvvoqfdpomTJlGDRoEJ9++qlRAxqbzAKzAvcvw6IGUOMDaKP9xxgdl0jzr/bSsIwn896roTigaZCZRTnjwIEDNGjQgMuXL1OqVKks7UPO1f/ciLtBl7Vd6FymM6P9RmtvPo6C+X5Q6k3o+pPagMJsZOkZoMDAQObMmUP//v2pV68eACEhIQwePJiIiAgmTpxo1JBCZJg+TVsfJE9BaDY+/e0CeZyY2LESA/8IpVXl27SrKh2iRfZYvXo1uXPnpkyZMly+fJmBAwfi7++f5eJH/E+aPo0x+8dQwKUAg2oM+t8XXL2h7WxY9Ym20nvlt5RlFOYjSwXQwoULWbJkyTPj6h06dKBq1ar0799fCiChzsFv4eZR+HgzOOR65ksdfAux5WwUY4PP4FciH/ldHRWFFJbs8ePHjBgxgoiICDw9PWnWrBmzZ89WHcsi/Pvcvzl17xQ/t/4ZF3uXZ79Y+W0IXwsbhkLxBpBbeoGJV8vSM0ApKSnUqvV8N96aNWuSmpr62qGEyJLocNgVBPX7aSvF/o1Op2NSx8rY6HSM+vM0WRz9FeKVevbsycWLF0lMTOTmzZssXbr0mfWFRNZcfnSZb09+S69KvaheoPrzG+h00HYO6Gy054Hk+hb/IEsF0AcffMDChQufe3/x4sX06NHjtUMJkWlpKbD6X+BeAt54+VIM+XI7MuWtKmwPv8ufJ27lYEAhRFal6FMYc2AMPq4+9Kve7+Ub5vKE9l/DhY0Q9kfOBRRmKcNDYH+dZqrT6fj+++/ZunUrdetqP2kfPnyYiIgIWQhRqLFvDkSdgU+3g73TKzdtWcmbztULM37dWeqXzkdBN+dXbi+EUOv7099z4eEFfm3zK462/zB0XaEdVO0Om0ZAiUbgJt0JxItluAA6efLkM7+vWbMmQPrS7Z6ennh6enL27FkjxhMiA26Hwt4Z0HAoFM7YDK/x7Stx8Mp9Rqw6zc8f1Zbu0UKYqPAH4SwOW8ynVT6lkmeljH2o9XS4thfW9oP3/9SGx4T4myxPgzdXMg3ewqQmweImYGMLn+4EO4cMf3T3hWg+/OkoUzpX4T2/V6//YolkarX5sNZzlZyWTPf13bGzseO3Nr9hb5uJ7/3Sdvj1bWg3F2p9lG0Zhfl6rYUQhVBu91S4fwk6LcpU8QPQpFwB3q3jQ9CGc0Q+TMimgEKIrFoYtpDrcdeZ7D85c8UPQJlmUKMXbBkDj65nSz5h3rJUACUmJjJz5kzatGlDrVq1qFGjxjMvIXJE5FE48DU0GQneWWv0NaZtRfK6ODBsRRh6vVXdDBXCpIXdC+PHMz/yhe8XlPMol7WdtAwCl3wQ3FdrjyPEX2SpAPrkk0+YMWMGxYoVo127dnTs2PGZlxDZLjkBgntDoergPyjLu8ntaMfMrlU5fO0hP4dcN1o8kX2aNGnCoEGDXvp1nU5HcHBwhve3e/dudDodMTExr51NGMfT1KcE7A+gUr5KfFT5NYavHF2h03y4sR+OfGe8gMIiZGkhxPXr17Nx40b8/f2NnUeIjNk5CWJvwju/g22W/hqnq1/Kkw/rF2f65vM0LpufkvlzGymkUOHOnTu4u7urjiFewzcnvuFO/B2+fvNr7Gxe7/qmRCOo8y/YPh5KNwNP6VspNFm6A1S4cGFcXV2NnUWIjLm+Hw4tgKaBkL+sUXY5olV5Cro5M3RFGGkyFGbWvL29cXSUVb7N1dGoo/wa/isDqg+gpFtJ4+y02XjIU1hrk6NPM84+hdnLUgE0e/ZsRowYwY0bN4ydR4hXS3oMwV9A0frg18dou3V2sGVW16qERcaweO9Vo+1XZA+9Xs/w4cPx8PDA29ub8ePHp3/t70NgBw8epFq1ajg5OVGrVi2Cg4PR6XSEhoY+s8/jx49Tq1YtXFxcqF+/PhcuXMiZb0akS0hJYOyBsVQvUJ33K75vvB07uECnhXDrOBz8xnj7FWYtS/cWa9WqRWJiIiVLlsTFxeW5aZkPHz40SjghnrN1LMTfh57BYGPcSYw1i3nwWaOSfLXtIm+WL0A5b+u7y/k09SnXYq/l+HFLuJXA2S7jC1L+/PPPDBkyhMOHDxMSEsKHH36Iv78/zZs3f2a7uLg42rdvT5s2bfjtt9+4cePGS58fGjNmDLNnzyZ//vz07t2bjz/+mAMHDrzOtyUyafax2TxMfMiS5kuw0Rl5knJRP6jfH3ZNgTItwauicfcvzE6WCqB3332XW7duMWXKFLy8vGQROZEzLm+H4z9pXZ89jHRr/G8GNyvLzvBohiwPJbivP/a21rVSxLXYa3Rf3z3Hj7us3TIq5sv4f0hVq1Zl3LhxAJQpU4Z58+axY8eO5wqg3377DZ1Ox5IlS3BycqJixYrcunWLzz777Ll9BgUF0bhxYwBGjhxJ27ZtSUxMxMnp1SuLC+M4eOsgyy8uJ8AvAJ88PtlzkCaj4eIWrW3OZzshs1PrhUXJUgF08OBBQkJC8PX1NXYeIV7saQys6Q8l34Ban2TbYZzsbZnTrRqdFhxg/q7LDGpmnGeMzEUJtxIsa7dMyXEzo2rVqs/8vmDBgkRHRz+33YULF6hateozRUydOnX+cZ8FCxYEIDo6mqJFrW+RzJwWlxxH4MFA6hWsR7dy3bLvQPZO0HkRLGkKe2fBG6Oy71jC5GWpACpfvjxPnz41dhYhXm7zKEh+Ah3nZfuy9lWKuNH3jdLM23mZZhW8qFzYLVuPZ0qc7ZwzdSdGlb8Pu+t0OvSvuc7LX/f537var7tPkTHTj0wnPiWeif4Ts39EoVB1aDQM9s2Ccq2hULXsPZ4wWVm6vz9t2jSGDh3K7t27efDgAXFxcc+8hDCq8xsh7DdoNQ3ciuTIIfu9UZpy3q4MWR5KUqrMGjFX5cqV4/Tp0yQlJaW/d/ToUYWJxN/titjF2itrGVFnBN65vHPmoA2HQYGKsLq31k5HWKUsFUCtWrUiJCSEpk2bUqBAAdzd3XF3dydv3ryy/oYwrvgHsG4glG0F1d7LscM62Nkwu5sv1+7H89W2Szl2XGFc7733Hnq9ns8//5zw8HC2bNnCrFmzAOTZRRMQkxjDhJAJNC7SmI6lcnARXTsHbSjswWXtoWhhlbI0BLZr1y5j5xDixTYOBX0KtP86xzs6l/fOw+DmZZm15QLNK3pRs5gU9+YmT548rFu3jj59+lCtWjWqVKlCYGAg7733njzcbAKCDgeRakhlXL1xOV+QelWCN0Zri6qWbws+L342TFgu6QYvTNeZVbDyY3j7B6jSRUmE1DQ9XRaFEPs0hY0DGuLsYKskR3aw1g7jv/76Kx999BGxsbE4O2d86r1KlniuNl/fzJd7vmRGoxm0LtFaTYi0VPixJTx9BL33a+sFCauR5Tm++/bt4/3336d+/frcunULgP/85z/s37/faOGEFXt8FzYMhYqdoPLbymLY2WpDYbdjnjJjy3llOUTW/fvf/2b//v1cu3aN4OBgRowYQbdu3cym+LFE95/eJ+hQEC2KtaBV8VbqgtjaaUNhcbdgx0R1OYQSWSqAVq1aRcuWLXF2dubEiRPpDxjGxsYyZYqMp4rXZDDA+kFgYwdt5+T40Nfflcqfm+GtyvPTgeuEXHmgNIvIvKioKN5//30qVKjA4MGD6dq1K4sXL1Ydy2oZDAYmhEzARmdDQN0A9c9ieZaBpuPg8EK4tk9tFpGjslQATZ48mUWLFrFkyZJnbsf6+/tz4sQJo4UTVirsd7iwEdrNhVz5VKcB4KP6xfEr4cGXK8N4kpSqOo7IhOHDh3P9+nUSExO5du0aX331FS4uMtShyrqr69gduZvAeoG4O5nIc3V+vaFYA1jzhdZuR1iFLBVAFy5coFGjRs+97+bmRkxMzOtmEtYs9iZsGglV34EK7VSnSWdjo2NmF18exicTtCFcdRwhzFJUfBTTDk+jfcn2NC3aVHWc/7Gx0dYYi38AWwNUpxE5JEsFkLe3N5cvX37u/f3791OyZPa0KBBWwGCAtf3BIRe0nqY6zXOK5nNhdJsK/H4kgj0X76mOYzRWNg/CLFnCOTIYDIw7OA5ne2dG1BmhOs7zPEpAy8lwfKnWdkdYvCxNg//ss88YOHAgP/74Izqdjtu3bxMSEsKwYcMYO3assTMKa3H8J7iyE3qsAmcTuTX+Nz38irLlbBQjVp5iy+BGuDmb74wcW1tbdDodjx8/xtXVVf2zGOI5BoOBtLQ04uLi0Ol02Nll6Z9sk7Di4goO3j7IwmYLcXM00dXVa34E4eu0tjtfhIBzXtWJRDbK0jR4g8HAlClTmDp1KgkJCQA4OjoybNgwJk2aZPSQxiTT4E3Uw2uw0B+qdtXW/DFht2Oe0vKrvTSv5MWcbtVUx3ktSUlJPHz40CLuMFgyBwcH8ubNa7YFUOTjSN5e+zZtS7ZlXL1xquO8WuxNWFAfyrfRZogJi/Va6wAlJydz+fJlnjx5QsWKFcmdO7cxs2ULKYBMkF4PP7eD2EjocxAcXVUn+kcrj99k2IowFn9QkxaVcmj5/myi1+tJS5N2H6bKxsYGGxsbs71Dpzfo+WTLJ9yJv8OqDqvIZZ9LdaR/FvobBPeBd37TFkkUFilTP058/PHHGdruxx9/zFSI+fPnM3PmTKKiovD19eXbb799acfmv/rjjz9499136dixI8HBwZk6pjAhhxfBjQPQa71ZFD8Ab9cozOYzdxi9+jS1invgkctBdaQs++9/sEJkh9/Cf+PY3WP82PJH8yh+AHzf1YbC1g0En7omMxtVGFem/tVbunQpu3btIiYmhkePHr30lRnLli1jyJAhjBs3jhMnTuDr60vLli2Jjo5+5eeuX7/OsGHDaNiwYaaOJ0zM/UuwY4I2DbWE+ZxLnU7HlLeqkKo3MDb4jOo4Qpika7HXmHtiLj0q9KC2d23VcTJOp9OW4dCnwYYhqtOIbJKpIbC+ffvy+++/U6xYMT766CPef/99PDw8XiuAn58ftWvXZt68eYB2O97Hx4f+/fszcuTIF34mLS2NRo0a8fHHH7Nv3z5iYmJeegcoKSnpmU7QcXFx+Pj4yBCYKbCAZejXhd2m/+8n+fbd6rT3LaQ6jhAmI1WfSq/NvYhNimVF+xU425nhyttn/oSVH0GXH5WuSC+yR6buAM2fP587d+4wfPhw1q1bh4+PD926dWPLli1ZeogyOTmZ48eP06xZs/8FsrGhWbNmhISEvPRzEydOpECBAnzyySf/eIypU6fi5uaW/vLx8cl0TpFNDn4Dt09oDxqaYfED0N63EG2rFmTsmjNEP05UHUcIk7H07FLO3D/DZP/J5ln8AFR+Cyp11tryPL6rOo0wskwP/Ds6OvLuu++ybds2zp07R6VKlfjiiy8oXrw4T548ydS+7t+/T1paGl5eXs+87+XlRVRU1As/s3//fn744QeWLFmSoWOMGjWK2NjY9FdkZGSmMopscvcs7JoC9QeYfRfmSR0rY2ejY9Sq0zKbSgjg4qOLLAhdwIeVPqRagWqq47yeNrPBxh7WDdDWKhMW47WefPzvzIT/rlWR3R4/fswHH3zAkiVL8PT0zNBnHB0dyZMnzzMvoVhqMqzuDflKwxujVad5bR65HJj6VlV2nI9m5fGbquMIoVSKPoWA/QEUy1OMvtX6qo7z+nLl05bmuLhZmx0mLEamC6CkpCR+//13mjdvTtmyZTl9+jTz5s0jIiIi09PgPT09sbW15e7dZ28t3r17F2/v56cWX7lyhevXr9O+fXvs7Oyws7Pj3//+N2vXrsXOzo4rV65k9tsRKuybBdHnoPNCsHNUncYomlf04q0ahZm47hy3Y56qjiOEMktOLeHSo0tMbjAZB1vznR35jPJtwPc92DxSWydIWIRMFUBffPEFBQsWZNq0abRr147IyEhWrFhBmzZtsjSN1sHBgZo1a7Jjx4709/R6PTt27KBevXrPbV++fHlOnz5NaGho+qtDhw688cYbhIaGyvM95uD2Sdg7CxoOg0LVVacxqnHtK5HbyY4Rq07JUJiwSmcfnGXxqcV8VvUzKuWrpDqOcbWaCg65YU0/GQqzEJmaBWZjY0PRokWpXr36Kxfl+vPPPzMcYNmyZfTq1YvvvvuOOnXqMHfuXJYvX8758+fx8vKiZ8+eFC5cmKlTp77w8x9++OErZ4H9nSyEqFBKIixuDLYO8NlOsDXfNhIvs+fiPXr9eITJnSrzft1iquMIkWOS0pJ4Z/072NvY82vbX7G3sbzrm8s74Je3oO0cqP3Pk3CEacvUQog9e/Y0+mqk3bt35969ewQGBhIVFUW1atXYvHlz+oPRERERskibpdg9BR5ehc/3WGTxA9C4bH7e8yvKlI3hNCqTn6L5zHN2mxCZNT90PjfibrCs3TLLLH4ASjfV+oVtHQul3tQaqAqz9VqtMMyR3AFSJOKwtuZPs3HQYLDqNNnqSVIqrebupZCbM398XhcbG/NsYSBERoVGh9Jrcy8GVB/AJ1Us/M5I0mOtb2GewvDhBpAf0M2WnDmR/ZLjIbg3FKmlTXu3cLkd7ZjV1Zcj1x/y44FrquMIka2epj4l4EAAlT0r82GlD1XHyX6OrtBpAUQchMMLVacRr0EKIJH9tk+AuDvQaRHY2KpOkyPqlszHR/7FmbnlApejM7c+lhDm5OsTX3M3/i5B/kHYWsn1TfEGUPcL2DER7l1UnUZkkRRAIntd2wtHvtOGvjxLq06To4a3LE/hvM4MXRFGappedRwhjO7InSP8Gv4rA2sMpLhbcdVxclbTQHArot3dTktVnUZkgRRAIvskxkFwXyjWAOr8S3WaHOfsYMusbr6cvhnDd3uvqo4jhFHFp8Qz9sBYannV4r0K76mOk/PsnbW72rdPwsGvVacRWSAFkMg+WwPg6UPoNN9qHxSsUdSdfzUuxdztFwm/E6c6jhBGM/PoTGKSYpjkPwkbnXVe3/jUBv+BsGsqRJ1RnUZkkpX+rRXZ7tJ2OPEztJgM7sVVp1FqULMylPTMzdDlYSSnylCYMH/7b+1n1aVVDKs9jCKuRVTHUavJKPAsow2FpSarTiMyQQogYXxPH8HaflCqKdT8UHUa5RztbJndzZeLdx8zb+cl1XGEeC2xSbGMOzAO/0L+dCnTRXUc9ewcofMiiA6HvTNVpxGZIAWQML5NIyE5ATp8C0ZeONNcVS7sRr83SzN/9xVO3YxRHUeILJt+ZDpPU58yvv54oy+Ma7YK+kKj4bBvNtw6oTqNyCApgIRxha+HU39A6+ngVlh1GpPS943SVCjoypDlYSSmpKmOI0Sm7YjYwbqr6xjpNxLvXM83rLZqDYeAdxVY3Vtr+yNMnhRAwnji78P6QVCuDfi+ozqNybG3tWFOt2pEPEjgq22ydogwLw8THzIxZCJv+LxB+5LtVccxPbb22lDYo2uwK0h1GpEBUgAJ4zAYYMMQ0KdBu7ky9PUSZb1cGdKiLIv3XeXY9Yeq4wiRIQaDgcmHJqM36AmsFyhDXy9ToAK8MQYOfgsRh1SnEf9ACiBhHGdWwbk10HY2uHqpTmPSPmtYkuo+eRm2IoyEZFlATZi+zdc3s+3GNgLqBuDp7Kk6jmmr3x+K1IbgPlobIGGypAASr+9xFGwYCpXegspvqU5j8mxtdMzq6ktUXCLTN51XHUeIV7qXcI/JhybTqngrWhZvqTqO6bOx1YbC4u7A9vGq04hXkAJIvB6DAdYNBFsH7e6PyJCS+XMzolV5fg65wcHL91XHEeKFDAYDE0ImYG9jzxi/MarjmI98paD5BDiyGK7uUZ1GvIQUQOL1hP4KFzdD+6/BxUN1GrPSq15x6pb04MuVp3icmKI6jhDPCb4czJ6bexhffzx5nfKqjmNean8GxRvCmr5aWyBhcqQAElkXEwmbR4Hve1C+jeo0ZsfGRsfMLr7EJCQTtCFcdRwhnnHnyR1mHJ1Bx1IdaeLTRHUc82NjAx3nawvDbpW7Z6ZICiCRNQaDttqzoyu0mqo6jdny8XAhoF1F/jgaya7z0arjCAFoQ1+BBwPJZZ+LEXVGqI5jvtyLQcsgOPFvuLhVdRrxN1IAiaw59gNc3a2t9uycV3Uas/ZObR8al83PiFWniEmQXkJCveUXlnPoziEm1p+Iq4Or6jjmrUYvKN0M1vaHBFn6wpRIASQy7+FV2DoWan0MpZuqTmP2dDod09+uSmJKGuPXnlUdR1i5yLhIZh+fTbey3ahfuL7qOOZPp9N+UEx9CpvkbpopkQJIZI4+DYL7Qq780HyS6jQWw9vNifEdKhEcepvNZ+6ojiOslN6gJ+BAAB5OHgytNVR1HMuRpxC0ngGnl8O5tarTiP8nBZDInEMLISIEOi0Ax9yq01iUztUL06KiF2NWn+HBkyTVcYQV+uXcL5yMPslk/8m42LuojmNZqnaH8u1g/WCtbZBQTgogkXH3LsCOiVC3DxRvoDqNxdHpdAR1roLeYGDM6jMYDAbVkYQVuRp7la9PfE2PCj2o5V1LdRzLo9NBu6/AoNd6Jsr1rZwUQCJj0lK1Lsd5i0LTQNVpLFZ+V0eCOldh89ko1obdVh1HWIlUfSoB+wMolLsQA2sMVB3HcuUuoBVB4evg9ErVaayeFEAiYw7MhTuh2hLv9s6q01i0NlUK0t63EIFrznI3LlF1HGEFfjrzE2cfnCWoQRBOdk6q41i2Sp2g8tuwcZjWLkMoIwWQ+GdRp2H3NPAfBEXk1nhOmNihEg52NoxcdUqGwkS2uvDwAgvCFvBx5Y+pmr+q6jjWoc0ssHOEdQNkKEwhKYDEq6Umw+o+4FkWmoxUncZquOdyYNpbVdh14R4rjt1UHUdYqJS0FMbsH0MJtxL08e2jOo71cPGA9t/Apa1w8hfVaayWFEDi1fbOgHvh0Hmh9hOLyDFNK3jRtWYRJq4/x81HCarjCAv03anvuBJzhSD/IBxsHVTHsS7lWkG197V2QjERqtNYJSmAxMvdOg775kCj4VDQV3UaqzS2fUXyONkxfOUp9Hq5VS6M58z9M3x/+ns+9/2cCvkqqI5jnVpNASc3rWGqXq86jdWRAki8WEqiNvTlXQUaDlGdxmrlcbJnRhdfDl55wC+Hb6iOIyxEUloSY/aPoZxHOT6t8qnqONbLyQ06zoNre7X2QiJHSQEkXmzXZHh0TZv1ZWuvOo1Va1DGk/frFmXqxvNcvx+vOo6wAPNOziPycSRB/kHY28j1rVSpN6DWJ7AtEB5cUZ3GqkgBJJ53IwQOzoM3A6CA3Bo3BaNaVyC/qyPDVoSRJkNh4jWcjD7Jz2d/pn/1/pR2L606jgBoPlFbIyj4C63dkMgRUgCJZyXHQ3Af8KkD9fqpTiP+Xy5HO2Z19eV4xCN+3H9NdRxhphJSEhizfwy++X3pWbGn6jjivxxzQ6eFEHkYDi1QncZqSAEknrVtHDyO0i5GG1vVacRf1CnhwSf+JZi59QKX7j5WHUeYobkn5nIv4R6TG0zGVq5v01KsPtTrCzsmQfR51WmsghRA4n+u7oajS6D5BMhXSnUa8QLDWpbDx92ZoSvCSE2TWSMi4w7dOcTv539nUM1BFMtTTHUc8SJvBoB7MQjurbUfEtlKCiChSYyDNf2geEOo/ZnqNOIlnOxtmd2tGmduxbJwtzwwKTLmSfITAg8EUse7Du+Wf1d1HPEy9s7QaRHcCYP9X6lOY/GkABKaLaPh6SPoOB9s5K+FKavmk5c+TUrxzc5LnL0dqzqOMAMzj80kNimWif4TsdHJ9W3SitSEBoNhz3S4c0p1GosmV4KAi1vg5H+g5RTt9qsweQOalqFU/twMXR5GcqoMhYmX23tzL39e+pPhtYdTOHdh1XFERjQeAfnLaRNSUpNVp7FYUgBZu4SHsHYAlG4ONWRWiLlwtLNldjdfLkc/4Zsdl1THESYqNimW8QfH06BwA94q85bqOCKj7By1iSj3zmt3gkS2kALI2m0aDqlPocM3oNOpTiMyoVIhNwY2LcOC3ZcJjYxRHUeYoKlHppKYlsj4euPRyfVtXgpWhcYjYf8cuHlcdRqLJAWQNTu3Bk6vgNYzIU8h1WlEFvRpUorKhd0YujyUxBRZQE38z/Yb29lwdQOj6ozCK5eX6jgiKxoM1vowBveGlKeq01gcKYCs1ZN7sH4wlG8HVbupTiOyyM7WhtldfYl89JRZWy6ojiNMxIOnD5h0aBJNizalXcl2quOIrLK102aFPboBOyerTmNxpACyRgYDbBis/brdVzL0ZebKeLkyrEVZfjhwjSPXHqqOIxQzGAxMPjQZg8HA2LpjZejL3BUor60PFDIfbhxUncaiSAFkjU6vgPB10HaO1n9GmL1PGpSkZlF3hq0IIz5JFlCzZhuvbWR7xHYC6gaQzzmf6jjCGOr1BR8/bVZY0hPVaSyGFEDWJu4ObBwGlbtApU6q0wgjsbXRMaurL/ceJzFtkyyjb62iE6IJOhxE6xKtaVG8heo4wlhsbKHTAngSDdvHqU5jMaQAsiYGA6ztD3ZO0Gam6jTCyIp75mJUm/L859AN9l+6rzqOyGEGg4HxB8fjaOvIGL8xquMIY8tXSusaf/R7uLJLdRqLIAWQNTn5H7i8Ddp/Ay4eqtOIbPC+XzHql8rH8JVhxCWmqI4jctDqy6vZd2sfE+pPwM3RTXUckR1qfQIlGmltixJlFfjXJQWQtYiJgM2jodr7UK6V6jQim9jY6JjRpSpxialMWndOdRyRQ24/uc2MozPoXLozjYo0Uh1HZBcbG61dUWKs9u+5eC1SAFkDvR7W9AUnN2g1RXUakc2KuLswtl0FVhy/yY7wu6rjiGymN+gJPBCIq4MrX9b+UnUckd3yFtX+HQ/9BS5sVp3GrEkBZA2Ofg/X9kLHeVoRJCxet1o+vFEuPyP/PM2jeOklZMmWXVjG4ajDTKw/EVcHV9VxRE6o/gGUaQHrBmjtjESWSAFk6R5c0WYN1P4USr2hOo3IITqdjmlvVyU5Vc+4tWdVxxHZJCIugq+Of0X3ct2pV6ie6jgip+h02rOcqUmwUe76ZZUUQJZMn6atG5G7ADSboDqNyGFeeZyY2LESa8Nus/H0HdVxhJGl6dMIOBCAp7MnQ2oOUR1H5LQ8BaHNLDizEs4Gq05jlqQAsmQh8yHyiNZV2DG36jRCgQ6+hWhVyZuA4DPce5ykOo4wov+c+w+h0aFM9p+Mi72L6jhChSpdoEJ72DBEWyNIZIoUQJYq+rzWO6ZeXyhWX3UaoYhOp2Ny58rogDGrT2MwGFRHEkZwJeYK3578lp4Ve1LDq4bqOEIVnQ7afgXotN6Ocn1nihRAligtRese7F5M6yEjrJpnbkeCOldm67m7BIfeUh1HvKZUfSpj9o+hsGth+lXvpzqOUC13fq2n4/n1cGq56jRmRQogS7T/K7gTpnURtndWnUaYgFaVC9KpWiEC15wlKjZRdRzxGn44/QPnH54nyD8IJzsn1XGEKajYAap00x6IjrutOo3ZkALI0tw5BXumQ4MhUKSm6jTChEzoUBlne1tGrDolQ2Fm6vzD8ywKW8THlT+mSv4qquMIU9JmhvYD79r+MhSWQVIAWZLUJFjdG/KXh8YjVKcRJsbNxZ7pb1dlz8V7/HE0UnUckUnJacmM2T+GknlL0se3j+o4wtQ4u0OHb+Hydjjxs+o0ZkEKIEuyZzrcvwidF4Gdg+o0wgS9Ub4A3Wv5MHn9OSIfJqiOIzJhUdgirsZeZUqDKdjb2quOI0xR2RbaIolbxsCjG6rTmDwpgCzFzWPasz+NR4C33BoXLxfQrgJ5XRz4cmUYer3cKjcHp+6d4oczP9DHtw/lPMqpjiNMWcsp2t2gNX21NkjipaQAsgQpT7Whr4LVoMFg1WmEiXN1smdml6ocuvqQf4dcVx1H/IPE1ETG7B9DRY+KfFz5Y9VxhKlzyqM1TL2+D44uUZ3GpEkBZAl2TNK6vXdeBLZ2qtMIM1C/tCe96hVj2ubzXL33RHUc8QrfnvyW209uE9QgCDsbub5FBpRsDLU/g23j4P5l1WlMlhRA5u7GQTi0AJqOhfxya1xk3IjW5fHO48SwFWGkyVCYSTp+9zj/OfcfBtQYQMm8JVXHEeak+QRw9dbaIenTVKcxSSZRAM2fP5/ixYvj5OSEn58fR44ceem2S5YsoWHDhri7u+Pu7k6zZs1eub1FS3qiDX35+EHdL1SnEWbGxcGOWV19ORkZw5J9V1XHEX+TkJJAwP4AqhWoxvsV3lcdR5gbh1zaqMDNo3DwW9VpTJLyAmjZsmUMGTKEcePGceLECXx9fWnZsiXR0S/ua7J7927effdddu3aRUhICD4+PrRo0YJbt6xwhdttgRB/DzotABtb1WmEGapV3IPPGpZkztaLXLz7WHUc8Rdzjs/hQeIDJvtPxlaub5EVRetC/X6wKwiiw1WnMTk6g+IV0fz8/Khduzbz5s0DQK/X4+PjQ//+/Rk5cuQ/fj4tLQ13d3fmzZtHz549/3H7uLg43NzciI2NJU+ePK+dX5krO+E/nbVuwHU+U51GmLHElDTafbsfJ3sbVn/hj72t8p+LrN7B2wf517Z/MdpvNO+Wf1d1HGHOUhLhu0Zg7wSf7gBZQiGd0n/pkpOTOX78OM2aNUt/z8bGhmbNmhESEpKhfSQkJJCSkoKHh8cLv56UlERcXNwzL7OXGAtr+kGJxlDrE9VphJlzsrdlTjdfwu88ZsGuK6rjWL3HyY8JPBCIX0E/upfrrjqOMHf2TtB5IUSdgX1zVKcxKUoLoPv375OWloaXl9cz73t5eREVFZWhfYwYMYJChQo9U0T91dSpU3Fzc0t/+fj4vHZu5TaPgsQ4baqjjfy0Ll5f1SJ56dukFN/uvMSZW7Gq41i1GUdn8CTlCZPqT8JGJ9e3MILCNaHhENg7A26Hqk5jMsz66po2bRp//PEHq1evxsnpxU0BR40aRWxsbPorMtLMWwBc2AShv0KrqZDXAoo5YTL6vVmGsl6uDF0eRlKqzBpRYU/kHoIvBzOi9ggK5i6oOo6wJI2GQ/4K2qyw1CTVaUyC0gLI09MTW1tb7t69+8z7d+/exdvb+5WfnTVrFtOmTWPr1q1UrVr1pds5OjqSJ0+eZ15mK+EhrB0AZVpAdZkVIozLwc6G2d18uXr/CV9vv6Q6jtWJSYxhfMh4GhZuSKfSnVTHEZbGzkGbFXb/EuyeqjqNSVBaADk4OFCzZk127NiR/p5er2fHjh3Uq1fvpZ+bMWMGkyZNYvPmzdSqVSsnopqGjcMgLRnafwM6neo0wgJVKJiHQc3KsmjPFU5EPFIdx6pMOTyF5LRkxtcfj06ub5EdvCtDk5Fw4GuIPKo6jXLKh8CGDBnCkiVL+PnnnwkPD6dPnz7Ex8fz0UcfAdCzZ09GjRqVvv306dMZO3YsP/74I8WLFycqKoqoqCiePLHw1WzProYzq7RZX3nk1rjIPv9qVJIqRfIybHkYT5NlKCwnbLm+hU3XNzHabzQFXAqojiMsmf8gKFQdgntDsnU3RFZeAHXv3p1Zs2YRGBhItWrVCA0NZfPmzekPRkdERHDnzp307RcuXEhycjJdunShYMGC6a9Zs2ap+hay35NoWD8EKnSAKl1UpxEWzs7WhtldfbkV85SZWy6ojmPx7j+9z+RDk2lerDltSrRRHUdYOls76LQIYm/Czkmq0yilfB2gnGZ26wAZDPBHD4g8DH0PQy5P1YmElfh+31WCNobz+2d1qVsyn+o4FslgMDBo1yBC74WyuuNqPJxevJyHEEZ3cB5sHQMfboDiDVSnUUL5HSDxD04tgwsboN1XUvyIHPWxfwlqF/Pgy5VhxCelqo5jkdZfXc/OyJ2MrTtWih+Rs+r2gaL1IfgLSLLOVeClADJlsbdg43Co0g0qdlCdRlgZGxsdM7tW5cGTZKZslGX0jS0qPoqph6fStmRbmhV78TpmQmQbG1voNF9rp7R1rOo0SkgBZKoMBljbHxxcoM0M1WmElSqWLxej2lTg18MR7L14T3Uci2EwGBh/cDzOds6MqjPqnz8gRHbwKAktJsHxn+DydtVpcpwUQKbq+FK4sgM6fAvO7qrTCCv2vl9RGpbxZMSqU8Q+TVEdxyKsurSKA7cPML7+eNwc3VTHEdas1idQsgms6Q9PY1SnyVFSAJmiRzdgawDU6AllmqtOI6ycTqdj+ttVeZKYysR151THMXu3ntxi5tGZvF3mbRoWaag6jrB2Oh10mAfJT7Q2S1ZECiBTo9fDmr7aXZ8WQarTCAFAobzOBLavyKoTN9l27u4/f0C8kN6gZ+yBsbg5ujGs1jDVcYTQ5PXR2iuF/QbnN6pOk2OkADI1RxbD9X1ao1MnM5imL6xGl5pFaFq+AKP+PM2j+GTVcczS7+d/52jUUSb5TyK3Q27VcYT4n2o9oGwrWDcQ4h+oTpMjpAAyJfcvw/bxUOdzKNlYdRohnqHT6Zj6VhVS9XrGrjmjOo7ZuR57nbnH5/Ju+XfxK+inOo4Qz9LpoP3XWruljUNVp8kRUgCZCn2a1qU3T0FoNl51GiFeqEAeJyZ2rMz6U3dYf+q26jhmI02fRsCBAAq4FGBQjUGq4wjxYq7e0Hb2/1ovWTgpgEzFwW/h5lHotBAccqlOI8RLta9akLZVCjI2+AzRjxNVxzELP5/7mVP3TjG5wWRc7F1UxxHi5Sq/DRU7woah8Niyn/eTAsgU3D0Hu4Kgfj8oWld1GiFeSafTMalTZWxtdIz+8wxW1k0n0y49usS8k/P4sNKHVC9QXXUcIV5Np4O2c8DGDtYP0taks1BSAKmWlqJ15XUvAW8EqE4jRIZ45HIgqHMVtoff5c8Tt1THMVkp+hTG7B9DUdei9K3eV3UcITImlye0mwsXNkLYH6rTZBspgFTbNxuizkDnRWDvpDqNEBnWspI3b1UvzPh1Z7kT+1R1HJP0/anvufjoIkENgnC0dVQdR4iMq9AOqr4Dm0ZobZkskBRAKt0Ohb0zoeFQKFxDdRohMm1c+0rkcrBj+MpTMhT2N+cenGPxqcV8WuVTKnlWUh1HiMxrPU1rx7S2n0UOhUkBpEpqEqzuDQUqQKMvVacRIkvcXOyZ9nYV9l26z29HIlTHMRnJacmM2T+G0u6l+VfVf6mOI0TWOLtrq0Rf2an1C7MwUgCpsnsqPLgMnRaBnYPqNEJkWZNyBXi3TlGCNoQT8SBBdRyTsCB0AdfjrhPUIAh7W3vVcYTIujLNoEYv2BIAD6+pTmNUUgCpEHkUDnwNTUaCd2XVaYR4bWPaVsAjlwNfrgxDr7e8W+WZEXYvjJ/O/kTfan0p615WdRwhXl/LIMiVD9b009o1WQgpgHJacoI266tQdfAfpDqNEEaR29GOmV18OXztIUsPXlcdR5mnqU8J2B9ApXyV+LDSh6rjCGEcjq5ae6Yb++HId6rTGI0UQDltx0SIvakNfdnaqU4jhNHUK5WPD+sXZ/rm81y590R1HCW+OfENd+LvMLnBZOxs5PoWFqREI/DrrbVrun9JdRqjkAIoJ13bB4cXQtNAyC+3xoXlGdGqPIXyOjNsRRipaZZzqzwjjkYd5ZfwXxhQfQAl3UqqjiOE8TUdB3kKa22b0lJVp3ltUgDllKTHsOYLKFof/PqoTiNEtnB2sGVWV1/CImNYvO+q6jg5Jj4lnrEHxlLTqybvV3xfdRwhsoeDi9au6dZxOPiN6jSvTQqgnLJ1LMQ/gE7zwUb+2IXlqlnMnc8blWLutkucj4pTHSdHzD42m4eJD5nkPwkbnVzfwoIV9YP6/bWZzHfPqk7zWuRKzQmXt2trKLSYCB5ya1xYvsHNy1Dc04Why8NIsfChsAO3DrDi4gqG1RqGj6uP6jhCZL8mo8GjlLaWXVqK6jRZJgVQdnsaA2v6Q8k3oNYnqtMIkSMc7WyZ3bUaF6IeM2/nZdVxsk1cchyBBwOpV7AeXct2VR1HiJxh7wSdF2p3gPbOUp0my6QAym6bR0LyE+g4T+uyK4SVqFLEjb5vlGbersucvhmrOk62mH5kOgkpCUz0n4hOrm9hTQpV17oY7J0Jt0+qTpMlUgBlp/MbIOx3aDUN3IqoTiNEjuv3ZmnKe7sydEUoiSlpquMY1c6Inay9spYRdUbgnctbdRwhcl6jYeBVCVb3gZRE1WkyTQqg7BL/ANYNhLKtoNp7qtMIoYS9rQ1zulXj+v0Evtp+UXUco3mU+IgJIRNoUqQJHUt1VB1HCDVs7aHzInh4BXZPUZ0m06QAyi4bh4I+Fdp/LUNfwqqV83ZlcPOyLNl7leM3HqqOYxRBh4NIM6Qxrv44GfoS1s2rEjQZBQe/hYjDqtNkihRA2eHMKji7GtrMAle5NS7E541K4uuTl2ErTvE02byHwjZf28yW61sY4zcGT2dP1XGEUK/+AChcU1sgMdl8GiJLAWRsj+/ChqFQsRNUflt1GiFMgq2NjtldfbkT+5Tpm8+rjpNl95/eZ/LhybQo1oJWxVupjiOEabC10xZIjLsFOyaoTpNhUgAZk8GgPfdjYwdt58jQlxB/UTJ/boa3LM/Sg9c5eOW+6jiZZjAYmBAyAVudLQF1A2ToS4i/8iwDzcbD4UVwba/qNBkiBZAxhf0OFzdBu7mQK5/qNEKYnA/rF8evhAdfrjjFkyTz6iW09spadkfuJrBeIO5O7qrjCGF66vwLijWA4L5a+ycTJwWQscTehE0joOo7UKGd6jRCmCQbGx2zuvoSk5BM0IZzquNkWFR8FNOPTKd9yfY0LdpUdRwhTJONjdbuKeEBbBmjOs0/kgLIGAwGWNMPHHJD62mq0whh0nw8XBjTtiK/H4lk94Vo1XH+kcFgYNzBcTjbOzOizgjVcYQwbe7FoeVkOPEzXNquOs0rSQFkDMd+hKu7oMO34Cy3xoX4J+/W8aFR2fyMWHWK2ATT7iW04uIKDt4+yIT6E3BzdFMdRwjTV/MjKPUmrO0HTx+pTvNSUgC9rofXtE7vNT+EMs1UpxHCLOh0Oqa/XYWE5DQmrDPdjtKRjyOZdWwWXcp2oUHhBqrjCGEedDroME+bEr9ppOo0LyUF0OvQ62FNX+2B5xaTVacRwqwUdHNmfPtK/HnyFlvORqmO8xy9Qc/YA2PxcPJgWK1hquMIYV7cCkPr6XDqDwhfrzrNC0kB9DoOL4IbB6DjAnB0VZ1GCLPzVo3CNK/oxZjVp3nwJEl1nGf8Gv4rx+8eZ5L/JHLZ51IdRwjz4/sOlGsD6wdBvOktfSEFUFbdv6Qt+OTXG0o0VJ1GCLOk0+mY0rkKaXoDY9ecwWAwqI4EwLXYa3x94mt6VOhBbe/aquMIYZ50Om1ZGH0abBiiTRgyIVIAZUVaKqzuDXkKQ9NxqtMIYdbyuzoyuVMVNp6OYt2pO6rjkKpPJWB/AN65vBlYY6DqOEKYN1cvaDsbzq3R2kSZECmAsuLg13D7hNYF18FFdRohzF7bqgVpV7UgY4PPEB2XqDTL0rNLOfPgDJP9J+Ns56w0ixAWofJbUOktrU3UY9N53k8KoMy6exZ2TdWav/nUUZ1GCIsxqWNl7G1tGPXnaWVDYRcfXWR+6Hw+rPQh1QpUU5JBCIvUdjbYOmjtokxkKEwKoMxITYbV/4J8peGN0arTCGFR3HM5MO2tKuw4H83K4zdz/PgpaSkE7A+geJ7i9K3WN8ePL4RFc/GA9l/Dxc0Q+qvqNIAUQJmzbxZEh0PnhWDnqDqNEBanWUUvutQswsR157gd8zRHj7349GIuPbrE5AaTcbB1yNFjC2EVyrcB3/dg8yiIiVSdRgqgDLt1AvbOgobDoFB11WmEsFiB7SuS28mO4StP5dhQ2NkHZ1lyagmfVf2MSvkq5cgxhbBKraZqy8as7ad8KEwKoIxISYTgPuBVCRrJgmhCZKc8TvZMf7sq+y/f55fDEdl+vKS0JMbsG0NZ97J8VvWzbD+eEFbNOa/WNurqbjj2g9IoUgBlxK4geHgVOn8Htvaq0whh8RqVzU8Pv6JM3RjOjQfx2Xqs+aHziXgcQVCDIOxt5PoWItuVbgq1PtbaSD28qiyGFED/JOIwHPxWe+jZq6LqNEJYjdFtKpAvtwNfrjiFXp89t8pDo0NZemYpfav1pYx7mWw5hhDiBZpPglz5IbivtlCiAlIAvUpyPAT3hiK1tGnvQogck8vRjlldfDl64yE/Hrhm9P0npCQwZv8YquSvwoeVPjT6/oUQr+CYGzotgIgQOLRQSQQpgF5l+wSIuwOdFoGNreo0Qlgdv5L5+Ni/BDO2XOBy9BOj7vvrE18TnRBNkH8QtnJ9C5HzijeAun1gx0S4dyHHDy8F0Mtc2wtHvoNm48CztOo0QlitL1uWo4i7M0NXhJGapjfKPo/cOcJv539jYI2BFHcrbpR9CiGyoGkg5C2qtZdKS83RQ0sB9CKJcdq4ZLEGUOdfqtMIYdWc7G2Z3dWX0zdj+G7v6z8w+ST5CWMPjKWWVy3eq/CeERIKIbLM3llrK3UnFA7MzdFDSwH0IlsD4OlD6DQfbOSPSAjVqhd1p3fjUszdfpHwO3Gvta9Zx2YRkxTDJP9J2Ojk+hZCuSK1wH8Q7J4GUadz7LBy9f/dpW1w4mdoMRnci6tOI4T4fwOblaFU/twMWR5GcmrWhsL23dzHqkurGFZ7GEVcixg5oRAiy5qMBM+ysLqP1nYqB0gB9FdPH8Ha/lCqKdT8UHUaIcRfONrZMrubL5fuPmbezkuZ/nxsUizjD47Hv5A/Xcp0yYaEQogss3PU2kzdC4e9M3LkkFIA/dWmEZCcoK1SqdOpTiOE+JtKhdwY0LQM83dfISwyJlOfnXZkGk9TnzK+/nh0cn0LYXoK+kKj4bBvDtw6nu2HkwLov8LXwall0Ho6uBVWnUYI8RJ9mpSiYsE8DF0RRmJKxhZQ23FjB+uvrmek30i8c3lnc0IhRJY1HALeVbShsJTEbD2UFEAA8fdh3SAo1xZ831GdRgjxCva2Nszu5kvEwwTmbLv4j9s/THzIxEMTecPnDdqXbJ8DCYUQWWZrr80Ke3QNdk3O1kNJAWQwwPrBYNBD+7ky9CWEGSjr5crQ5mVZsu8qx64/fOl2BoOByYcmozfoCawXKENfQpiDAhXgzQA4OA9uhGTbYaQAOrMKwtdCuzmQu4DqNEKIDPq0YUlqFHVn6IowEpJfvIDapmub2HZjGwF1A/B09szhhEKILKvXD3zqQHAfrS1VNrDuAuhxFGwYCpXegkqdVacRQmSCrY2OWV19uRuXyPRN55/7+r2EewQdDqJV8Va0LN5SQUIhRJbZ2EKnhdr/09vGZc8hsmWv5sBggLUDwNYB2s5WnUYIkQUlPHMxqnUFfg65wYHL99PfNxgMjA8Zj72NPWP8xihMKITIsnyloPkEOLoEru42+u5NogCaP38+xYsXx8nJCT8/P44cOfLK7VesWEH58uVxcnKiSpUqbNy4MfMHPbUcLm2BDt+Ai0cWkwshVPugbjHqlczH8JWneJyYAkDw5WD23tzL+PrjyeuUV21AIUTW1f4MijeENf20NlVGpLwAWrZsGUOGDGHcuHGcOHECX19fWrZsSXR09Au3P3jwIO+++y6ffPIJJ0+epFOnTnTq1IkzZ85k7sDbxkG1HlCutRG+CyGEKjY2OmZ0qUrs0xQmrw/nzpM7TD86nY6lOtLEp4nqeEKI12FjAx3nawsVbxlt1F3rDAaDwah7zCQ/Pz9q167NvHnzANDr9fj4+NC/f39Gjhz53Pbdu3cnPj6e9evXp79Xt25dqlWrxqJFi/7xeHFxcbi5uREbVJY8Q46Ak5vxvhkhhDJ/HIlg5J9h1PJbSUzqLVZ3XI2rg6vqWEIIYzj+M6wbAONjjbZLO6PtKQuSk5M5fvw4o0aNSn/PxsaGZs2aERLy4qlvISEhDBky5Jn3WrZsSXBw8Au3T0pKIikpKf33sbHaH159F1ts/93oNb8DIYQpyVVMz7m7aSTf6kW1w1tVxxFCGE0uvrWtTIO4OFxdXY2ypIXSAuj+/fukpaXh5eX1zPteXl6cP//8rA6AqKioF24fFRX1wu2nTp3KhAkTnnv/7ODwLKYWQpi+5+8eCyHMW1uAGW5ER0eTP3/+196f0gIoJ4waNeqZO0YxMTEUK1aMiIgI3Nxk+EuluLg4fHx8iIyMJE+ePKrjWD05H6ZDzoXpkHNhOv57LhwcHIyyP6UFkKenJ7a2tty9e/eZ9+/evYu394v79Xh7e2dqe0dHRxwdHZ97383NTf4ym4g8efLIuTAhcj5Mh5wL0yHnwnQYa0V3pbPAHBwcqFmzJjt27Eh/T6/Xs2PHDurVq/fCz9SrV++Z7QG2bdv20u2FEEIIIf5O+RDYkCFD6NWrF7Vq1aJOnTrMnTuX+Ph4PvroIwB69uxJ4cKFmTp1KgADBw6kcePGzJ49m7Zt2/LHH39w7NgxFi9erPLbEEIIIYQZUV4Ade/enXv37hEYGEhUVBTVqlVj8+bN6Q86R0REYGPzvxtV9evX57fffiMgIIDRo0dTpkwZgoODqVy5coaO5+joyLhx4144LCZylpwL0yLnw3TIuTAdci5Mh7HPhfJ1gIQQQgghcprylaCFEEIIIXKaFEBCCCGEsDpSAAkhhBDC6kgBJIQQQgirY7EF0NSpU6lduzaurq4UKFCATp06ceHChWe2SUxMpG/fvuTLl4/cuXPz9ttvP7fIonh9CxcupGrVqukLidWrV49Nmzalf13OgzrTpk1Dp9MxaNCg9PfkfOSM8ePHo9PpnnmVL18+/etyHnLWrVu3eP/998mXLx/Ozs5UqVKFY8eOpX/dYDAQGBhIwYIFcXZ2plmzZly6dElhYstVvHjx564NnU5H3759AeNdGxZbAO3Zs4e+ffty6NAhtm3bRkpKCi1atCA+Pj59m8GDB7Nu3TpWrFjBnj17uH37Nm+99ZbC1JapSJEiTJs2jePHj3Ps2DHefPNNOnbsyNmzZwE5D6ocPXqU7777jqpVqz7zvpyPnFOpUiXu3LmT/tq/f3/61+Q85JxHjx7h7++Pvb09mzZt4ty5c8yePRt3d/f0bWbMmME333zDokWLOHz4MLly5aJly5YkJiYqTG6Zjh49+sx1sW3bNgC6du0KGPHaMFiJ6OhoA2DYs2ePwWAwGGJiYgz29vaGFStWpG8THh5uAAwhISGqYloNd3d3w/fffy/nQZHHjx8bypQpY9i2bZuhcePGhoEDBxoMBrkuctK4ceMMvr6+L/yanIecNWLECEODBg1e+nW9Xm/w9vY2zJw5M/29mJgYg6Ojo+H333/PiYhWbeDAgYZSpUoZ9Hq9Ua8Ni70D9HexsbEAeHh4AHD8+HFSUlJo1qxZ+jbly5enaNGihISEKMloDdLS0vjjjz+Ij4+nXr16ch4U6du3L23btn3mzx3kushply5dolChQpQsWZIePXoQEREByHnIaWvXrqVWrVp07dqVAgUKUL16dZYsWZL+9WvXrhEVFfXM+XBzc8PPz0/ORzZLTk7ml19+4eOPP0an0xn12rCKAkiv1zNo0CD8/f3TV4yOiorCwcGBvHnzPrOtl5cXUVFRClJattOnT5M7d24cHR3p3bs3q1evpmLFinIeFPjjjz84ceJEenuZv5LzkXP8/PxYunQpmzdvZuHChVy7do2GDRvy+PFjOQ857OrVqyxcuJAyZcqwZcsW+vTpw4ABA/j5558B0v/M/9uh4L/kfGS/4OBgYmJi+PDDDwHj/hulvBVGTujbty9nzpx5Znxd5Kxy5coRGhpKbGwsK1eupFevXuzZs0d1LKsTGRnJwIED2bZtG05OTqrjWLXWrVun/7pq1ar4+flRrFgxli9fjrOzs8Jk1kev11OrVi2mTJkCQPXq1Tlz5gyLFi2iV69eitNZtx9++IHWrVtTqFAho+/b4u8A9evXj/Xr17Nr1y6KFCmS/r63tzfJycnExMQ8s/3du3fx9vbO4ZSWz8HBgdKlS1OzZk2mTp2Kr68vX3/9tZyHHHb8+HGio6OpUaMGdnZ22NnZsWfPHr755hvs7Ozw8vKS86FI3rx5KVu2LJcvX5brIocVLFiQihUrPvNehQoV0ock//tn/veZRnI+steNGzfYvn07n376afp7xrw2LLYAMhgM9OvXj9WrV7Nz505KlCjxzNdr1qyJvb09O3bsSH/vwoULREREUK9evZyOa3X0ej1JSUlyHnJY06ZNOX36NKGhoemvWrVq0aNHj/Rfy/lQ48mTJ1y5coWCBQvKdZHD/P39n1sm5eLFixQrVgyAEiVK4O3t/cz5iIuL4/Dhw3I+stFPP/1EgQIFaNu2bfp7Rr02jPywtsno06ePwc3NzbB7927DnTt30l8JCQnp2/Tu3dtQtGhRw86dOw3Hjh0z1KtXz1CvXj2FqS3TyJEjDXv27DFcu3bNcOrUKcPIkSMNOp3OsHXrVoPBIOdBtb/OAjMY5HzklKFDhxp2795tuHbtmuHAgQOGZs2aGTw9PQ3R0dEGg0HOQ046cuSIwc7OzhAUFGS4dOmS4ddffzW4uLgYfvnll/Rtpk2bZsibN69hzZo1hlOnThk6duxoKFGihOHp06cKk1uutLQ0Q9GiRQ0jRox47mvGujYstgACXvj66aef0rd5+vSp4YsvvjC4u7sbXFxcDJ07dzbcuXNHXWgL9fHHHxuKFStmcHBwMOTPn9/QtGnT9OLHYJDzoNrfCyA5Hzmje/fuhoIFCxocHBwMhQsXNnTv3t1w+fLl9K/LechZ69atM1SuXNng6OhoKF++vGHx/7V39yDJ7QEcx3/nsbfByN6QoMIhioKil6WarEBoCCKoaBBqaIiQHGpsiWeoIcj1aammlqaIcogMiV4JAiEMBIcgi8ilGgr1TleQ7rPculefzvczHc/x6P8vePhyPAd//crYnkwmU/Pz8ym73Z4qLCxM9fX1pcLhcJZG+/35/f6UpH/8jL/qu2GkUqnUp89TAQAA/EG+7TVAAAAAv0MAAQAA0yGAAACA6RBAAADAdAggAABgOgQQAAAwHQIIAACYDgEEAABMhwACAACmQwAByBlOp1NerzfbwwBgAgQQAAAwHQIIQE4YHx/X4eGhfD6fDMOQYRiKRqMKhULq7++X1WqV3W6X2+3W4+Njej+n0ymPxyOv16vS0lLZ7Xatrq7q5eVFExMTKi4uVl1dnXZ3d9P7BAIBGYahnZ0dtbS0qKioSJ2dnQqFQtmYOoAsIIAA5ASfz6euri5NTk7q7u5Od3d3Ki4uVm9vr9ra2nRxcaG9vT3d399rZGQkY9/19XVVVFTo7OxMHo9HU1NTGh4eVnd3ty4vL+VyueR2u/X6+pqx39zcnJaXl3V+fq7KykoNDAzo/f39/5w2gCzh3+AB5Ayn06nW1latrKxIkn7+/KlgMCi/359+zu3trWpqahQOh1VfXy+n06lEIqFgMChJSiQSKikp0dDQkDY2NiRJsVhMVVVVOj4+VmdnpwKBgHp6erS5uanR0VFJ0tPTk6qrq7W2tvYhsAB8P3nZHgAA/M7V1ZUODg5ktVo/bItEIqqvr5cktbS0pNdbLBaVl5erubk5vc5ut0uSHh4eMl6jq6srvVxWVqaGhgZdX19/6RwA5CYCCEDOen5+1sDAgJaWlj5sq6qqSi/n5+dnbDMMI2OdYRiSpGQy+R+NFMCfhgACkDMKCgqUSCTSj9vb27W1tSWHw6G8vK8/XJ2cnKi2tlaSFI/HdXNzo8bGxi9/HwC5h4ugAeQMh8Oh09NTRaNRPT4+anp6Wk9PTxobG9P5+bkikYj8fr8mJiYyQunfWlhY0P7+vkKhkMbHx1VRUaHBwcHPTwRAziOAAOSM2dlZWSwWNTU1qbKyUm9vbzo6OlIikZDL5VJzc7O8Xq9sNpt+/Pj84WtxcVEzMzPq6OhQLBbT9va2CgoKvmAmAHIdd4EBMJ2/7wKLx+Oy2WzZHg6ALOAMEAAAMB0CCAAAmA4/gQEAANPhDBAAADAdAggAAJgOAQQAAEyHAAIAAKZDAAEAANMhgAAAgOkQQAAAwHQIIAAAYDp/AeXZkLXpcuNAAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2IElEQVR4nOzdd3hU153/8fc0zajMqHfURZNAVGPTwRRJIFzYdbKOEztO7PzSNna8WTteO3YSx3Z6spuyjh3HTjZO4k0WsA1oJIoFphiQME0I0AgVEJJGfUZtNO33hyJigQCVmblTzut59CRMufcjrgd9db73nCNzOp1OBEEQBEEQAohc6gCCIAiCIAieJgogQRAEQRACjiiABEEQBEEIOKIAEgRBEAQh4IgCSBAEQRCEgCMKIEEQBEEQAo4ogARBEARBCDiiABIEQRAEIeCIAkgQBEEQhIATcAWQ0+nEZDIhFsAWBEEQhMAlaQG0f/9+Nm3aRFJSEjKZjG3btt3yPWVlZcyfPx+1Wk12djZvvvnmuM5pNpsJDw/HbDZPLLQgCIIgCD5P0gKot7eXOXPm8Ktf/WpMr6+trWXjxo2sXr2aEydO8Pjjj/PII49QUlLi5qSCIAiCIPgTmbdshiqTydi6dSv33HPPDV/z1FNPsWPHDs6cOXP1sX/5l3+hq6sLvV4/pvOYTCbCw8Pp7u5Gp9NNNrYgCIIgCB7gsDuQK1w3buNT9wAdPnyYtWvXjngsPz+fw4cP3/A9FosFk8k04gvA7vCKuk8QBBc60HiAz5V8DrvDLnUUQRBcrPpYi0uP51MFUHNzM/Hx8SMei4+Px2Qy0d/fP+p7Xn75ZcLDw69+paSkAFBR1+n2vIIgeNafz/2ZY83HqGipkDqKIAguZqgwuvR4PlUATcTTTz9Nd3f31a9Lly4BoK9skjiZIAiu1G3p5tCVQwCU1In7AgXBnwz0Wmk42+HSYypdejQ3S0hIoKVl5BBYS0sLOp2O4ODgUd+jVqtRq9XXPb77bAs2uwOlC/uJguCLnE4nNptN6hiTVlZXRpg8jLXpaznSeIR+Sz9KuU/9EzcqhUKBXC7+nRICW+3JVhwuvnXFp/51WLx4MTt37hzx2K5du1i8ePG4j9XRZ+XwxXaWT411VTxB8Dk2m43W1la/WBfLZrbxr9P+ldzoXOKccZy/dJ64kDipY7lESEgI4eHhyGQyqaMIgiQM5UaSsiNcekxJC6Cenh4MBsPVP9fW1nLixAmioqJITU3l6aefprGxkT/84Q8AfPGLX+SXv/wlTz75JJ/73OfYu3cv//u//8uOHTvGfe6UqGB2nGoSBZAQsJxOJ11dXcjlciIjI336h2u/rZ8uYxeLEhYxNWoqpwdO06XsIjc2V+pok+J0OhkcHLw6eSMiIkLaQIIggYEeK5fOdbLik1NdelxJC6Dy8nJWr1599c9PPPEEAA899BBvvvkmTU1NNDQ0XH0+IyODHTt28PWvf53//M//ZMqUKfz2t78lPz9/3OcuyE3g/84088I9s1CJNpgQgBwOB4ODg0RGRhIUFCR1nEmpNlUzKBskKzqLIFUQ6ZHpVLZVsly5HIVMIXW8SRm+NiaTCZ1OJ9phQsCp+cgITieZ81w7oitpAbRq1aqbDr2PtsrzqlWr+OijjyZ97vzcBF4/2sIBQxurp/vHMLkgjIfD4QCG7jHxdYYuA8lhyYSoQgDIjsjmeMtxLpsvk6ZLkzjd5A0XQXa7XRRAQsAxVBhJnh5JiM61v6gF7CdpeoKWzNhQtp8Us8GEwObLrS+APmsfjT2NZEdkX30sWhNNhDoCQ5fhJu/0Hb5+jQRhovpMgzSe7yR7gesHKgK2AJLJZBTlJVF6thmLTSyaJgi+6mL3RWTIyAzPvPqYTCYjOzKbuu46sSiiIPiwix8ZQSYjy8XtLwjgAgigKC8R84CNDy60SR1FEIQxWrVqFY8//vjVPxu6DEwJm4JGqRnxuuzwbCx2C5fMlzycUBAEV6kuN5IyIxJNmMrlxw7oAmhavJZp8WFsP3VF6iiCIExAr7WXpp4msiKyrnsuKjiKKE2U37TBBCHQ9HZZuGLoInuhe+7TDegCCKAoL4ldZ1sYsIphckHwNTVdNchkMjLCM0Z9Pjsim9ruWmwO9yz0ODg46JbjCoIAhuNG5HIZGXPcs1yNKIDyEukdtFN2vlXqKIIgjNOJ+hP89dt/JTE2kZCQEAoLC6murgaG1tApmF3AkZIjNJiGltOYO3cuiYmJV99/4MAB1Go1fX19AHR1dfHII48QGxuLTqfjzjvv5OTJk1df/+1vf5u5c+fy29/+loyMDDSakW03QRBcp6bCSGpOFJpQ17e/QBRAZMaGkZOoE20wQfAxPYM9/PgbP6b+bD3vvvsuhw8fxul0smHDBqxWKzKZjJUrVnL5xGUMXQY6Ozupqqqiv7+fc+fOAbBv3z5uu+02QkKGps/fd999GI1GiouLqaioYP78+axZs4aOjn/sQWQwGPi///s/tmzZwokTJ6T41gXB75k7Bmiq6XbL7K9hPrUVhrtszEvkl3sN9A3aCAkSfyVC4OoftFPT2uPx82bFhhEcNL71iPYc38Ppfacp21/G8uXLAXjrrbdISUlh27Zt3HfffaxatYr//NV/Um+qx/yRmXnz5pGQkEBZWRkzZsygrKyMlStXAkOjQUePHsVoNF7dP/DHP/4x27Zt429/+xtf+MIXgKG21x/+8AdiY8Uq8oLgLjXHjSiUcre1v0AUQABsykviRyXn2XvOSFFektRxBEEyNa09FP3igMfPu/1flzErOXxc7zn80WEUSgXLliy7+lh0dDTTp0+nqqoKgJUrV/LYY4/R0dbB4d2HWbVq1dUC6POf/zyHDh3iySefBODkyZP09PQQHR094jz9/f3U1NRc/XNaWpoofgTBzarLjaTmRhEU7L4yRRRAQGp0CHlTwtlxqkkUQEJAy4oNY/u/Lrv1C91w3vEYtA8yYBlAxs0XCJw9ezZRUVEYzxj5YP8H/OJHvyAhIYEf/OAHHDt2DKvVypIlS4ChvQkTExMpKyu77jgf34MrNDR0XFkFQRgfU1s/xjoT6z/v3r38RAH0d0V5ifyk9AI9FhthavHXIgSm4CDFuEdipNBl6WJm1kxsNhtHjhy5WsS0t7dz/vx5cnJygKEFEZcvX865D85Rd6GORYsXEaGNwGKx8Jvf/IaFCxdeLWjmz59Pc3MzSqWS9PR0qb41QQh4hgojSpWctNnRt37xJAT8TdDDNsxOxGJzsKeqReoogiDcQrelm0WzF3H33Xfz6KOPcuDAAU6ePMmnP/1pkpOTufvuu6++dtWqVZRsLWHK9Cm0OdqQy+WsWLGCt9566+r9PwBr165l8eLF3HPPPZSWllJXV8ehQ4d45plnKC8vl+LbFISAZKgwkjY7miCNewcjRAH0d1MiQ5iXGsF7Ym8wQfBqNoeNfls/2RHZvPHGGyxYsICioiIWL16M0+lk586dqFT/mDa7cuVK7HY7c++Ye3VRxFWrVmG321m1atXV18lkMnbu3MmKFSt4+OGHmTZtGv/yL/9CfX098fHxnv42BSEgdRn7aG0wk73A/Z85mfNm27H7IZPJRHh4ON3d3eh0uhHPvX6glh8Un6P8W2vRadyz7oAgeAur1UprayuxsbEjCgZvV9FSwfGW43x21mdRycee+2TrST688iGfnfVZ1Aq1GxO6nq9eK0EYr/LiOir09XzuR8tQjXNm6HiJEaCP2Tg7kUG7g12Vog0mCN7K0GUgXZc+ruIHICs8C7vTTl13nXuCCYIwaYZyIxmzo91e/IAogEZICNdwW3qkWBRRELxU50An7f3tZEVev/fXrYQFhZEYmij2BhMEL9XZ3Et7Yw/ZCz3TchYF0DWK8pL4oLqNrj6xx48geBtDl4EgRRCp2tQJvT87IptL5ksM2AZcnEwQhMmqLjcSpFGQmhvlkfOJAugahbMTcDidlIo2mCB4FafTiaHLQIYuA6V8YrNDsiKycDqd1HbXujidIAiT4XQ6MZS3kDEnFqXK/e0vEAXQdeK0Gm7PiOY90QYTBK/SMdBB50AnWRHjb38NC1GFkBSWJNpgguBlOq700tnc59a9v64lCqBRbMxL5FBNO+09FqmjCILwd4YuA2qFmhRtyqSOkx2RTWNPI/22fhclEwRhsgwVRtQhSlJyPNP+AlEAjapwVgIA+spmiZMIggBDw+M1XTVkhGegkE9ueDwzIhOAi10XXRFNEIRJcjqdVJe3kDE3FoXSc2WJKIBGER2mZklWNDtOiUURBcEbtPW30WXpIjsie9LHClYGkxyWLNpgguAl2i710G3sZ6oH218gCqAb2jg7kQ8vttNqFm0wQZBaTVcNGqWGZG2yS46XFZHFld4r9Fn7XHI8QRAmzlBhRBOqInlGpEfPKwqgGyiYlYBcJqP4jBgFEgQpDc/+ygzPRCFTsGrVKh5//PFJHTMzPBMZMmq6a1wTUhCECXE6nRgqWsicF4tC4dmSRBRANxAREsSyqTFsF3uDCYKkWvtbMQ2aXNL+GqZRapiinYKhU7TBBEFKxnozprYBshd6tv0FogC6qaK8JI7Vd9DcLRZNEwSpGDoNBCuDSQpLculxsyOyae5tpmewx6XHFQRh7AzlLQRrVSRPjfD4uUUBdBPrcuJRyeXsPC1GgQRBCk6nE0O3gayILOSy6/+56uzs5MEHHyQyMpKQkBAKCwuprq6++t7Y2Fj+9re/XX393LlzSUxMBCAjPIOLJy4SpY2ir0/cCyQInjbU/jKSNS8OuYfbXyAKoJsKD1axYlqM2BtMECTS0tdCz2DPDRc//OxnP0t5eTnvvvsuhw8fxul0smHDBqxWKzKZjBUrVlBWVgYMFUtVVVX09/dz7tw51Ao1LadbyJqVRUhIiAe/K0EQAFpqTfR0WiRpfwFMbD35AFKUl8Tjb5+gsauf5IhgqeMIgnsN9kHbBc+fN2YaBF1fhBi6DISqQkkMTbzuuerqat59910OHjzIkiVLAHjrrbdISUlh27Zt3HfffaxatYrf/OY3AOzfv5958+aRkJBAWVkZM2bMoKaihrR5aZgHzWiDtO79HgVBGKG6vIWQ8CASsyMkOb8ogG5hbU48QUo5O0818eiKTKnjCIJ7tV2AV1d6/rxf2AdJc0c8NLz44Y3aX1VVVSiVSm6//farj0VHRzN9+nSqqqoAWLlyJY899hitra3s27ePVatWXS2APv/5z3Pi2Ake+ZdHqOmqYW7c3OvOIQiCezgdTmoqjGTPj0Mul0mSQRRAtxCmVrJ6eizbT10RBZDg/2KmDRUjUpz3Gk29TfRaeye199fs2bOJiopi37597Nu3jxdffJGEhAR+8IMfcOzYMaxWK6uXr8bQZRAFkCB4UFNNN73dgx7d++taogAag6K8JP71zx/R0N5HarS4V0DwY0Eh143ESMXQZSBMFUZCSMKoz8+cORObzcaRI0eutsDa29s5f/48OTk5AMhkMpYvX84777xDZWUly5YtIyQkBIvFwm9+8xsWLlzIrKRZlNaX0m3pJlwd7rHvTxACmaG8hbBINQmZ0n3mxE3QY7BmZhzBKgXbT4uboQXBExxOBxe7LpIVkYVMNvrw+NSpU7n77rt59NFHOXDgACdPnuTTn/40ycnJ3H333Vdft2rVKv785z8zd+5cwsLCkMvlrFixgrfeeouVK1eSpktDJVdR0yUWRRQET3A4nBg+aiVrQRwyidpfIAqgMQkJUnLnzDixN5ggeMiVniv02fpuufjhG2+8wYIFCygqKmLx4sU4nU527tyJSqW6+pqVK1dit9tZtWrV1cdWrVp19TGVQkWaLk3sDSYIHnLlQif9pkGmLoiXNIdogY1R0exEvvTWcWrbesmICZU6jiD4tZquGnRBOuJCrr8/YHhaO0BkZCR/+MMfbnqsuXPn4nQ6Rzz2+OOPj9hOIysii5K6EroGuojQREwmuiAIt2CoMKKN1hCXLu3MSzECNEarZ8QRGqRg+0nRBhMEd3I4HVzsvnn7y9WG22BiFEgQ3Mthd1DzUSvZC+I89vm+EVEAjZFGpWBtTjzbRRtMENyq0dxIv63fpXt/3YpSriQ9PF0UQILgZpfPdzLQY2XqQmnbXyAKoHEpykvifIuZ6haz1FEEwW8ZugyEq8OJCY7x6HmzI7LpGOigY6DDo+cVhEBiKDcSHhtMTEqY1FFEATQeK6bFoFUrxSiQILiJ3WHnYvdFsiOyPT48nqpNJUgRJGaDCYKb2G0OLp7wjvYXiAJoXNRKBety49l+6sp1N1UKgjB5l3suY7FbJrX44UQp5AoywjMwdBnE51sQ3OBSVQeWPhvZXtD+AlEAjdumvCRqWns51yzaYILgaoYuA5GaSKI10ZKcPzsim86BTtoH2iU5vyD4M0OFkciEEKKTvWMmtSiAxmlpdgzhwSqxJpAguJjNYaO2u1aS9tewKWFTUCvUog0mCC5ms9qp9aL2F4gCaNyClHLyRRtMEFzukvkSg/ZBSdpfwxRyBZnhmaINJggudulsB4MDdrIlXvzw40QBNAFFeUnUtfdRecUkdRRB8BuGLgNRmiiiNFGS5siOyKbb0k1bf5ukOQTBn1SXG4lKCiUqyTvaXyAKoAlZkhVNVGgQ750SiyIKgivYHDbquus8uvbPjSRrkwlWBos1gQTBRWyDdupOtTF1oXQ7v49GFEAToFTIKZiVwI5TTWKYXBBcoN5Uj9Vh9YoCSC6TkxmeSU1Xjfh8C4IL1J9px2rxrvYXiAJowopmJ3K5s5+Tl7uljiIIPq+mq4aY4Biv2YcrKyIL06AJY58RALvdjsPhkDiVIPgmQ4WRmJQwIuJDpI4ygiiAJuj2zGhiwtRibzBBmCSr3Uq9qX5coz96vZ5ly5YRERFBdHQ0RUVF1NQMzdxasmQJTz311IjXt7a2olKp2L9/PwAWi4VvfOMbJCcnExoayu233z5ik9XSv5XyjRXf4M3/fZOcnBzUajUNDQ0cO3aMdevWERMTQ3h4OCtXruT48eMjznXu3DmWLVuGRqMhJyeH3bt3I5PJ2LZt29XXXLp0iU984hNEREQQFRXF3XffTV1d3fj+4gTBB1gtdupOt5G9wLvaXyAKoAlTyGVsmJ3AjtNNOBximFwQJmq4/TWe2V+9vb088cQTlJeXs2fPHuRyOffeey8Oh4MHHniAv/zlLyPaV2+//TZJSUksX74cgK9+9ascPnyYv/zlL5w6dYr77ruPgoICqqurgaE2mHXAym//67e89tprVFZWEhcXh9ls5qGHHuLAgQN8+OGHTJ06lQ0bNmA2D60LZrfbueeeewgJCeHIkSO8+uqrPPPMMyOyW61W8vPz0Wq1fPDBBxw8eJCwsDAKCgoYHByc7F+nIHiVutNt2AYdXtf+AlBKHcCXFeUl8YfD9Xx0qZMFadLOXBEEV+i39VPbXevRcx5qPESkOpJwdfiY3/NP//RPI/78u9/9jtjYWM6ePcsnPvEJHn/8cQ4cOHC14PnTn/7E/fffj0wmo6GhgTfeeIOGhgaSkpIA+MY3voFer+eNN97gpZdeAsBmtXHfN+8jc24miaGJANx5550jzvvqq68SERHBvn37KCoqYteuXdTU1FBWVkZCQgIAL774IuvWrbv6nrfffhuHw8Fvf/vbq+uhvPHGG0RERFBWVsb69evH89cnCF7NUG4kLk1LeGyw1FGuIwqgSViYFkm8Ts17J5tEAST4hdruWj65/ZMeP+8LS14Y1+urq6t57rnnOHLkCG1tbVfvz2loaGDWrFmsX7+et956i+XLl1NbW8vhw4f5zW9+A8Dp06ex2+1MmzZtxDEtFgvR0f9YgTooKIhpudOo6aq5WgC1tLTw7LPPUlZWhtFoxG6309fXR0NDAwDnz58nJSXlavEDsGjRohHnOXnyJAaDAa1WO+LxgYGBq208QfAHgwM26s+0c/tdmVJHGZUogCZBLpexYXYiO0418a2iHBRy71jdUhAmKiM8g7eL3vbY+RpMDRxpOsLS5KXjet+mTZtIS0vjtddeIykpCYfDwaxZs662kB544AG+9rWv8Ytf/II//elPzJ49m9mzZwPQ09ODQqGgoqIChUIx4rhhYf/YoTo4OJjsyGxqumpYkrQEuUzOQw89RHt7O//5n/9JWloaarWaxYsXj6t11dPTw4IFC3jrrbeuey42NnZcfw+C4M1qT7ZhtznI9rLp78NEATRJRXlJvHGwjmN1HdyRKc3+RYLgKsHKYHKiczx2vrruOmbHziY2ZOw/+Nvb2zl//jyvvfba1RbXgQMHRrzm7rvv5gtf+AJ6vZ4//elPPPjgg1efmzdvHna7HaPRePX9N5Idkc2p1lM09TaRHJbMwYMH+fWvf82GDRuAoZuZ29r+sWDi9OnTuXTpEi0tLcTHD93zcOzYsRHHnD9/Pm+//TZxcXHodLoxf9+C4GsMFUYSMnVoozRSRxmVuAl6kuanRpAcESz2BhOEcbLYLTSYG8a99k9kZCTR0dG8+uqrGAwG9u7dyxNPPDHiNaGhodxzzz1861vfoqqqivvvv//qc9OmTeOBBx7gwQcfZMuWLdTW1nL06FFefvllduzYMeI48SHxaIO0V/cGmzp1Kv/zP/9DVVUVR44c4YEHHiA4+B/3Nqxbt46srCweeughTp06xcGDB3n22WcBrt7v88ADDxATE8Pdd9/NBx98QG1tLWVlZXzta1/j8uXL4/q7EARvZemz0lDZ7pU3Pw8TBdAkyWRDs8GKzzRhs4t1QgRhrGq7a3E6nWSGj+/+ALlczl/+8hcqKiqYNWsWX//61/nRj3503eseeOABTp48yfLly0lNTR3x3BtvvMGDDz7Iv/3bvzF9+nTuuecejh07dt3rZDIZWeFZ1HTV4HA6eP311+ns7GT+/Pl85jOf4Wtf+xpxcf8Y3lcoFGzbto2enh5uu+02HnnkkauzwDSaod+CQ0JC2L9/P6mpqWzevJmZM2fy+c9/noGBATEiJPiN2pNtOBxOsuZ7Z/sLQOYMsKVOTSYT4eHhdHd3u+wfm5OXurj7Vwd565HbWZod45JjCoK7Wa1WWltbiY2NRaVSefz82y9ux2q3cu/Uez1+7vEw9hn524W/cVfWXUzRThn3+w8ePMiyZcswGAxkZU1so1epr5UgjNd7vziJ1WJj8zcWSB3lhsQIkAvkTQknNSqE7WJvMEEYkwHbAJfNl8mOlH7ri1uJDY5FF6Qb895gW7duZdeuXdTV1bF7926+8IUvsHTp0gkXP4LgawZ6rFyu6mDqQu9tf4EogFxCJpOxMS8R/ZlmrKINJgi3dLH7Ik6cZIV7f1Egk8nIjsjmYvdF7E77LV9vNpv5yle+wowZM/jsZz/LbbfdxjvvvOOBpILgHS6eaB1qb8/z7lmNogBykY2zE+nss3Kopl3qKILg9Wq6akgKTSJE5V17A91IVkQWA7YBGs2Nt3ztgw8+yIULFxgYGODy5cu8+eabI9YXEgR/Z6hoIWlaBKHhaqmj3JQogFwkN0lHRkyo2BtMEG6h39ZPY0+jV+z8PlYxwTFEqCPG3AYThEDVbx7k8vkur579NUwUQC4ik8koykukpLKZQZtogwnCjVzsughAZoR3rg47GplMRlZEFrXdtdgdt26DCUKgqvmoFYAsL29/gSiAXKooLwnTgI0DhlapowiC1zJ0GUgOSyZY6X17A91MdkQ2FruFS+ZLUkcRBK9lKG9hyvQIgrVBUke5JckLoF/96lekp6ej0Wi4/fbbOXr06E1f//Of/5zp06cTHBxMSkoKX//61xkYGPBQ2pubFh9GdlwY20+KRREFYTR91j6u9FzxqfbXsChNFJGayKuLIgqCMFJvt4XG6i6yvXz21zBJC6C3336bJ554gueff57jx48zZ84c8vPzMRqNo77+T3/6E9/85jd5/vnnqaqq4vXXX+ftt9/mP/7jPzycfHTDbbDSsy0MWMUwuSBcq6arBplMRkZ4htRRxm14NlitqRabwyZ1HEHwOjXHW5HLZGTO9f72F0hcAP30pz/l0Ucf5eGHHyYnJ4dXXnmFkJAQfve73436+kOHDrF06VI+9alPkZ6ezvr167n//vtvOWrkSUV5SfRYbOy7INpggnAtQ5eBFG0KGqV37g10K9kR2QzaB2kwN0gdRRC8jqGihZScKDShvrFYp2SboQ4ODlJRUcHTTz999TG5XM7atWs5fPjwqO9ZsmQJf/zjHzl69CiLFi3i4sWL7Ny5k8985jM3PI/FYsFisVz9s8lkct03MYrsuDBmJGjZcaqJ/NwEt57L5/W2wbtfA2uf1EkmL3stLPmq1Cm8Ws9gD029TaxJXTOp46xatYq5c+fy85//fNTnZTIZW7du5Z577hnT8crKyli9ejWdnZ1ERETc9LWRmkiig6Op6awZ9xYegcbW0UHTt57D2d8vdZRJC12+nOiHPyt1DK/W0zlAk6GbNQ/NlDrKmElWALW1tWG326/umDwsPj6ec+fOjfqeT33qU7S1tbFs2TKcTic2m40vfvGLN22Bvfzyy3znO99xafZbKcpL5NdlNfQP2gkOUnj03D7l1P+CYRdM3yB1ksnpaoD3X4KFn4Mg31jXRgo13TUoZArSw9Pdep6mpiYiIyPddvzsiGyOtxzH6rCikvvGb7pSML33Hr379xO2ZnIFr9SsjY20/uIXRP7LJ5EH+9aN+55Uc7wVuVJGho+0v0DCAmgiysrKeOmll/j1r3/N7bffjsFg4LHHHuOFF17gW9/61qjvefrpp0fsFG0ymUhJSXFrzqK8JH5ceoH3zxvZMDvRrefyaZVbhkZOPvF7qZNMTnsN/GI+VJdC7j1Sp/Fahi4DKboU1Ar3Lo6WkODekdfsiGyONB2hwdRAVoT3r2QtFdPOYkKXL2fKz38mdZRJGayro6agkJ59+9EV5Esdx2tVl7eQmhONOth3ygrJ7gGKiYlBoVDQ0tIy4vGWlpYb/gP2rW99i8985jM88sgjzJ49m3vvvZeXXnqJl19+GYdj9LV31Go1Op1uxJe7pceEMitZJ/YGu5muBrh8DHK9eyPMMYnOgoS8oYJOGJV50ExLb4vLZn85HA6efPJJoqKiSEhI4Nvf/vbV52QyGdu2bbv650OHDjF37lw0Gg0LFy5k27ZtyGQyTpw4MeKYFRUVLFy4kJCQEJYsWcL58+dHPXe4OpzY4FixKOJNWBsb6T95El1hgdRRJi0oPR11zkxMxcVSR/FapvZ+WmpNTF3ovTu/j0ayAigoKIgFCxawZ8+eq485HA727NnD4sWLR31PX18fcvnIyArFUIvJ2za13zg7ib3njPRaxGyRUVVuA6UGphdKncQ1Zm2GC6Vg6ZE6iVcydBlQypWk69Jdcrzf//73hIaGcuTIEX74wx/y3e9+l127dl33OpPJxKZNm5g9ezbHjx/nhRde4Kmnnhr1mM888ww/+clPKC8vR6lU8rnPfe6G58+OzKbeVI/VbnXJ9+NvTHo9MrWasNV3Sh3FJXSFhfTs24ejt1fqKF7JUGFEoZKTnhcjdZRxkXSs6oknnuChhx5i4cKFLFq0iJ///Of09vby8MMPA0N76iQnJ/Pyyy8DsGnTJn76058yb968qy2wb33rW2zatOlqIeQtivIS+YH+HHvOGblrTpLUcbxP5RaYug7UWqmTuEbuvbD723BBD7P/Weo0E+bo78dy8aLLj9vY8AHZymDsimpGuyVWnZk5rvsr8vLyeP755wGYOnUqv/zlL9mzZw/r1q0b8bo//elPyGQyXnvtNTQaDTk5OTQ2NvLoo49ed8wXX3yRlStXAvDNb36TjRs3MjAwgEZz/Yy1rPAsDl85TJ2pjqmRU8ecO1CYivWErViBIixU6iguoSsspPUnP8VcVkb4xo1Sx/E6NRVG0mZFE6TxnfYXSFwAffKTn6S1tZXnnnuO5uZm5s6di16vv3pjdENDw4gRn2effRaZTMazzz5LY2MjsbGxbNq0iRdffFGqb+GGUqJCmJMSwfaTV0QBdK2Oi3DlI1jyNamTuE5kOiQvgMqtPl0AWS5epO6fXJ9/+E6ZOn466vPp//c3gnNzx3y8vLy8EX9OTEwcdf2w8+fPk5eXN6KIWbRo0S2PmZg4dO+e0WgkNTX1utfq1DriQ+IxdBlEAXSNwYYGBs6cIfrzNx5B8zVBU6agycvDVFwsCqBrdLf2Yaw3M3fd9Z8Tbyd5ufbVr36Vr3519OnDZWVlI/6sVCp5/vnnr/7m5+025SXyw5LzmAesaDVitshVlVtBFQLT/OyGwtx7Yc8LMGACjfvvNXMHdWYm6f/3N5ce81zHOaraq9iUtQmlfPR/ctSZ45tSrlKN/DzJZLIb3gc4kWPKZDKAmx4zKyKLI01HGLQPEqTw/mX/PcVUrEcWHEzY30fT/IWuoIDWn/8ce08PirAwqeN4DUOFEWWQnPTZvtX+Ai8ogPzZhtmJfG9HFburWrh33hSp43iPyq1DxU+QfwyPX5V7L5Q+C+eLYc4npU4zIfLg4HGNxIxF9flKYlIWoU2f49LjjsX06dP54x//iMViQa0emn127Ngxlxw7OyKbQ1cOUdtdy/So6S45pj8w6fWErVqJPMS/loTQFRZg/OEP6dmzh/C775Y6jteoLjeSPjsGldq7bkMZC8n3AvNnSRHBLEiLFHuDfVybAZpPQ+5mqZO4XvgUSLldzAb7mM6BTtr62yTb++tTn/oUDoeDL3zhC1RVVVFSUsKPf/xj4B+jPBMVFhRGQmiC2BvsYyy1tViqqtAV+snkho9RJSYSPG8epmK91FG8RmdzL+2Xe8j2sdlfw0QB5GZFeYnsr26lu0/MFgGGioOgsKEboP1R7mYw7IH+TqmTeIWarhpUchWpOmnuD9DpdLz33nucOHGCuXPn8swzz/Dcc88BjHpz83hlR2TTYG5gwOYdGzJLzVRcjDwkhLAVK6SO4ha6wkJ6Dh7E3t0tdRSvYKgwolIrSMuNljrKhIgCyM02zE7E5nBSerZZ6ije4cyWoanvKj9dUTXnbnDY4NwOqZN4BUOXgYzwjBve+zMRZWVl122DsW3bNt58801gaEmMj2+DsWTJEk6ePInFYqG8vByHw4FKpbp6c/OqVatwOp0jtsGYO3cuTqeT9PT0m2bJisjC6XRS213rgu/M95mLiwm7807kLiguvZE2Px9sNsy799z6xQHAUGEkY04MSh/d8UAUQG4Wr9NwW3oU20+JNhjGKmit8s/21zBdIqQtGbrPKcB19HfQMdAhWftr2B/+8AcOHDhAbW0t27Zt46mnnuITn/gEwS7Y1iBUFUpiWKJogwGW6mos1QZ0G/yv/TVMFR9HyIIFmPSiDdZ+pYeOK71kL/DN9heIAsgjNuUlctDQRmfvoNRRpFW5FdThkO3bewPdUu69cLEM+jqkTiIpQ7cBtUJNita9W8/cSnNzM5/+9KeZOXMmX//617nvvvt49dVXXXb87IhsLvdcDvg2mKlYj1yrJXTZMqmjuJV2QyG9hw9j6wzsNrehwkhQsJLUHN9sf4EogDyiYFYiDqcTfWUAt8GczqH214yNoHTvXlCSy7kbnA6oelfqJJJxOp0YOg2kh6ejkEs7PP7kk09SV1fHwMAAtbW1/OxnPyPEhTOUMsMzceLkYrfrF5D0FU6nE1NxMdo1a5AH+feSALr168HhwDzKyuOBwul0Yig3kjknBoXKd8sI303uQ2K1ahZnRbMjkNtgLWegvdo/9v66lbA4SF82VPAFqPaBdrosXZK3vzwhRBVCclhyQO8NZjl/nsHaWr/Y++tWlDExhCxaFNB7g7U39tDV0kf2wnipo0yKKIA8ZOPsJA7VtNHWY5E6ijQqt4ImAjJXSZ3EM3I3Q90H0NMqdRJJGLqG2l9TtIGx/lVWRBaNPY30WfukjiIJU7EeeXg4oTfYx9Hf6AoL6TtyFFt7u9RRJFFdbkQdomTKjEipo0yKKIA8pGBWAjKZjOIzAdgGG25/zdwESv8eHr9q5l2ADKrekTqJxzmdTmq6asiMyEQh883ZIeOVGZ6JDFlAtsGutr/WrUXm5+2vYdr160Amw1xaKnUUj3M6nRgqjGTOi0Wh9O0SwrfT+5Co0CCWZsew/eQVqaN4XtMJ6Kwd2jE9UIRGD412nQm82WCt/a10W7oDov01LFgZzJSwKQHZBhuoPIu1ocEvFz+8EWVkJKGLF2PaGXhtsNYGM6bWfqYu8O32F4gCyKOK8hI5WteB0RRgs0XObIGQaEj3z8XRbij3Xqg/CKbAuverpquGYGUwyWHJUkfxqKyILJp6mui19kodxaNMxTtRREYSevvtUkfxKF1hAX3l5Vhbrt+E158Zyo1owlQkT4+QOsqkiQLIg/JzElDKZew8HUA/EJ1OqNw21BJSBNjWczOLQK4MqNlgTqcTQ5eBzPBM5LLA+uclIzwDmUwWUGsCOZ1OzMV6tOvXI1MG1udbu3YtKJUB1QYbbn9lzYtFrvD9z7fvfwc+JDxExfKpsYG1KGJjBXQ3BFb7a1hwJGTdGVCzwYx9RsyDZre2v1atWsXjjz9+w+dlMhnbtm0b8/HKysqQyWR0dXVNKpdGqSFFmxJQBdDAqVNYr1wJqPbXMEV4OGFLlgTUbLCWOhPmjgGfn/01TBRAHlaUl0h5fSdXuvqljuIZZ7ZAaBykLZU6iTRmbYZLH0L3ZamTeIShy0CIKoTEsETJMjQ1NVEo0Q/k7Ihsmnqb6BnskeT8nmbaWYwiJoaQ2xZKHUUSug2F9B8/jrUpMH6pNZQbCdEFkTQ1QuooLiEKIA9blxNPkFIeGG0wh2No+nvO3SDxYniSmV4IiqChNqCfG25/ZYVnSdr+SkhIQK2WZrHNjPAMFDIFhi4DVqt/b4DsdDgw6fXo1q9HpgjMz3fYnXciU6kw6UukjuJ2Tsff21/z45DLZVLHcQlRAHmYVqNi5bQAaYNdPgrmK4HZ/hqmCYfsdQGxN1hzbzO91l6yIrLcfi6Hw8GTTz5JVFQUCQkJfPvb37763LUtsEOHDjF37lw0Gg0LFy5k27ZtyGQyTpw4MeKYFRUVLFy4kJCQEJYsWcL58+dHPP/OO+8wf/58NBoNmZmZfOc738Fms4047+uvvs4b//YGd6TfwYsvvuiOb91r9J84ga2lxa/3/roVhVZL6IoVmPT+3wZruthNb5fFp/f+upYogCRQlJfIiUtdXOrw80XTzmwBbRKk3CF1EmnN2gyN5dBZL3UStzJ0GYY2Bw11f/vr97//PaGhoRw5coQf/vCHfPe732XXKFsTmEwmNm3axOzZszl+/DgvvPACTz311KjHfOaZZ/jJT35CeXk5SqWSz33uc1ef++CDD3jwwQd57LHHOHv2LL/5zW948803rytyvv3tb3PPPffwH//7H9z36ftc+017GdPOYpTx8QTPny91FEnpCgsZOHmKwcuNUkdxK0OFkdAINYlZ4VJHcZnAum3fS6ydGY9GJWfH6Sa+uNL9vy1LwmGHs9tg1j+BPMDr7GkFoNQMjQIte1zqNDdlHbTT1Tz+wtzhdHDhYgMp2gzaLo3//peIhBBUQWNvo+Tl5fH8888DMHXqVH75y1+yZ88e1q1bN+J1f/rTn5DJZLz22mtoNBpycnJobGzk0Ucfve6YL774IitXrgTgm9/8Jhs3bmRgYACNRsN3vvMdvvnNb/LQQw8BkJmZyQsvvMCTTz55NQfApz71Kf7tS//GG5VvMKjz382PnXY7phI94Rs2IAvwz7d29SpkajVmfTHRjzwidRy3cDic1FQYmbowHpmftL9AFECSCFUruXNGHDtO+XEBVH8IeloCY++vW1GHwdT1ULnF6wugruY+/velYxN8dyLV2Khm/O//xH/cRmyqdsyvz8vLG3nmxESMxuvXYzl//jx5eXloNJqrjy1atOiWx0xMHBrFMhqNpKamcvLkSQ4ePDhixMdutzMwMEBfX9/VzVUXLlyISqEiTZeGodPAvLh5Y/6efElfeQX21ja0Bf6/99etyENDCVu5EtNO/y2Amqq76DMNkr3Qf9pfIAogyWycncRX/nScurZe0mNCpY7jepVbITwFptwmdRLvMGsz/PWz0F4D0d5b9EYkhPCJ/xj/NatorqC5r5kNGRuQycb/G2JEwvh2Z1epVCP+LJPJcDgc4z7vjY45/D0MH7Onp4fvfOc7bN58/f1sHy+uQkOHPstZEVmU1pXSbekmXO0/LYNhJn0xyqREgufOlTqKV9BtKKTx8a8zWF9PUFqa1HFcrrrCSFiUmvgMndRRXEoUQBK5c0YcIUEKdpxu4iur/WzLALsNzr4Dc++HCfww9EtT80EVOlQYrviG1GluSBWkGNdIDAy1v5pMtUyfMp24JO/6B3L69On88Y9/xGKxXJ0ZduzY+Eeo5s+fz/nz58nOHttnNU2XhkquwtBlYEH8gnGfz5s5bTbMJaWE33PPhIpdfxS2ciWykBBMxXpivvj/pI7jUg67g4sfGZl+R6LfXe/Abt5KKDhIwZqZ8bznj3uD1X0AfW1DO6ILQ4JCYHqBX84Ga+xppN/W75V7f33qU5/C4XDwhS98gaqqKkpKSvjxj38MMK5/zJ977jn+8Ic/8J3vfIfKykqqqqr4y1/+wrPPPjvq61VyFem6dL/cG6zv6FHsHR3oCkX7a5g8OBjtqlV+uShi44Uu+s1WpvpZ+wtEASSporxEzjWbMRj9bNG0yi0QmQ5J/nn/w4Tl3gstZ6D1gtRJXKqmqwZdkI7Y4Fipo1xHp9Px3nvvceLECebOncszzzzDc889B4xsXd1Kfn4+27dvp7S0lNtuu4077riDn/3sZ6TdpN2RFZlFe387nQOdk/4+vImpuBhVSgqaWbOkjuJVtIUFWM6fx3LxotRRXMpQ3oIuRjPukWFfIFpgElo5LZYwtZIdp5p4bO1UqeO4ht0KVe/Bgs+K9te1stdBkHZoFGjV6FOxfY3daedi90VyonI8NjxeVlZ23WMfX/fH6XSOeG7JkiWcPHny6p/feustVCoVqampwNDWGte+Z+7cudc9lp+fT35+/g1zXfv6VG0qQYogDF0Gbkvwj3vhnFYr5tJdRHziE37XDpmssBUrkIeGYiouJvYrX5E6jkvY7Q5qTrSSuyzZL6+3GAGSkEalYF1OPNtP+VEb7OI+6O8U7a/RqDQwY8PQCJmfaDQ3MmAbIDvS+9pfw/7whz9w4MABamtr2bZtG0899RSf+MQnCA4Odut5lXIl6bp0v9obrPfDD7F3dwf04oc3IlerCVtzp1+1wS6f68TSa/O72V/DRAEksaK8RKqNPZxvNksdxTUqt0B0NiTMljqJd8rdDK3noOWs1ElcwtBlIEIdQbQmWuooN9Tc3MynP/1pZs6cyde//nXuu+8+Xn31VY+cOzsim46BDtr72z1yPncz7SwmKC0N9YwZUkfxSrrCQgYNNQxc8I82t6G8hYj4EGKmhEkdxS1EASSx5VNj0WqU7PCHUSCbBaq2D93r4ofDpS6RtRrU4X4xCmR32KntriU7Iturh8effPJJ6urqGBgYoLa2lp/97GdX1+1xtxRtCmqF2i9uhnYMDmLevRvthkKvvt5SCl26FLlW6xejQHarg4sn2sheEOe311sUQBILUsrJz01g+6mm6+4h8Dk174OlW7S/bkaphplFQ/cB+fj1vmS+hMVu8cjeX75KIVeQEZ5BTVeNz3++ew8exGE2oysU7a8bkQcFoV27FnOx3uevd0NVB4P9Nr/a++taogDyAkV5iVxs6+Vsk0nqKJNTuQViZ0B8jtRJvFvuZmg3QPNpqZMA19+8O1aGLgNRmiiig723/eUNsiOy6bJ00T4w8TaYN/wwNRUXE5SdhWbaNKmjeDXdhkIG6+qwnDsndZRJMVS0EJkYSnSyf7a/QBRAXmFpdgyRISrf3iHeOgDndorRn7HIXAnBkZK3weR/38PJbreP+702h406U50Y/RmDZG0yGqUGQ+fE22CDg0P7iikUY98vzZUcFgs9e/aiKxCjP7cSescdKMLDMe303TaYzWqn9mSbX67983FiGrwXUCnkFMxKYMepJp7Mn+6b/VbDLhg0i72/xkKhgpmb4MwWWPO8ZPdLyeVygoKCMJlMKBSKcf13V99dj9PmJD00HavV6saU/iErLIu6zjrmx8wf19+z0+lkcHAQk8lESEjI1aLV03r278fR2ytmf42BTKVCu37d0HT4J77uk/+eN5zpwDpg9+v2F4gCyGtsnJ3En49e4nRjN3lTIqSOM36VWyF+FsSK4fExyd0Mx/8AVz6C5PmSRJDJZERERNDa2kpbW9u43nu2+Swh1hCsZiut5lY3JfQf4bZwzrafpTq4mkhN5LjfHxISQni4dHuKmYv1qKdPR52ZKVkGX6IrLKTrr39j4EwlwbN9b8HI6ooWopPDiEzww30qP0YUQF7ijswookOD2H6qyfcKoME+OK+H5U9IncR3pC+HkJihNphEBRCAUqkkISEBm8025vf02/r5r/3/xQMzHyA21vtWf/ZGkY5Inj3xLLYQG1+c88VxvVehUEg28gPg6O/HXFZGzBe+IFkGXxOyaBGKqChMxcU+VwBZB+3UnWpjQWG61FHcThRAXkKpkFM4e6gN9nThDN8aNq0uAWuvaH+Nh0IJOXdD5TZY94KkywbIZLLrdle/mb2Ne2mxtLA2Y+243hfIVKi4Y8odvFf3Hl9d8FWf+nz37NuHs69P7P01DjKlEm3+ekz6YuL+/Rs+db3rT7djG3T4/f0/IG6C9ipFeUk0dvXz0aUuqaOMT+VWSJwD0eKG2HHJvRe6L8Hl8e9OLqWSuhJyonNI0aVIHcWn5Kfn09TbxMnWk7d+sRcx7SxGk5ND0E32PROupysoxHalif4TJ6SOMi6G8hZiU7WEx3pmrSwpiQLIi9yWHkWsVs32kz40G8zSAxdKxeyviUhbAmHxPrVDfK+1l/2X95OffuM9sYTRzY+bT0xwDCV1JVJHGTNHby89+/aJm58nIGThAhSxMZj1eqmjjNnggI26M+1+f/PzMFEAeRGFXMbG2YnsPN2EwyH9uh9jckEPtn7R/poIuQJy7hlqgzkcUqcZk32X9mGxW0QBNAEKuYL1aesprSvF4fSN621+vwynxYJWTH8fN5lCgS6/AJO+BKePfL7rTrdhtzpEASRIoygvkWbTAOX1nVJHGZszWyB5IUSK4fEJmbUZzFfg0odSJxkTfZ2evJg8ksOSpY7ikwoyCjD2G/nI+JHUUcbEVFyMJi+PoCniek+EbkMhtpYW+o8flzrKmBjKjcRn6NDFuHejYG8hCiAvMz81kgSdxjf2BhswDa3/I0Z/Jm7KItAlDxWSXs48aOZA4wEx+jMJc2LnEB8Sj77W+9sidrOZ3v37xdYXkxA8dy7K+HifWBTR0m+jvjJw2l8gCiCvI5fL2JiXyM4zzdi9vQ12fifYByH3HqmT+C65fKgNdvYdcIx/RWZPev/S+1gdVtanr5c6is+Sy+SsT1/Prvpd2L38evfs3YvTakVXIAreiZLJ5egKCjCVluKcwIrrnlR7shWHzUnWfFEACRIqykuk1WzhSO3E9w7yiDNbIOUOCJ8idRLfNmsz9Bqh/qDUSW6qpK6EeXHzSAhNkDqKTytIL6B9oJ2Klgqpo9yUaWcxwfPno0pMlDqKT9NtKMTe1kbfsXKpo9yUocJIYlY42iiN1FE8RhRAXmhuSgTJEcHevTdYfyfU7BXtL1dIXgARqV7dBuu2dHPoyiHR/nKB2TGzSQ5LRl/nvW0we3c3PYcOoSsQa/9MliYvD1VSEqZi722DDfRauXS2g+wAWPvn40QB5IVkMhlFeYnozzRjs3vp7IFzO8BhG1rMT5gcmWyokKx6F+xjX5HZk/Y27MXusLM+TbS/Jksmk7E+fT2763djc3jn9Tbv3g02G9p8UfBOlkwmQ1tYgLm0FOc4Vlz3pIsnWnE4Aqv9BaIA8lpFeUl09A5y+KKXtsHObIG0paATw+MukXsv9LVD3X6pk4xKX6dnQfwCYkPE1heukJ+eT6elk6NNR6WOMipTsZ6QhQtRxQfWD0R30RVuwN7ZSe+RI1JHGZWhwkhSdgSh4Wqpo3iUKIC81KxkHWnRId65KGJvO1wsg1mi/eUyiXMhMsMr22CdA50caTpCQbpoh7hKTlQOKdoUSuq9b1FEW2cnvYcPi8UPXUiTm4MqNdUr22D9PYNcPtcZEFtfXEsUQF7qahussplBm5e1wareBZww8y6pk/gPmWzoZuiq98A2KHWaEXY37MaJk7Vpa6WO4jdkMhkF6QXsrt+N1W6VOs4I5tJd4HSiXbdO6ih+QyaToSssxLxrN85B7/p8X/yoFZxOMueJAkjwIhtnJ9Hdb+VgTZvUUUaq3Dq0m3lY4H1g3Cp3Mwx0DY2ueZGS2hIWJSwiOjha6ih+JT89H9OgicNNh6WOMoKpuJiQ2xehjImROopf0RUW4Ojupvewd13v6nIjydMjCdEFSR3F40QB5MVmJmrJjA31rjZYjxHqPhgarRBcKz4Xoqd61d5gbf1tHGs5JmZ/ucG0yGmk69K9am8wW1sbfUePisUP3UA9fTpBGRmYir1n9l+faZArFzoDavHDjxMFkBcbaoMlUXq2GYvNSxbROvsOIBPtL3cYboOd2wE2i9RpANhdvxs5ctamivaXq8lkMgoyCtjbsJdBu3e0RUylpSCTifaXG1xtg+3Zg8NL2mA1x43IZDKyArD9BaIA8npFeYmYB2zsv+AlbbDKrZC5CkKipE7in3I3g6UbDHukTgIMzf66Pel2IjQRUkfxSwXpBfRYezjY6B2LYJp3FhO6eDHKyEipo/glXWEBDrOZ3gMHpI4CDM3+mjIzEk2YSuookhAFkJebFq9lWnyYd+wNZmqC+kOi/eVOcTMgLscr2mDGPiPHW46L2V9ulBWRRXZEtlcsimhtMdJXUSHaX26knjoV9dRsr9gbrLfLwhVDF9kL4qWOIhlRAPmAorwkdp1tYcAqcRvs7DsgV8KMjdLm8He59w7ts2btlzRGaV0pCrmC1SmrJc3h7/LT8ym7VMaAbUDSHOaSElAq0a5dI2kOf6ctLKRn714cA9Jeb0OFEblcRsacwL3ZXRRAPqAoL5HeQTtl543SBqncAtlrIFgMj7tV7mYY7IHqXZLGKKkrYWnSUsLV4ZLm8HcF6QX02fo40ChtW8RUXEzY0qUowsX1diddYSGOvj569ku76KmhwkhqThSa0MBsf4EogHxCZmwYOYk63pNyb7Duy3DpiNj7yxNisiFh9lDBKZHm3mZOtJ4Qs788ID08nRlRMyRtg1mbmuj/6CN0haLd6W7qjAzUM2dKuiiiuWOA5ovdZC8M3PYXiALIZ2zMS2RvlZG+QYn2kqncBgo1TN8gzfkDTe5muFACg72SnL6kroQgeZBof3lIfno++y/vp8/aJ8n5TcV6ZEFBhK0R7S9P0BUU0FO2D0efNNfbUGFEoZSTkRe47S8QBZDP2JSXRL/Vzt5zErXBKrfA1HWg0Ulz/kCTey9Y+4aKIAmU1JWwLHkZYUFhkpw/0OSn59Nv62d/ozRtEZNeT+iK5SjCxPX2BN2GQpz9/fTs2yfJ+Q3lLaTmRhEUrJTk/N5CFEA+IjU6hLwp4dIsithZB40Vov3lSVEZkDRPkjbYZfNlTredpiBDtEM8JUWbQm50LiW1ni94By9fZuDUKTH7y4OCUlLQzJolyWwwU1s/xnozUwO8/QWiAPIpRXmJvH/eSI/Fw22wyq2gDIZp4geiR+VuHroR2mL26GlL6krQKDSsnLLSo+cNdAXpBXzQ+AG9Vs+2PU3Fxcg0GrSrVnn0vIFOV1hIz/792Hs8e70NFUaUKjlps8XWNqIA8iEbZidisTnYU9Xi2RNXboVp60Ethsc9KvcesA3Aec/eHFtSV8KKKSsIUYV49LyBbn36eix2C+9fet+j5zUX6wlbuRJ5aKhHzxvodAX5OC0Wet7f69HzVpe3kDY7hiBNYLe/QBRAPmVKZAjzUiN4z5NtsPYaaDo5NBoheFZEKky5zaNtsHpTPVUdVWL2lwSSwpLIi83z6N5gg/X1DJw9K9pfElAlJxM8Z45H9wbraumj7VJPwO79dS1RAPmYorwk9l9opbvf6pkTVm4BVShMXe+Z8wkj5W4Gw27o7/LI6UrqSghWBrN8ynKPnE8YqSC9gIONBzENmjxyPlNxMbKQEMJWrvDI+YSRdBsK6f3gA+wmz1xvQ4URpVoh2l9/J3kB9Ktf/Yr09HQ0Gg233347R48evenru7q6+MpXvkJiYiJqtZpp06axc+dOD6WV3sbZiQzaHew666E22JmtML0AgkQ7RBK594DdOrQytAfo6/SsSllFsDLYI+cTRlqfth6bw8b7DZ5pg5l2FqNdtQp5sLjeUtAWFOC0WjHv8UwbzFDRQkZeDKoghUfO5+0mXADt2bOHoqIisrKyyMrKoqioiN27d4/rGG+//TZPPPEEzz//PMePH2fOnDnk5+djNI4+1XtwcJB169ZRV1fH3/72N86fP89rr71GcnLyRL8Nn5MQruG29EjP7A3Weh6MlaL9JSVdEqQu9sjeYBe7LlLdWS32/pJQfGg88+LmeWRRREtNDZYLF9BtEO0vqaji4wlesABTsft/welo6qW9sVe0vz5mQgXQr3/9awoKCtBqtTz22GM89thj6HQ6NmzYwK9+9asxH+enP/0pjz76KA8//DA5OTm88sorhISE8Lvf/W7U1//ud7+jo6ODbdu2sXTpUtLT01m5ciVz5syZyLfhs4rykviguo2uvkH3nqhyK6h1kL3WvecRbi73XqjZC30dbj1NSV0JYaowliYvdet5hJvLT8/nwysf0m3pdut5TMV65GFhhC4X7U4p6QoL6T10GHtXl1vPYyhvIUijIDU3yq3n8SUTKoBeeuklfvazn/HnP/+Zr33ta3zta1/jT3/6Ez/72c946aWXxnSMwcFBKioqWLv2Hz9c5XI5a9eu5fDhw6O+591332Xx4sV85StfIT4+nlmzZvHSSy9ht994k1CLxYLJZBrx5esKZyfgcDopqWx230mcTjizZWjlZ5XGfecRbi3nbnA64Nx2t53C6XSir9OzOmU1aoXabecRbm19+nocONjTsMdt53A6nZiKi9GuuRO5WlxvKeny14PDgXmcHZTxcDqdGCqMZMyJRakS7a9hEyqAurq6KCi4fph8/fr1dHeP7beWtrY27HY78fEjF2OKj4+nuXn0H+wXL17kb3/7G3a7nZ07d/Ktb32Ln/zkJ3zve9+74XlefvllwsPDr36lpKSMKZ83i9NquD0jmu3u3BvMeBbazovFD72BNh7Slg4VpG5S3VXNxe6LYvFDLxATHMPC+IXoa93XBrNcqGawpgbtKP+OC56ljI0l5Lbb3LooYseVXjqb+8heKNpfHzehAuiuu+5i69br70l45513KCoqmnSoG3E4HMTFxfHqq6+yYMECPvnJT/LMM8/wyiuv3PA9Tz/9NN3d3Ve/Ll265LZ8nrQxL5FDNe2091jcc4LKraAJh6w73XN8YXxmbYba/dDb5pbD62v1aIO0LE5c7JbjC+OTn57P0eajdAy4p+1p0hcj1+kIWyrand5AV1hA75Ej2Drcc72ry1tQhyhJmSnaXx83oQIoJyeHF198kY0bN/K9732P733vexQVFfHiiy8ya9Ys/uu//uvq143ExMSgUChoaRk5m6mlpYWEhIRR35OYmMi0adNQKP4xhDdz5kyam5sZHBz9fhi1Wo1Opxvx5Q8KZw39Hend0QYbbn/N2ATKINcfXxi/mXcN/W/Vuy4/tNPppLS+lDWpa1ApVC4/vjB+a9OGbg3YXe/6tojT6cS8sxjt2rXIgsTn2xto1w8tM2Iu3eXyYzudTgzlRjLmxqJQSj7x26tM6G/j9ddfJzIykrNnz/L666/z+uuvU1lZSUREBK+//jo/+9nP+NnPfsbPf/7zGx4jKCiIBQsWsGfPP/rcDoeDPXv2sHjx6L+FLl26FIPBgMPhuPrYhQsXSExMJCjAPsjRYWqWZEW7Z2+w5lPQUQOzRPvLa4TGQMYKt7TBznWco95UL2Z/eZEoTRSLEha5ZVFES1UVg/X16ArF9fYWyqgoQm+/HVOx69tgbZd66G7tZ6qY/XWdCRVAtbW1Y/q6ePHiTY/zxBNP8Nprr/H73/+eqqoqvvSlL9Hb28vDDz8MwIMPPsjTTz999fVf+tKX6Ojo4LHHHuPChQvs2LGDl156ia985SsT+TZ8XlFeIkdq2zGaB1x74MqtEBwFGWIvKK8yazPUHwSza9eA0tfpiVBHsChxkUuPK0xOQUYB5S3ltPW7tu1pKi5GERFB6B13uPS4wuToNhTSd+wYttZWlx7XUNGCJlRF8oxIlx7XH0g6HvbJT36SH//4xzz33HPMnTuXEydOoNfrr94Y3dDQQFPTP0Y4UlJSKCkp4dixY+Tl5fG1r32Nxx57jG9+85tSfQuSys9NQC6ToT/jwjbYcPtr5iYQ7RDvMqMIZHKXtsGcTicldSWsTVuLSi6utzdZk7oGOXJK60pddsyh2V96tOvWIVOJ6+1NtGvXglyOqcS117u63Ejm/FgUCtH+utaYd0N74okneOGFFwgNDeWJJ5646Wt/+tOfjjnAV7/6Vb761a+O+lxZWdl1jy1evJgPP/xwzMf3ZxEhQSybGsP2k008uDjdNQe9chy66odGGwTvEhIFmauHCtRFj7rkkJXtlTT2NIq9v7xQuDqcO5LuoKSuhE/N/JRLjjlw5gzWy5fF4odeSBERQeiSxZj0xUR9+gGXHNNYZ8bcPiAWP7yBMRdAH330EVar9er/vxGZTDb5VMKYFeUl8e9/O0lz9wAJ4S5Yr+fMFgiNhbRlkz+W4HqzNsO2L4PpytAq0ZOkr9UTpYliYfxCF4QTXK0gvYBvHfwWLb0txIfG3/oNt2DaWYwiKoqQ225zQTrB1XSFG2j6j//A2tKCKn7y19tQ0UKwVkXy1IjJh/NDYy6A3n///VH/vyCtdTnxqORydpxu4vPLMiZ3MKcTKrcNzThSjPk/DcGTZmwcak1WboPFX57UoRxOByX1JaxLW4dSLq63N7oz9U6+c/g7lNaX8pmcz0zqWE6HA5NejzZ/PTKluN7eSLvmTpqVSsx6PVEPPTSpYzkdQ4sfZs2PQy7aX6MSfys+LjxYxYppMa7ZG+zyMTBdFu0vb6YJH9qaxAV7g51qPUVzb7OY/eXFtEFaliYvdcneYP0nT2JrakJXKNpf3kqh0xG6bJlLFkVsrjXR02lhqlj88IYmVAD19vbyrW99iyVLlpCdnU1mZuaIL8GzivKSON7QRWNX/+QOdGYLhCUMbb4peK/ce+HyUeia3KKeJXUlxAbHMi9unouCCe6Qn57PqdZTXOmZ3C85puLioVWHFyxwUTLBHXQbCuk/eRJrY+OkjmMobyEkPIiErAjXBPNDExoHfeSRR9i3bx+f+cxnSExMFPf9SGxtTjxqpZwdp67whRVZEzuIwwFnt0HuPSAXe8V4temFoNQMjQIt/dqEDuFwOiitK2V9+noU4np7teH92UrrSvnsrM9O6BhOhwOzvgRtfj4yhbje3ixs9Z3I1GpM+hKiP/+5CR3D6XBiOG4ke34ccrn4+XwjEyqAiouL2bFjB0vFMupeIUytZPX0OLafapp4AXTpQzA3ib2/fIFaC1PXQeWWCRdAx1uOY+w3ivaXDwhVhbI8eTn6Ov2EC6D+igpsRqOY/eUDFGGhhK1Ygam4eMIFUFNNF33dg2QvnPyN1P5sQi2wyMhIoqLEniLeZGNeIqcud9PQ3jexA5zZArpkmCIWw/MJuZvhykfQUTuht+vr9CSEJpAXm+fiYII75GfkU9leySXTxNqepmI9yoQEgufOdW0wwS10hQUMnDnDYEPDhN5fXW4kLFJNQoZ/bP3kLhMqgF544QWee+45+vom+MNWcLk1M+MIVinYfnoC9wk47HD2naHRH7m4L94nTMsHVciEboa2O+zsqt/F+rT1yGXievuCFckrCFYGU1I//q0xnHY7ptJSdAUFyMTn2yeErVqFLDgYk37819thd1Bz3EjWgjhkov11U2Nugc2bN2/EvT4Gg4H4+HjS09NRXbOi6PHjx12XUBiTkCAld86MY/vJJr68Knt8b647AL3GoVEFwTcEhQ4VQZVbYPnNFya9VnlLOR0DHaL95UNCVCGsmLKCkroSHpn9yLje23fsGPa2NrH3lw+Rh4QQtmolpuJiYr4wvkVPr1R30W+2MnWBaH/dypgLoHvuuceNMQRX2JSXyBf/eJyLrT1kxoaN/Y2VWyEiFZLnuy+c4Hq5m+F/PwNtBogZe9Grr9OTHJbMrJhZbgwnuFpBegFfL/s6dd11pIenj/l9pp3FqJKT0eSJdqcv0RUW0vi1x7DU1qLOGPsab9UVRnQxGuLStW5M5x/GXAA9//zz7swhuMCq6XGEBinYcaqJf10zdWxvstuG9paa92kQs/l8y9R1EBQ2VMCu/PcxvcXqsLK7fjebp24Wszd9zLLkZYQoQ9DX6fninC+O6T1Omw1zaSkR//xP4nr7mLAVK5CHhGAqLib2y2Nb9NRud3DxeCs5y8Ts7LGYUEP40qVLXL58+eqfjx49yuOPP86rr77qsmDC+GlUCtbmxLP9VNOtXzysdh/0tYv2ly9SBQ9Nia/cMua3HGs6RpelS+z95YM0Sg2rUlZRUjf2+0J6PzyCvasLrVj80OfINRrC7rwTc/HYF8FsPNfJQK+VbNH+GpMJFUCf+tSnrm6H0dzczNq1azl69CjPPPMM3/3ud10aUBiforwkzreYqW4xj+0NlVsgKhMS57g3mOAeuZvBeBaM58b0cn2dnlRtKjOjZro5mOAOBekFGLoM1HTVjOn1puKdqFJT0eTkuDmZ4A66DYVYqquxGAxjer2hwkh4bDAxKeO4BSKATagAOnPmDIsWDU2X/t///V9mz57NoUOHeOutt3jzzTddmU8YpxXTYtCqlbw3llEg2yBUbR+a/SWGS31T9hpQh49pFMhqt7K7YTf56flieNxHLU1eilalHdPWGM7BQcy7dqMrLBTX20eFLluGPCxsTFtj2G0OLp5oJXthnLjeYzShAshqtaJWqwHYvXs3d911FwAzZsygqWkc7RfB5dRKBety49lx6gpOp/PmL75YBgNdov3ly5TqoQ1SK7cObWZ7E4ebDmMeNFOQIWYD+aogRRCrU1ejr9Xf8vPde/gwDpNJLH7ow+RBQWjXrMFUXHzL632pqgNLn42pYvHDMZtQAZSbm8srr7zCBx98wK5duygoGPoH9cqVK0RHR7s0oDB+m/KSqGnt5VzzLdpglVsgZhrE53ommOAeufdC2wVoqbzpy0rqSsgIz2BqxBhvkBe8Un56PnWmOi50Xrjp60w7iwnKzEQ9bZqHkgnuoNtQyGBtLZYLN7/ehgojkQkhRCWFeiiZ75tQAfSDH/yA3/zmN6xatYr777+fOXOG7h959913r7bGBOkszY4hPFjF9pvtEG8dgHM7hkZ/xHCpb8tcBZqIm7bBLHYLexv2UpBeIIbHfdzixMXognQ3vRnaYbFg3rNnaPFDcb19WujixcjDw2/aBrNZ7dSeaCV7gWh/jce4CyCn00lmZiYNDQ20tbXxu9/97upzX/jCF3jllVdcGlAYvyClnILcBLafarrxsGnNXrCYxN5f/kAZBDM3DW1ncoPrfbDxID3WHrH4oR9QKVSsTVuLvu7GbbDeAwdw9PSI9pcfkAUFoV239qZtsIbKDgYH7GLvr3GaUAGUnZ1Nc3MzkZGRI55LT08nLi7OZeGEiduYl0h9ex+VV0yjv6ByC8TlQNwMzwYT3GPWZuishaaToz6tr9MzNXIqmRGZHg4muEN+ej6XzJc423F21OdNxXrUU6eizh7nqvCCV9IVFGJtaGDg7OjX21BhJDo5lKhE0f4aj3EXQHK5nKlTp9Le3u6OPIKLLMmKJio0iPdGa4NZ++F8sbj52Z+kr4CQ6FHbYAO2AcoulZGfJtb+8ReLEhYRqY4ctQ3mGBigZ+9eMfrjR0LvuB1FZCTm4uvbYLZBO7Wn2sheIAYfxmtC9wB9//vf59///d85c+aMq/MILqJUyCmYlcCO0dpg1aUw2CPaX/5EoYSZd406G+yDxg/ot/WL2V9+RClXsjZtLaV1pdd9vnv27cfR14e2QFxvfyFTKtGuX4+p+Pq2Z/2ZdmwWu1j8cAImVAA9+OCDHD16lDlz5hAcHExUVNSIL8E7FOUlcrmznxOXukY+UbkVEmaPa/8owQfM2gxdDdBYMeJhfa2emVEzSdOlSRRMcIeC9AIaexo53XZ6xOOm4mLUM2eOa/8owfvpCguxNjYycOrUiMery43EpIQRER8iUTLfNea9wD7u5z//uYtjCO5we0Y0MWFqdpxqYl7q3+/XGuyFCyWwYmx7Rwk+JG0phMYNFbhTFgLQZ+1j/+X9Y947SvAdC+IXEK2JRl+nJy92aKNTR18fPWVlxIxx7yjBd4TcthBFTAymYj3Bf595PThgo/50G7cViWJ3IiZUAD300EOuziG4gUIuY8PsBHacbuI/NsxELpfBBT1Y+0T7yx/JFZBz91ABtO4FkMvZf3k/A/YB1qevlzqd4GIKuYJ1aesorSvlGwu/gVwmp6esDOfAALpC0f7yNzKFAt369Zj0euKe/HdkcvlQ+8vqIGu+uP9nIibUAgOoqanh2Wef5f7778doNAJQXFxMZeXNF2MTPKsoL4mm7gGON3QOPXBmCyTNhyjxG4NfmrUZTI1w+SgwNPtrVvQsUrQpEgcT3KEgo4CWvhZOtg7N/jMVF6OZNYugFHG9/ZFuQyG25mb6T5wAwFBuJC5NS3hssLTBfNSECqB9+/Yxe/Zsjhw5wpYtW+jp6QHg5MmTPP/88y4NKEzOwrRI4nXqoR3iLWao3iVGf/xZyh2gTYIzW+gZ7OGDyx+Im5/92Ly4ecQFx6Gv1WPv6aFn3350Yud3vxU8fz7KuDhMO4sZ7LdRf6ZdrP0zCRMqgL75zW/yve99j127dhEUFHT18TvvvJMPP/zQZeGEyZPLZWyYncjO0004zu0Eu0UUQP5MLofce+DsO7zfsJdBxyDr00T7y1/JZXLWp6+ntL4U0549OAcHRfvLj8nkcrQF+ZhLSrh4wojd5hDT3ydhQgXQ6dOnuffe63+IxsXF0dbWNulQgmsV5SVhNFvoOvY2TFkEEWJ43K/l3gs9zZSe+wtzYueQGJYodSLBjfLT82nrb+PyO28TPHcuqqQkqSMJbqQrLMTW2sqFvdUkZOrQRmmkjuSzJlQARUREjLrr+0cffURycvKkQwmuNT81gunhDnSN+4buERH825TbMEWkcKD9jNj6IgDMiZ1Dpjwe+ZGTYvQnAATPnYtzSjqXL1nF2j+TNKEC6F/+5V946qmnaG5uRiaT4XA4OHjwIN/4xjd48MEHXZ1RmCSZTMZXk84jd9qxTd8kdRzB3WQy9qbPx+50sC7lTqnTCG4mk8m4vzULHA5C1q+VOo7gZjKZDPPi+3A6IXOOWHdvMiZUAL300kvMmDGDlJQUenp6yMnJYcWKFSxZsoRnn33W1RkFF1hp/YBjjukcaRfDpYFAr7Qxz2IhvvWC1FEED8g7ZebcFPjI2SB1FMEDmoKnEt59EXn1qVu/WLihCRVAQUFBvPbaa9TU1LB9+3b++Mc/cu7cOf7nf/4HhULh6ozCZPV1oL1ygEPqFWwfbW8wwa90DXRxpKOKAkfw0LIHgl+zdXYiKz9N1dyoUfcGE/zLQI+Vpss2kqwXMe28fm8wYewmvA4QQGpqKoWFhdx3331MnTrVVZkEV6t6D5nTgWr2PRSfacZqd0idSHCjPQ17cOBgXeYGqHoX7FapIwluZN69GxwOogo2srthN1aHuN7+7OKJVpxOJ9mLkjCXluK0ius9URMugF5//XVmzZqFRqNBo9Ewa9Ysfvvb37oym+AqlVshbSmrFsyiq8/KQYOYqefP9HV6bou/jZi8T0F/J9TukzqS4Ebm4mJCbruNO+dtptvSzZGmI1JHEtyouryFpGmRxN21Dnt3N71i6ZkJm1AB9Nxzz/HYY4+xadMm/vrXv/LXv/6VTZs28fWvf53nnnvO1RmFyehtg9r9MGszuUk6MmJC2XHq+hl8gn9o72/naPPRoa0vEmZDdDac2Sp1LMFNbB0d9H54BF1hIdMjp5OmS0Nfq5c6luAmfaZBGs93kr0gDvWMGQSlpWEqFtd7oiZUAP33f/83r732Gi+//DJ33XUXd911Fy+//DKvvvoqv/71r12dUZiMs+8M/e/Mu5HJZBTlJVJS2cygTbTB/NGehj3IkLEubR3IZENrAp17D2yDUkcT3MBcWgoyGdr165DJZOSn57O3YS9W0fb0SxdPtIJMRtb8WGQyGdoNhZh378Y5KD7fEzGhAshqtbJw4cLrHl+wYAE2m23SoQQXqtwKmSshNBoYWhTRNGDjg+pWiYMJ7qCv03N74u1EaiKHHsjdDAPdULNX2mCCW5h2FhN6++0oo4amQxekF2C2mjl05ZDEyQR3MJS3MGVGJMFhQzsw6AoLcZhM9Bw8KHEy3zShAugzn/kM//3f/33d46+++ioPPPDApEMJLmJugfqDI7a+mBYfRnZc2NDeYIJfae1rpby5fOTih/E5EDtjqBAW/IrVaKTv2DF0G/6x99fUyKlkhWehrxNtEX/T222hsbprxNYXmmnTCMrOwlQsZoNNhHKsL3ziiSeu/n+ZTMZvf/tbSktLueOOOwA4cuQIDQ0NYiFEb3L2HZDJYUbR1YeG22C//aCWAasdjUosW+AvSutLUcgU3Jl6zeKHuZvh0C/AOgAqsQ6UvzCX7gKFAu3akYsf5qfn8/uzv8dit6BWqCVKJ7hazXEjcpmMzLmxIx7XFRTS8cYbOCwW5GpxvcdjzCNAH3300dWv06dPs2DBAmJjY6mpqaGmpoaYmBjmz59PZWWlO/MK41G5BbLuhJCRq4UW5SXRY7Gx74Jog/mT0rpSFictJlwdPvKJ3Hth0AyG3dIEE9zCVFxM6NIlKCIiRjyen5FPr7WXA40HpAkmuIWhwkhKThSaUNWIx3UbCnH09tL7wQcSJfNdYx4Bev/9992ZQ3A10xVoOAz3vHLdU9lxYcxI0LL9VBP5uQkShBNcrbm3mePG47y47MXrn4ydBvGzhgrimUXXPy/4HGtzM/0VFSS+/PJ1z2WGZzItcholtSWsSV0jQTrB1Xo6B2gydLPmszOve06dmYl6+nRMO4uvGw0Ubm5SCyEKXqxyGyiCYMaGUZ8uyktkT1UL/YN2z+YS3KK0rhSVXMXqlNWjvyD3Xjivh8E+zwYT3MKk1yNTqdCuHb3AKUgvoOxyGf22fg8nE9zBUGFErpSRMSd21Od1hYWYy8pw9IvrPR4TKoAGBgb40Y9+xIYNG1i4cCHz588f8SV4gcotkL0WNOGjPl2Ul0TfoJ33zxs9HExwh5K6EpYmL0UbpB39Bbn3grUXqks9G0xwC3OxntDly1FoR7/e+en59Nv62X95v4eTCe5gqDCSmhONOnj0po2usABnXx89+8T1Ho8xt8A+7vOf/zylpaX88z//M4sWLUImk7k6lzAZXQ1w+RhsvvHK3OkxocxK1rH91BU2zE70YDjB1Rp7GjnVdorvL//+jV8UnQWJc4YK49x7PJZNcD1rYyP9J0+S9KMf3vA1qbpUZkbNpKSuhPz0fA+mE1zN1NZPS62JdZ/LueFrgtLS0OTkYCouRlcgrvdYTagA2r59Ozt37mTp0qWuziO4QuU2UGpgesFNX1aUl8TPd1+g12IjVD2h/xQEL1BaV4paoWZVyqqbvzB3M5R9Hyw9oA7zSDbB9Ux6PTK1mrDVd970dQUZBfz3if+mz9pHiCrEQ+kEVzMcN6JQyUnPi7np63QbCmn95a9w9PYiDw31UDrfNqEWWHJyMtobDL0KXqByC0xdB+qbX6ONsxMZsDrYXdXioWCCO+jr9KyYsoJQ1S3+0cu9F2z9cEGsEePLTMV6wlasQBF28+udn57PgH2AsktlHskluIeh3Ej6rGiCNDf/JVVbUIhzYADz+2WeCeYHJlQA/eQnP+Gpp56ivr7e1XmEyeq4CFc+Gvpt/xZSokKYkxIh9gbzYQ2mBs62nx3a++tWItMgeaFYFNGHDTY0MHDmzIjFD28kOSyZ2TGzxaKIPqzL2Edrg5msjy1+eCNBU5LR5OVh0otFEcdqQgXQwoULGRgYIDMzE61WS1RU1IgvQUKVW0EVAtPG1gfelJdI2YVWzANi7yBfVFpfSrAymBXJK8b2htx7oXoXDJjcG0xwC1OxHllwMGErV47p9fnp+RxoPEDPYI+bkwnuUHPciDJITvrsm7e/hukKC+nd/wH2HnG9x2JCN37cf//9NDY28tJLLxEfHy9ugvYmlVuHip+gsfWAN8xO5Hs7qth1toXN86e4OZzgavpaPSunrBz7PR6590DpM3B+J8z5F7dmE1zPVFxM2KqVyEPGdr3z0/P5cfmPef/S+2zK2uTmdIKrVZcbSc+LQaUe24r9uoJ8jD/4AT179hB+991uTuf7JlQAHTp0iMOHDzNnzhxX5xEmo80AzadhxZNjfktSRDAL0iLZfqpJFEA+pra7lvOd5/nSnC+N/U3hUyDljqFCWRRAPsVysRbLuXPEfHns1zshNIF5cfPQ1+lFAeRjOpt7ab/cw6KNGWN+jyoxkeD58zHtLBYF0BhMqAU2Y8YM+sWCS96ncgsEhQ3dAD0ORXmJfFDdSnefaIP5En2dnhBlCEuTxzkbc9ZmMOyB/k73BBPcwqQvRh4SQtiKMbY7/y4/PZ9DVw7Rbel2UzLBHQwVRlRqBam547utRFdQQM+hQ9i7xfW+lQkVQN///vf5t3/7N8rKymhvb8dkMo34EiRyZgtM3wCq4HG9bcPsRGwOJyVnm90UTHCH0rpSVqeuRqMc5wanM+8Chw3O7XBPMMEtzMXFhN15J3LN+K73urR12B129jbsdVMywR0MFUYy5sSgDBrfhtXa/Hyw2TDv3uOmZP5jQgVQQUEBhw8fZs2aNcTFxREZGUlkZCQRERFERka6OqMwFsYqaK0ausl1nOJ1GhalR7FdzAbzGYZOA4YuAwXpN1/raVS6REhbOlQwCz7BUl2Npdowptlf14oLiWNB/AJK6krckExwh/YrPXRc6SV7Yfy436uKjyNk4UJMxWI22K1M6B4gsTGqF6rcCupwyJ7Y5odFeYl8+72zdPQOEhUa5OJwgqvp6/RoVVqWJC2Z2AFm3Qs7n4S+DggRMze9nalYj1yrJXTZsgm9vyC9gJePvkznQCeRGvFLqrczlBsJClaSOnNin03dhkKav/cits5OlGJQ4oYmNAK0cuXKm34JHuZ0Dv02P2MjKNUTOkTBrEScTicllaIN5u2cTicldSWsTl1NkGKCxerMuwEnVL3r0myC6zmdTkzFxWjXrEEeNLHrvSZtDU6c7GkQbRFv53Q6MVQYyZwTg0I1sf3KtevWgdOJedcuF6fzLxPeDf6DDz7g05/+NEuWLKGxsRGA//mf/+HAgQMuCyeMUcsZaK8eurl1gmK1ahZnRbP91BUXBhPc4ULnBepMdRNrfw0Li4X05aIN5gMs588zWFuLrnDi1zsmOIbbEm4TiyL6gPbGHrpa+ibU/hqmjIkh5PZFog12CxMqgP7v//6P/Px8goODOX78OBaLBYDu7m5eeukllwYUxqByK2giIGNyo29FeUkcrmmn1WxxTS7BLfR1esLV4dyRdMfkDjRrM9R9AD1G1wQT3MK0sxh5eDihixdP6jgF6QUcaz5GW3+bi5IJ7lBdbkQdqmTKzMm1rnSFhfQdOYqtTVzvG5lQAfS9732PV155hddeew2VSnX18aVLl3L8+HGXhRPGYLj9NXMTKCd3705+bgIymQz9GXEztLdyOp3oa/WsTV2LSq669RtuZuZdIJOLNpgXczqdmPR6tOvWIptg+2vY2tS1yJCxu363i9IJruZ0OjGUt5A1NxaFYsINGuDvbTCZDFNpqYvS+Z8J/Q2fP3+eFaOsRREeHk5XV9dkMwnj0XQCOmsn1f4aFhUaxNLsGDEbzIud7TjL5Z7LY9v761ZCoiBzFZwRe4N5q4HKs1gbGtAVjH/217UiNBHckXiHmA3mxVobzJjaBsheMPH21zBlZCShixdjLhZtzxuZUAGUkJCAwWC47vEDBw6QmZk56VDCOJzZAiHRkD6+xdFupCgvkaN1HbSYBlxyPMG1SmpLiNJEsShhkWsOmHsv1B8Ekyh6vZGpeCeKyEhC77jdJcfLT8+noqUCY59oe3ojQ7mRYK2K5OkRLjmerrCQvvJyrC3ieo9mQgXQo48+ymOPPcaRI0eQyWRcuXKFt956i2984xt86UvjWJZfmBynEyq3DbUyFBNa0eA6+TkJKOUydp4WPxC9zfDsr7Wpa1HKXXO9mbER5Eo4+45rjie4jNPpxFysR7t+PTKla673nal3opAr2FUvZgd5m6uzv+bFIZ9k+2uYdu0aUCoxl4hRv9FM6G/5m9/8Jp/61KdYs2YNPT09rFixgkceeYT/9//+H//6r//q6ozCjTRWQHeDS9pfw8JDVCyfGivaYF7oVNsprvReoSBjErO/rhUcObR2VKVog3mbgVOnsF65gq5w8u2vYeHqcJYmLUVfK9oi3qal1oS5Y4CpC+JcdkxFeDhhS5eK2WA3MKECSCaT8cwzz9DR0cGZM2f48MMPaW1t5YUXXnB1PuFmzmyBsPihVX1dqCgvkYr6Tq50if3evElJXQkxwTHMj5vv2gPnboZLH0L3ZdceV5gU085iFDExhNy20KXHzU/P50TrCZp7xZpf3sRQbiREF0Ti1AiXHldXWED/Rx9hbRK/1F5rXOOqn/vc58b0ut/97nfjCvGrX/2KH/3oRzQ3NzNnzhx+8YtfsGjRre9x+Mtf/sL999/P3XffzbZt28Z1Tp/ncAz91p5zN8jHt1fMrazLiSdIKWfn6SYeWS7u6fIGDqeDkroS1qWtQ+Hi6830QlCoh9qpS77q2mMLE+J0ODDp9ejWr0emcO31Xp2ymiB5ECV1JTyU+5BLjy1MjNPhxHDcSNb8OORymUuPHbZmDbKgIEz6EqIf/qxLj+3rxjUC9Oabb/L+++/T1dVFZ2fnDb/G4+233+aJJ57g+eef5/jx48yZM4f8/HyMxpvftFVXV8c3vvENli9fPq7z+Y3LR8F8ZUJ7f92KVqNi1bRY3hNtMK9xwngCY59xcosf3ohGB1PXQaVYFNFb9H/0EbaWlgnt/XUrYUFhLEteJmaDeZGmi930dlnIXui69tcwRVgYoSuWizbYKMZVAH3pS1+iu7ub2tpaVq9ezeuvv87WrVuv+xqPn/70pzz66KM8/PDD5OTk8MorrxASEnLTUSS73c4DDzzAd77znVvOOrNYLP65W/2ZLaBNgpRJLoZ3AxvzEjl5qYtLHX1uOb4wPvo6PXEhccyNm+ueE+TeO3RPWWe9e44vjIupWI8yPp7g+S5ud/5dQUYBp9tOc9ks2p7ewFBuJDRCTWJmuFuOryssZODUKQYvi+v9ceMqgH71q1/R1NTEk08+yXvvvUdKSgqf+MQnKCkpwel0jvvkg4ODVFRUsHbt2n8EkstZu3Ythw8fvuH7vvvd7xIXF8fnP//5W57j5ZdfJjw8/OpXSkrKuHN6HYcdzm6D3HtA7prZAtdaOzMejUrODjEbTHJ2h51d9btYn7Yeucw915tpBaAMFjdDewGn3Y6pRI+uIB+Zmz7fK6esRKPQUFovFsmTmsPhpOa4kez5cchc3P4apl21CplGg1kvbn7/uHF/utRqNffffz+7du3i7Nmz5Obm8uUvf5n09HR6enrGday2tjbsdjvx8SMXfYqPj6e5efQb9A4cOMDrr7/Oa6+9NqZzPP3003R3d1/9unTp0rgyeqX6Q9DTMnTzqpuEqpXcOSNO7A3mBY4bj9PW3+ba2V/XUofBtPWiDeYF+sorsLe2oS1w3/UOUYWwfMpyMRvMCzRVd9FnGnRL+2uYPDSUsJUrMe0UbbCPm9SvF3K5HJlMhtPpxG63uyrTDZnNZj7zmc/w2muvERMTM6b3qNVqdDrdiC+fV7kVwlNgimtnh1yrKC+JM40m6tp63Xoe4eb0tXqSQpPIi8lz74lyN0PTSWivce95hJsyFe9EmZRI8Ny5bj1PQXoBVR1VNJga3Hoe4eaqK4xoozTEZ7j3Z5OusJCBs2cZrBdt7mHjLoAsFgt//vOfWbduHdOmTeP06dP88pe/pKGhgbCwsHEdKyYmBoVCQUtLy4jHW1paSEhIuO71NTU11NXVsWnTJpRKJUqlkj/84Q+8++67KJVKamoC4B9uu21o0brce0DmnuHSYaunxxESpBBtMAnZHDZ2N+wmPz0fmZuvN1PXgypUtMEk5LTZMJfuQldQ6PbrvXzKcoKVwWKHeAk57A4ufmQke0Gc26932MoVyEJCxM3QHzOuAujLX/4yiYmJfP/736eoqIhLly7x17/+lQ0bNiCfQK86KCiIBQsWsGfPnquPORwO9uzZw+JRdj6eMWMGp0+f5sSJE1e/7rrrLlavXs2JEyf84/6eW6n7APra3Nr+GhYcpGDNzHjeOynaYFI51nyMjoEO8tPz3X+yoJChKfGiAJJM39Gj2Ds6XLr44Y0EK4NZNWWVmA0mocYLXfSbrW5tfw2TBwejXbVKtME+ZlzrAL3yyiukpqaSmZnJvn372Ldv36iv27Jl7PcRPPHEEzz00EMsXLiQRYsW8fOf/5ze3l4efvhhAB588EGSk5N5+eWX0Wg0zJo1a8T7IyIiAK573G9VboHIdEia55HTFeUl8v/+5woGYw/ZceMb4RMmr6SuhClhU8iJzvHMCXPvhbcfgNYLEDvNM+cUrjIVF6NKSUEzK9cj58vPyOfx9x/nYvdFMsPFml+eZihvQRejITZV65Hz6TYUcvmr/4rl4kXUYt/O8Y0APfjgg6xevZqIiIgRM6uu/RqPT37yk/z4xz/mueeeY+7cuZw4cQK9Xn/1xuiGhgaaxAqWQ+xWqHpv6IeUu9shf7dyWixhaqW4GVoCVoeV3Q27KcgocH/7a1j2WlDrxM3QEnBarX9vf3nuei9LXkaYKoySWjEK5Gl2u4OaE61kL4z32PUOXb4ceViYGAX6u3GNAL355ptuCfHVr36Vr3519BVoy8rKbvped2XyShf3QX+nR9pfwzQqBety4tlxqonH14oRAU/68MqHdFu63bP44Y2oNDB9w1AbbNU3PXdegd4PP8Te3e2WxQ9vRK1QszplNfo6PV+c80XPFdoCl6s6sfTamOqB9tcwuVqNds2dmIqLifnKlwP+ertpURHBLSq3QHQ2JMz26GmL8hKpNvZwvtns0fMGupK6EtJ16UyL9HDhOWsztJ6DlrOePW+AM+0sJig9HfWMGR49b356Phe7L2LoMnj0vIHOUNFCRHwI0cmevbVAW1DAYE0Nlupqj57XG4kCyFfYLFC1fWj0x8NV+/Kpseg0og3mSYP2QfY27PXM7K9rZa4GTbhog3mQY3AQ8+7daAs92O78uyVJS9AGacVsMA+yWx1cPNHmkdlf1wpbuhS5TidmgyEKIN9R8z5Yut2y99etBCnl5OcmsP1U04RW/BbG79CVQ5itZs+2v4Ypg2DGpqHtVsT19ojeAwdxmM0emf11LZVCxZrUNZTUTWxFf2H8Gqo6GOy3eWT217VkQUFo167FvLM44K+3KIB8ReUWiJ0B8R6aDXSNjXmJ1Lb1crbJT/ZS83L6Oj3ZEdlkR2ZLE2DWvdBRA82npTl/gDHpiwnKzkIzTZr77ArSC6g31XOu45wk5w80hvIWopJCiU6SZmatrrCQwfp6LFVVkpzfW4gCyBdYB+DcTo/e/HytpdkxRIao2C52iHe7AdsA7ze8z/r09dKFyFgJwVGiDeYBDouFnj17JRn9GbYocRER6gixJpAH2Abt1J4can9JJfSO21FERGAqDuy2pyiAfIFhFwyaJWl/DVMp5BTMSmD7qSsBP2zqbgcbD9Jn65Om/TVMoYKZog3mCT379+Po7ZW0AFLJh9pg+jq9+Hy7WUNlB1aLXdICSKZSoV23DlNxYLfBRAHkCyq3QvwsyRemK8pL4lJHP6cud0uaw9/p6/RMj5xORniGtEFmbYauerhyXNocfs5cXIx6+nTJF6YryCigsaeRyvZKSXP4u+qKFqKnhBGZECppDt2GQqyXLzNw5oykOaQkCiBvN9gH5/WSjv4Muz0jiujQILE3mBv1WfvYd3mfe3d+H6u0ZRAaK7bGcCNHfz/m98skHf0ZtjB+IVGaKLFDvBtZLXbqTrV5dO2fGwm57TYU0dEBvSiiKIC8XXUJWHuHfhuXmFIhp3B2AjvEbDC3+aDxA/pt/eSneWDvr1tRKCHnbqjcJtpgbtKzbx/O/n50hdIXvEq5knVp6yipF7PB3KX+TDu2QYek7a9hMqUS7fp1mPSB2/YUBZC3O7MFEudClHfs21KUl0RjVz/HG7qkjuKXSupKyInOIUXnJRv75t4L3Zfg8jGpk/gl085iNDk5BKWlSR0FGFoUsbm3mZOtJ6WO4pcM5S3EpmoJjw2ROgowNBvM1tRE/4kTUkeRhCiAvJmlB6pLvaL9Ney29CjitGqxKKIb9Fp72X95v7Q3P18rdTGEJQwV4oJL2Xt66dm3z6NbX9zK/Lj5xAbHitlgbjA4YKPuTLska//cSMiCBShjYwN2UURRAHmzC3qwDXhVAaSQy9gwO5Gdp5twOAJz2NRdyi6VYbFbyE/3gvbXMLkCcu+Bs9vA4ZA6jV/pKSvDabGgLfCeAkghV7AubR2ldaU4nOJ6u1LdqTbsVgfZ872nAJIpFGgLCjDrS3AG4OdbFEDe7MwWSF4Ikd4xPD6sKC+RFpOF8vpOqaP4lZK6EvJi8kgKS5I6yki5m8HcBJc+lDqJXzEVF6OZk0fQlGSpo4xQkFGAsd/IR8aPpI7iVwwVRuIzdOhigqWOMoKusACb0Uj/8cCb7SkKIG810D20/o8X3Px8rfmpkSSGa0QbzIXMg2YONB7wrtGfYVNuA12yaIO5kN1spnf/fnReNPozbE7sHOJD4sVsMBey9Nuor2z3ipufrxU8dy7KhISAnA0mCiBvdb4Y7INDs3C8jFwuY+PsRHaebsYu2mAu8f6l97E6rNKu/nwjcvlQG/bsO+CwS53GL5j37MFptaIr8L6CVy6Tk5+ez676XdjF9XaJ2pOtOGxOryyAZHI5uoICTKWlOO2Bdb1FAeStzmyBlDsgfIrUSUa1MS+Rth4LR2rbpY7iF/S1eubFzSMhNEHqKKPL3Qy9Rqg/KHUSv2Au1hM8fz6qxESpo4wqPz2f9oF2ylvKpY7iFwzlRhKzwgmL1EgdZVS6DYXY29roOxZYsz1FAeSN+juhZq9Xtr+GzU2JYEpksNgbzAW6Ld0cvnLYO9tfw5LnQ0SqaIO5gL27m55Dh7xi8cMbmR0zm+SwZDEbzAUGeq1cOtvhVbO/rqWZPRtVcnLA7Q0mCiBvVLUdHDavbH8Nk8lkbMxLRH+mGZs98GYPuNLehr3YnXbWp3lh+2uYTDbUBqt6F+w2qdP4NPPu3WCzoV3vvddbJpOxPn09u+t3Y3OI6z0ZF0+04nA6yfKi2V/Xkslk6AoLMJeW4rQFzvUWBZA3qtwKaUtB66XtkL/blJdER+8gh2pEG2wy9HV6FiYsJDYkVuooN5e7GfraoXaf1El8mmlnMSELF6KK994fiAAF6QV0Wjo52nRU6ig+zVBhJHlqBKHhaqmj3JS2sBB7Zye9Hx6ROorHiALI2/S2w8UymOU9a//cSG6SjrToEHaINtiEdQx0cKTpiHdsfXEriXOGViQXe4NNmK2zk94PP/SqxQ9vZGbUTFK0KejrAqst4kr95kEun+v0ypufr6XJyUGVloqpeKfUUTxGFEDepupdwAkzvbf9NUwmk1GUl4i+splBm2iDTcSehj04cbI2ba3UUW5NJhsaBap6D2yDUqfxSebSXeB0enX7a5hMJqMgvYA9DXuw2q1Sx/FJF0+0gtNJ5jzvL4BkMhm6gkLMu/fgHAyMz7cogLxN5RbIWAFhXt4O+buivCS6+60cNLRJHcUnldSWsChhEdHB0VJHGZvce2Gga2iUUhg3U3ExIbcvQhntG9c7Pz0f06CJw02HpY7ik6rLjSRPjyREFyR1lDHRbSjE0d1N7+HAuN6iAPImPUaoO+BVW1/cyowELVmxobwnFkUct7b+No61HPOuvb9uJT4XYqYNFerCuNja2ug7etSrZ39da1rkNDLCM8RssAnoMw1y5UInUxfGSx1lzNTTphGUmRkwiyKKAsibnH0HZHKYeZfUScZsaDZYErsqW7DYAmsRrcnaVb8LOXLWpK6ROsrYDbfBzu0Am0XqND7FVFoKcjnadeukjjJmMpmM/PR89jbsxWIX13s8ao4bkclkZM71jdF8GJ4NVoh5zx4cFv+/3qIA8iaVWyFzFYRESZ1kXDblJWK22Nh/QbTBxqOkroTbk24nQhMhdZTxyb0XLCYw7JE6iU8x7ywmdPFilJGRUkcZl4L0AnqsPRxqPCR1FJ9iqDAyZWYkmjCV1FHGRVdYgKOnh96D/r/oqSiAvIWpCeoPDf127WOmxmuZHq8Ve4ONg7HPyPGW477V/hoWNwPickQbbBysLUb6KirQFfje9c6KyCI7IlvMBhuH3i4LVwxdZC/wnfbXMHV2NuqpUwOiDSYKIG9x9h2QK2HGBqmTTEhRXiK7z7YwYBVtsLEorStFIVdwZ+qdUkeZmNzNQ/vVWfulTuITzCUloFSiXetD7c6PKUgvoOxSGQO2Aamj+ARDhRG5XEbm3Bipo0yIbkMhPXv34hjw7+stCiBvUbkFstdAsG8Njw/bmJdI76CdsvNGqaP4BH2dnqVJS9EF6aSOMjGzNsNgD1TvkjqJTzAVFxO2dCmK8HCpo0xIfno+fbY+Pmj8QOooPsFQ0UJqThTqEN9qfw3TFhTg6OujZ99+qaO4lSiAvEH3Zbh0xCfbX8MyY8PISdTxnlgU8Zaaepo42XrSu/f+upXoLEjIE22wMbA2NdH/0Uc+sfjhjaSHpzMjaoaYDTYG5o4Bmi+ayPah2V/XUmdkoJ45E5Pev9tgogDyBpVbQaGG6b77DyRA0ZxE9lYZ6RsMnL1kJqK0vpQgeRCrU1ZLHWVycu+FCyUw2Ct1Eq9mKtYjCwoi7E4fbXf+XX56Pvsv76fP2id1FK9mqDCiUMrJyPPN9tcwXWEhPWX7cPT57/UWBZA3qNwKU9eBxkfbIX9XNDuJfqudPVWiDXYz+lo9y6csJywoTOook5N7L1j74IK4OfZmTHo9oSuWowjz7eudn55Pv62f/Zf9uy0yWYbyFtJmRRMUrJQ6yqToCgtw9vfTU1YmdRS3EQWQ1DrroLHCpxY/vJHU6BDypoSLvcFu4pL5Emfaz/h2+2tYVAYkzRd7g93E4OXLDJw65VOLH95IijaF3OhcMRvsJrpb+zHWm31i769bCUpJQTN7NqZi/22DiQJIapVbQRkM03xveuxoivISef+8kR6LaIONprSuFI1Cw8opK6WO4hq59w7dCG0xS53EK5mKi5FpNGhXrZI6iksUpBfwweUP6LWKtudoao4bUarkpM32ja1ObkVXUEDPvv3Ye/zzeosCSGpntsC09aD27eHxYRvzkrDYHOw+2yJ1FK9UUlfCiikrCFGFSB3FNXLvBdvA0JR44Tqm4mLCVq1CHhoqdRSXyE/PZ9AxyPuX3pc6ileqLm8hbXYMQRrfbn8N0xUW4BwcpOf9vVJHcQtRAEmpvQaaT/n07K9rJUcEMz81QiyKOIp6Uz1VHVUUZPjHaB8AESkwZdFQIS+MMFhXh+VslU8ufngjiWGJzImdQ0mtmA12ra6WPtou9TB1oe+3v4apkpIInjvXbxdFFAWQlCq3gCoUpq6XOolLbcxLYv+FNrr7rVJH8Sr6Wj3BymCWJS+TOoprzdoMNXugv0vqJF7FpNcjCwkhbOUKqaO4VH56PgeuHMA0aJI6ilcxVLSgVCtIneUf7a9hug2F9B44gN3kf9dbFEBSOrN1aOp7kJ+0Q/5u4+xErA4Hu0QbbISS+hJWpawiWBksdRTXyrkb7FY4v1PqJF7FtLMY7erVyIP963qvT1uP3WHn/QbRBvs4Q4WRjLwYVEEKqaO4lDY/H6fNhnmP/7XBRAEkldbzYKz0i9lf10oI13BbWpRog33Mxa6LVHdW++beX7eiS4LUxaIN9jGWmhosFy749OKHNxIfGs+8uHliNtjHdDT10t7Y6xezv66lio8neMF8TMX+9wuOKICkUrkV1DrIXit1ErcompPIgeo2OnsHpY7iFfR1esJUYSxNXip1FPeYtRkuvg99HVIn8QqmYj3ysDBCl/lZu/PvCjIK+PDKh3QNdEkdxSsYylsI0ihIzY2SOopb6AoL6T10GFtnp9RRXEoUQFJwOod+W56+AVQaqdO4RcGsBBxOJ6Vnm6WOIjmn04m+Ts/qlNWoFWqp47jHzLvA6YBz26VOIjmn04mpuBjtmjuRq/3zeq9LW4cDB3sa9kgdRXJOp3Oo/TUnFqXKv9pfw3Tr14PDQc8e/7reogCSgvEstJ0f+q3ZT8VpNdyeEc12sSgi1V3V1HbX+tfsr2tp4yFtqWiDAZYL1QzW1KD1g8UPbyQmOIaF8QvF3mBAx5VeOpv7yPaj2V/XUsbGEnLbbX43G0wUQFI4swU04ZDp43tB3ULRnEQO1bTT3mOROoqk9LV6dEE6FiculjqKe83aDLX7obdN6iSSMhXvRK7TEbZkidRR3Co/PZ+jzUfpGAjstmd1eQvqECUpM/2z/TVMV1hI75Ej2Dr853qLAsjTnM6h+39mbAJlkNRp3KogNwGA4jOB2wZzOp2U1JWwJnUNKoVK6jjuNfPuof89+460OSTkdDoxF+vRrl2LLMi/P99r04buX9xdv1viJNJxOp0Yyo1kzo1FofTvH6fa/KHlWsylpRIncR3/vmLeqPkUdNTALP+b/XWt6DA1S7KiA3pvsKqOKhrMDf6x99ethEZD5sqA3hvMUlXFYH29X+z9dStRmigWJSwK6NlgbZd66G7t98vZX9dSRkYSescdmIr953qLAsjTzmyB4CjI8JO9oG6hKC+RI7XtGM0DUkeRREldCRHqCBYlLpI6imfk3gv1B8EcmGtAmYqLUUREEHrH7VJH8YiCjALKm8tp6w/MtqehogVNqIrkGZFSR/EIXWEBfceOYWttlTqKS4gCyJOczqHVn2duAn9vh/xdfm4CcpmM4tOB1wYbbn+tTVuLSh4Y15sZRSCTB2QbzOl0Di1+uH49MlVgXO81qWtQyBSU1vlPW2SsnE4n1eVGMufHolAExo9S7dq1IJdjKvGP6x0YV81bXDkOXQ1+PfvrWhEhQSyfGhOQiyKeaTtDY0+jfy5+eCMhUZB151ChH2AGzpzB2tiIrjBwrne4OpzFSYsDcjaYsc6MuX2AqQHQ/hqmiIggdOkSTMX+MRtMFECedGYLhMZCmn8ujnYjG/OSOFbXSXN3YLXBSupKiNJEsSB+gdRRPCt3MzQcBlNgFb2mncUooqMJue02qaN4VH56PseNx2npDay2Z3VFC8FaFUlTI6SO4lG6wkL6Kyqwtvj+9RYFkKc4HFC5bWjfJIVS6jQetT43niCFnB2nA+dmaIfTQUl9CevS1qGUB9b1ZsYGUAQN/fceIJwOBya9Hl3+emTKwLred6beiUquorTeP9oiY+F0OKmpMJI1Pw55gLS/hmnXrEGmUmHW+/7N0IF15aR0+RiYLvvl3l+3otOoWDEtNqDaYKdaT9Hc2xxY7a9hmvChLV4CqA3Wf+IktqamgJj9dS1tkJalyUsDajZYc62Jnk4LU/148cMbUWi1hC5f7heLIooCyFMqt0JYwtCmkQFo05xEPmro4nJnn9RRPEJfpyc2OJb58fOljiKN3M1DRX9Xg9RJPMKkL0YZG0vw/MC83gXpBZxqPcWVnsD4JcdQ3kJIeBCJWRFSR5GErrCQ/pMnsTY2Sh1lUkQB5AkOB5zdBrn3gNw/94q5lTUz41Er5ewMgDaYw+mgtK6U9enrkcsC9CM2vQCUmoBogzkdDsz6ErQFBcgUgfn5XpWyCrVCHRCzwZwOJ4bjRrLnxyGTy6SOI4mw1auRqdWY9L5983uA/uvsYQ2Hwdw09FtxgApTK1k9PS4g9gY73nKc1v7WwGx/DVNrYeq6gGiD9VdUYDMaA7L9NSxUFcry5OUB0QZrqumir3uQ7IXxUkeRjCIslLAVK3x+NpgogDyhcgvokmFKYM0OuVbRnEROXe6mvr1X6ihupa/TkxCaQF5sntRRpJW7Ga58BB0XpU7iVqbiYpSJiQTPnSN1FEnlZ+RT2V7JJdMlqaO4VXW5kbBINQkZOqmjSEq3oZCBM2cYbPDdNrcogNzNYR9aFC73XpAH9l/3nTPiCFYp/HoUyOawsat+F/lp+YHb/ho2LR9UIX69NYbTbsdUUoouPx9ZgH++VySvIFgZTEm9b7dFbsZhd1Bz3Ej2gsBtfw0LW7kSWXCwT2+NEdifWE+oOwC9rQHd/hoWEqTkzplxfr03WEVLBR0DHYGx99etBIXCtAK/LoD6jh3D3t6ObkPgtr+GhahCWDFlhV8viniluot+s5XsBYHb/homDwlBu3oVJh+eDi8KIHer3AIRqZAcmLNDrrUpL5GzTSYutvZIHcUt9HV6ksOSmRUzS+oo3iH3Xmg+DW0GqZO4hWlnMaopU9DMni11FK9QkF7AuY5z1HXXSR3FLaorjOhiNMSla6WO4hW0BQVYqqqw1NZKHWVCRAHkTnYrnH136IeALLCHS4etmh5HaJB/tsGsDiu763eTn56PTFzvIVPXQVCYX94M7bRaMZeWoissENf775YlLyNEGeKXN0Pb7Q4uHm8dan+J6w1A2IoVyENCfPZmaFEAuVPtfujvEO2vj9GoFKzLiffLRRGPNh2ly9IV2LO/rqUKhukbhraB8TO9R45i7+pCWyCu9zCNUsPq1NV+2QZrPNfJQK9of32cXKMhbM0azKIAEq5TuQWiMiExsGeHXGtjXhIXWnq40GKWOopLldSVkKpNZUbUDKmjeJdZm6G1CoxVUidxKVPxTlRpqWhycqSO4lXy0/IxdBkwdPpX29NQYSQ8NpiYlDCpo3gVXWEhlmoDlupqqaOMmyiA3MU2CFXvDY3+iOHSEVZMi0GrUfpVG8xqt7K7QbS/RpV1J6jD/epmaOfgIOZdu9EVForrfY2lyUvRqrR+NRvMbnNw8UQr2QtF++taocuWItdqfXI2mCiA3OXi+zDQHZB7f92KWqlgfU4C209dwel0Sh3HJQ43HcY8aKYgQ7RDrqNUw4yNQ20wP7nePYcO4TCZ0BVukDqK1wlSBLE6dTX6Wr3ffL4vVXVg6bMxNYAXP7wReVAQ2jVrMBUX+9z19ooC6Fe/+hXp6eloNBpuv/12jh49esPXvvbaayxfvpzIyEgiIyNZu3btTV8vmcqtEDMN4nOlTuKViuYkcrG1l6om/2iD6Wv1ZIZnMjViqtRRvNOszdBeDS1npE7iEuZiPUGZmainies9moL0AupMdVzovCB1FJcwlBuJTAghKilU6iheSbehkMHaWiznz0sdZVwkL4DefvttnnjiCZ5//nmOHz/OnDlzyM/Px2g0jvr6srIy7r//ft5//30OHz5MSkoK69evp9GbNmWzDsC5HaL9dRNLs2IID1ax47Tv3wxtsVt4/9L7ov11M5mrQBPhF20wh8WCec8e0f66iTsS70AXpPOLm6FtVju1J8Xsr5sJXbwYeXi4z7XBJC+AfvrTn/Loo4/y8MMPk5OTwyuvvEJISAi/+93vRn39W2+9xZe//GXmzp3LjBkz+O1vf4vD4WDPnj0eTn4TNXvAYhLtr5sIUsopyE1g+6kmnxs2vdbBxoP0WHvE7K+bUahg5ia/aIP1HjiAo6dHLH54EyqFirVpa9HX+X4brKGyg8EBe0Dv/XUrMpUK7bq1PtcGk7QAGhwcpKKigrVr1159TC6Xs3btWg4fPjymY/T19WG1WomKihr1eYvFgslkGvHldpVbIS4H4sRsoJvZNCeJ+vY+9lSNPtrnCxxOB3+s+iPTIqeRGZEpdRzvNmszdNZC0wmpk0yKaWcx6mnTUGdlSR3FqxWkF3DJfIl9l/dJHWXCnA4np/ZeIjo5jKhE0f66GV1hIdaGBgYqz0odZcwkLYDa2tqw2+3Ex4+srOPj42lubh7TMZ566imSkpJGFFEf9/LLLxMeHn71KyUlZdK5b8raD+eLxdo/Y7A0O5rV02N5eutpOnsHpY4zIW+ff5tjzcf4xsJvSB3F+6WvgJAYn14TyDEwgPn999EVitG+W7kj8Q6WJy/nO4e/Q9dAl9RxJuTM/kYaL3Sx9J+zpY7i9UJvvx1FVBSm4p1SRxkzyVtgk/H973+fv/zlL2zduhWNRjPqa55++mm6u7uvfl265OadiqtLYbBn6Ldd4aZkMhnf/6c8Bm0Onn+3Uuo449ZgauBnFT/jk9M/yeKkxVLH8X4KJeTcBZXbfLYN1rNvP86+PnSFov11KzKZjG8v+TaD9kFeOvqS1HHGrcvYx6EtBmatTCZl5ugdBuEfZEol2vXrMBf7TttT0gIoJiYGhUJBS0vLiMdbWlpISEi46Xt//OMf8/3vf5/S0lLy8vJu+Dq1Wo1Opxvx5VZntkBCHkSL4fGxiNdp+O7dubx78go7T/vOukB2h51nDz5LTHAMTyx4Quo4viP3XuhugMYKqZNMiKm4GHXOTILS06WO4hPiQuL4j9v/g+LaYkrrSqWOM2YOh5O9v68iJFzN4nvFv+VjpSsoxHrlCgOnTkkdZUwkLYCCgoJYsGDBiBuYh29oXrz4xr9R//CHP+SFF15Ar9ezcOFCT0Qdm8FeuFAibn4ep7vmJFGQm8Cz287Q1mOROs6Y/M/Z/+GE8QTfW/o9QlQhUsfxHWlLISzeJ9tgjr4+/n97dx5XVb3vf/y1YTPDBlQmRcCZSZwH1FLTFPSUQ5m306CeTvdW1tFs8JSoqZhZ2S87p1u30Tp16mSpZQnOYs5TigwqKogDiIiwmYe91+8PTpwwM5C991rA5/l48HjoXmuv7xu/Lvjs9V3r+y3ZsUOu/jTSuE7jGB00mvh98Vwtv6p2nAY5tuU8OWeLGDUtDEdnvdpxmg3XAf2x92mHcUPzWBpD9SGwOXPm8P777/PJJ5+Qnp7O448/TmlpKTNmzADg4Ycf5oUXXqjbf/ny5cyfP5+PPvqIkJAQcnNzyc3NpaREA6uLn0qEmnIpgBpJp9MRP6l29fQX1xzX/OXTM4Vn+NtPf+Oh8Ifo69dX7TjNi509hE+ofVDAbFY7TaOU7NiBUlGBQdb+ahSdTkfc4DgAFu9drPnzu+BSKfu/O0uvUR1p39VL7TjNis7eHsOYsRgTE1GawfmtegE0depUXn/9dRYsWEDv3r05evQoiYmJdTdGZ2dnk5Pzn6GRd955h6qqKu69914CAgLqvl5//XW1voX/SFkD7ftCm05qJ2l22rk78fKkSDalXWbdUQ3N6XSdGnMN83bNo4NHB57q85TacZqniMlQfAkuaHAC05swJiTg3LMnjtZ+kKIFauvSlgXRC9h2fhvfn/1e7Ti/yWwys/WTNAztnBl8tzzVeSsM42KpuXyZ8qNH1Y7yuzRxbe/JJ5/kySefvOG2HTt21Pt7VlaW9QPdigojZGyGUfPVTtJsxUQGMKF3exZ+m0p053b4e974xnY1fXj8Q9IL0vks9jOc9drL1yx0HAQe7Ws/MAQNVjtNg5hKSihJ2onP7NlqR2m2RgePZlyncSw7sIyB/gPxc9PevDpHNp7jSnYx9zzfH72jvdpxmiWXPn3Q+/lh3JCAa19tXyFX/QpQi3EqEUyVED5R7STN2qK7I3B2sGfuN8mau1R+ouAE7x57l0ciH6GnT0+14zRfdnYQMRHS1oHZpHaaBinZvh2lqgpDzFi1ozRrLw56EWd7ZxbuXai58/vK+WIOfp9F35hg/DpZ+WGZFkxnZ4chZizGjYkoJm2f31IAWUrKGggcCF5yebwpvFwdWX5PFEmnrvCvg1aesqARqkxVzNs1j85enXm81+Nqx2n+IiZDyWU4t0ftJA1i3JCAS+/eOLRvr3aUZs3TyZOXhrzE7ou7WZOhnRvhTdVmtq5KxzvAjQHj5RaGpjLExmK6kk/ZIW0/7SkFkCWUF8LpLTL3j4WMDPVlav+OLPk+jfMFZWrHAeDdY+9ytugsLw97GQd7B7XjNH+B/cGzY7NYG8xkNFKya5csfWEhtwfezuRuk3n14KtcLNHG/X4Hf8jkWm4po2eEYa+XX4tN5dyrF/r2ARgTtf00mPS0JZz4Acw1tU+3CIuI+0MYXq6OPP91MmazupfKk68k82HKhzwW9Rg92vRQNUuLodP9exjsWzDVqJ3mpoq3bIWaGjzGytNflvJc/+fwdPJkwe4FmBV1nxbKzSziyMZzDBgfQrtAD1WztBQ6nQ5DTCzFGzeh1Gj3/JYCyBJS10JQNBjk8rileDg78Oq9Uew9e5VP92aplqOipoJ5u+YR3iacR3o+olqOFiliMpTlQ9aPaie5KWNiAq79+uHg56t2lBbD3dGdxUMXcyD3AF+c+EK1HDVVJrauSscnyIO+Y4NVy9ESGWJjMRUUUHZAu097SgHUVGUFcHa7DH9ZwdCu7Xg4OphXEk+QmV+qSoa//fQ3LpVcYumwpejtNPHQZMvRvg94h0Cqdu4FuV7NtWuU7tmLh6z9ZXGDAwbzXz3+izcPv8k54zlVMuz77izFVysYNT0cO3v5dWhJzpEROHTsiDFBu8Ng0uNNlb4eFLMMf1nJX2ND8TM488xXRzHZeCjs8OXD/CPtH/yl719kpXdr0OlqrwKlrwdTtdppbqh4yxYwmzGMlae/rOHpfk/j4+rDvF3zMNn4icBLGYUc23qeQRM6y0rvVqDT6TDExlK8aTNKtTbPbymAmip1DYQMA3e5PG4Nro56VkzpxU/nC/ngx7M2a7esuoy4XXH09u3Ng2EP2qzdVidiEpRfg7NJaie5oeKEBFwHDkTfrp3aUVokVwdXlg5bSvKVZD5N+9Rm7VZV1LD1kzQCOnvSa5Q8uWsthtgYTEVFlO7bp3aUG5ICqClK8yFzpyx9YWX9Q9rw6G2dWbHpFKcuF9ukzTcOv8HViqvED43H3k4mRLMa/57Qtqsmh8FqCgoo3bdf1v6ysj6+fZgWMY2//fQ3Tl87bZM29645Q5mxijumhWFnp7NJm62RU2gojiEhml0bTAqgpkj7FtBBmAx/WducO7sT1NaVZ746RrXJuk+N7Lm0h3+d/BdP93uaIEOQVdtq9eqGwb6HGm0thFu8aRPodHiMuVPtKC3ek32epKNHR+btnke12brDJefTCkjZeZEhk7vi5SsLGVuTTqfDMC6W4i1bMFdVqR3nV6QAaorUtdB5OLi1VTtJi+fsYM+KKb1IyzHyv9vPWK2d4qpiFuxewKCAQUztMdVq7YhfiJwMlUVwZrvaSeoxbkjAbfBg9N7eakdp8ZzsnVg6bCknC07ywfEPrNZOZXkN2/6RTmCoN5G3d7BaO+I/DLGxmIuLKd29W+0ovyIF0K0qzoWsXbWfXoVN9OroxRMjuvC3bRmkXCyyShuvHnyVkuoSlgxZgp1OTg+b8A0Dn1BNDYNV5+VRdvCgTH5oQ5HtInmk5yO8d+w90q+mW6WNXaszqCyv4Y6Hw9DJ0JdNOHXrhmPXLpp8Gkx+wt+qtO/Azh5Cx6udpFV56o5udPPz4JmvjlFZY9mnRpLOJ7Hu9DrmDphLgHuARY8tfkfEZDixAaor1E4CQPGmzaDX4zF6tNpRWpXHoh6ji1cXXtz1IlUmyw6ZZCXnc2JPDsOmdMOjjSxkbEuG2FhKtm7DXKmtYW4pgG5V6hrocge4tlE7SaviqLfjjft6cTa/hJVbMix23MKKQl7a+xK3dbiNiV0nWuy4ooEiJkFVMZzerHYSAIwJCbgNicbe01PtKK2Kg70DS4ctJcuYxTvH3rHYcStKqtn+2QmCI9sSNkQ+3NiaIXYc5tJSSnbuVDtKPVIA3Yqii5C9V4a/VBIWYGD26O68m3SGI9nXLHLMl/e/TJWpipeGvIROJ5fGbc6nO/hF1i4qrLLq3FzKDx+Wp79U0qNND57o9QQfpXzEsSvHLHLMnV+exFRjZuSDoXJ+q8CpcyecQkMpTkhUO0o9UgDdirR1YO8IoePUTtJq/c/tnekZ6MWzXx2jvKppQ2EbszaSkJXAi4NexNdV5nNSTcQkOJUIVeougGtMTETn4IDHqFGq5mjNZkTOIKJtBHG74iivKW/SsU4fziPjUB63/1d33LycLJRQNJYhJobiHTswlzetPy1JCqBbkboWuo4GZ7k8rha9vR0rpvTiYmE5r208ecvHyS/PJ35fPHcG38m4TlLQqipyMlSXQcZGVWMUJyTidvvt2HvIwphq0dvpiR8WT05pDm8deeuWj1NmrCLpnyfp0seHbgP8LJhQNJZhXCxKWRklSdqZ9FQKoMYqzIYLB2X4SwO6+rrz3NgefLwnk31nrzb6/YqisGRv7dNecYPj5NK42tp0hoDeqg6DVV+8SPmxYxhiZO0vtXX27MxTfZ7i8/TPOZh7sNHvVxSFHZ+fQGcHw//YQ85vlTkGBeEcEaGpSRGlAGqs1LWgd4Ye8gNSC2YM7cSA4DY89/UxSitrGvXe789+z7bz25g/eD5tnOVmdk2ImAQZm6DSNjN+X8+YmIjOyQn3kSNVaV/U92DYg/Tx7cP83fMpq27c0Oip/blkHstn+B974OLhaKWEojEM42IpSUrCXKrO4tbXkwKosVLWQLc7wUkuj2uBvZ2O16ZEkV9cxcsbGj53SG5pLsv2L2N85/GMDpZHnTUjYhLUVMApdYbBjBsScB8+HHt3WRxTC+zt7IkfGk9BRQErDq1o8PtKrlWw818ZdB/oR5c+cl+fVniMjUGprKR4+w61owBSADVOwVnIOSrDXxoT3NaNF8eH8fn+bHaeuvK7+yuKwkt7XsJF78ILA1+wQULRYN7B0KG/KsNgVdnZVKSmyuSHGtPR0JFn+j3DV6e+Ys/FPb+7v6IobP/HCRwc7bhtancbJBQN5RjYAedeUZqZFFEKoMZIXQsOrtB9rNpJxHUeHBTEsK7tmPtNMkXlN19L6JuMb9h9aTcvDXkJTye5kV1zIifXzgdUYZ3Zvn+LMSERnYsL7rffbtN2xe+7r8d9DA4YzII9CzBWGW+6b9quS2SnFTDyoTCc3RxslFA0lCE2ltKdOzEVqzPM/UtSADVGylroHgOOcnlca3Q6HcvvjaKkoobF69N+c7+LJRd57eBr3NPtHm4LvM2GCUWDhU8AU1XtzNA2ZExIwGPkCOxcZYFMrdHpdCwespjS6lKWH1j+m/sZ88vZ/fVpwocGEBwpazRqkSEmBqW6mpJt29SOIgVQg+VnwOXjtfcoCE3q4OXC/LvC+ebIBTanXf7VdrNiZv7u+Xg6efJs/2dVSCgaxDMQOg6uveJqI5VnM6k8cQIPmfxQswLcA3h+wPN8d+Y7tmf/euFcxayw7dN0nNz0DL23mwoJRUM4+Pvj0revJp4GkwKooVLXgqN77Q3QQrOm9AtkVKgvL6w5zrXS+msJfXHiCw7mHmTJ0CW4O7qrlFA0SORkOLMNyi0z0/fvMSYmYOfqKsNfGjex60SGBw5n0d5FFFYU1tuWvOMCF08VMurhMBxd9OoEFA1iiI2lZM8eTEW2Hea+nhRADZWyBnqMAwcXtZOIm9DpdCyb3JNqk5n536bUvZ5VlMWbh9/k/tD7GRQwSMWEokHCJ4C5BtK/t0lzxQkJuI8ahZ2TzBSsZTqdjoXRC6k2V7N0/9K61wsvl7Fv7Rl6jggkMFSmtNA6j7FjoKaG4i1bVM0hBVBD5KXDlfTaT6VC83wNziyZGMn3yTl8n3wJk9lE3O44fF19md13ttrxREN4+EPw0NpFh62sMiODyozTsvZXM+Hj6kPc4DgSsxJJzErEbFbY+kkabl5ORE/qonY80QAOvr64DhiAUeW1waQAaoiUNeDkWbv6u2gW7ooKYFxPf+avS+Htnz4k+Uoy8cPicXWQG1ybjchJcDYJShs/y3djGBMSsPPwwG3YUKu2IywnJiSGO4PvZOm+pezekE5uppFR08JwcLJXO5poIENsDKV791JzzTbD3DciBdDvUZTa+39Cx4NeLo83FzqdjiUTItE55fJByjtMi5hGH98+ascSjRE2AVAg/TurNaEoCsaERDxGj8bOUWYLbi50Oh1xg+PwKvXj6IaL9B7dkYCuXmrHEo3gMWYMKArFmzarlkEKoN9zOQWuZsjwVzNkcLXDt/M6airb0EGRp/eaHXcf6HS7VYfBKk+epCozE0OsLG3T3Hg6eDHh/OMUOuWRH9nwWeCFNujbtsVt8CBVJ0WUAuj3pKwBZy/oPELtJKKRPkj+gNzys0R7zGTpDxnkFJWrHUk0VsQkyNoFJXlWObxxQwL2np64RUdb5fjCeg4nnKMqz46a4dksP/wKuaW5akcSjeQRG0vZgQPU5Oer0r4UQDejKLWfPsPuAnuZUbQ5SbuaxnvJ7/Hnnn/mjQl34epoz/NfJ6MoitrRRGOE3Q06O0j71uKHrh3+SsBjzJ3oHOT8bk6uZBdzeEMW/WKCmRP7BC56FxbuWSjndzPjMXo02Nlh3LRJlfalALqZnKNwLUuGv5qZKlMV83bNo6t3V/4n6n/wdHVg+T1R/JiRzz8PZKsdTzSGa5vaq69WmBSxIjWN6vPn5emvZsZUbWbLqjTadHCj/7gQPJ08WTR0EXsu7WH1qdVqxxONoPf2xi06mmKVJkWUAuhmUtaAazsIkcnRmpP/Pfq/ZBmziB8aj8O/r9yN6OHL/QM7svSHdLKvlqmcUDRKxGQ4tweMORY9rDFhA/Zt2uA6cKBFjyus68D3mRReLmPUtHDs9bW/woZ1GMY93e7h9UOvc774vMoJRWMYYmMpO3yY6svWGea+GSmAfouiQOo6CL8b7GVW0ebi2JVjfJz6MU/0eoIebXrU2zZvfDjero489/UxzGa5VN5shI4DOz2krbPYIRVFoTghsXb4Sy/nd3ORe7aInzadY8AfOtEusP5s7s8NeA5vJ28W7F6AWTGrlFA0lsfoUaDXU7xxo83blgLot1w4BEXZsvZXM1JeU07crjgi2kYwI3LGr7a7O+l5bUoU+zMLWLUny/YBxa1x8Yauoyw6DFZx7BjVly5hiB1nsWMK66quMrH1k3R8gg30HRP0q+1uDm4sGbqEQ5cP8c/0f6qQUNwKe4MB96FDVXkaTAqg35K6Ftz9amejFc3CW0feIqc0h/hh8ejtbvypfkiXdkwfEsLyxBOcuVJi44TilkVMhvP7oeiCRQ5nTEjE3qcdrv37WeR4wvr2rTtDcUEFo6eHYWd/419dAwMG8sfQP/LmkTfJLMq0cUJxqwzjYin/6Seqcyw7zP17pAC6EbO5tgAKnwB2MrNoc3Aw9yCfpX/GX/r8hc6enW+679yYUNp7ufDs6mOYZCiseegRC/ZOFrkKpJjNGBMTMYwZi85ezu/m4OKpayRvu8DgCZ3x9ne76b6z+83G382fuN1xmMwmGyUUTeF+xx3oHB1tvjSGFEA3cn4/FF+q/dQpNK+0upT5u+fT17cvD4Y/+Lv7uzja8/qUKI6dL+S9nWdtkFA0mbMBut1Z+2BCE5X/9BM1ly9jGCdPfzUHVRU1bPs0nYCunvS6o+Pv7u+idyF+aDwp+SmsSl1l/YCiyezd3XEffjvGRCmA1Je6BjzaQ0dZNbw5WHFoBQUVBcQPjcdO17D/0v2C2/Do7Z35f5tPcTK32MoJhUVETIJLR2qnpmgC44YE9H5+uPSRpVGagz3fnKasuJpR08LQ2eka9J7evr2ZFjGNt4++Tca1DCsnFJbgERNDRXIyVRcsM8zdEFIAXc9sqp10LWIi2Mk/j9btvrib1adW80y/Z+ho+P1Ph7/09OjuBLd1Zc5XR6k2yVMjmtc9BvQuTRoGU0wmjJs2YoiJQSfnt+Zlp14l9cdLDJ3cBU+fxi1kPLP3TII8gpi3ax7V5morJRSW4jFiBDpnZ5veDC0/Aa53bg+UXJbhr2bAWGVkwZ4FRAdEc1+P+xr9fmcHe964rzcncov5+7bTVkgoLMrJHbqPbdIwWNmhw5iu5MvaX81AZVk12/5xgo5h3kTc3qHR73eyd2LpbUs5de0U7ye/b4WEwpLs3NxwHzFCCiBVpa4Bz44Q2F/tJOJ3LD+wnLLqMhYPXYxO17BL49frGejJzJFdeXv7aY5fKLJwQmFxEZMgNxmunrmltxsTNuDQvj3OvXpZOJiwtF1fZVBdUcPIh8Ju+fyOaBvBo1GP8n7y+6ReTbVwQmFphthYKtPSqcrKskl7UgD9kqkG0r6rHf66xRNO2Mb27O18d+Y75g6ci7+bf5OO9eTIrvTw9+CZ1UeprJGnRjSt2xhwcLulFeKVmhqKN23GIzbmln+hCtvIPHaFE/tyGXZfdzzaODfpWP/d87/p5t2NuF1xVJmqLJRQWIP77behc3W12c3QUgD9UtaPUJYvw18ad63iGov2LmJ44HAmdJnQ5OM56u1YcV8vMvNL+X+b5YZJTXN0rX0kPqXx9wGVHTiAqaBAJj/UuPKSKrZ/fpKQnm0JjW7ahxsAB3sH4ofFk2XM4u2jb1sgobAWOxcXPEaOxGijtcGkAPql1DXgHQLt5ekQLVu6fyk1Sg0Loxda7JN8qL+Bp+/szns7z3D43DWLHFNYSeRkyEuFKycb9TZjQgIOHTviHBFupWDCEnZ+cQqzycyIB0Mtdn539+7OzN4zWZW6iqN5Ry1yTGEdhnGxVJ46ReWZWxvmbgwpgH5mqob09bVXf+TyuGYlZiayMWsj8wbNw8fVx6LH/u/bOhMV6MWzq49RXiVDYZrVZRQ4GRp1M7RSXU3xps0YYmNl+EvDMg5d5vThPIb/Vw/cPJ0seuzpEdOJbBtJ3O44ymvKLXpsYTluw4Zh5+5uk0kRpQD62dkdUH5N1v7SsPzyfOL3xzMmeAwxIZZ/ikdvXzsUdqmwnOWJJyx+fGEhDs7QY1zt4/BKw2byLt23D1NRkUx+qGGlRZUkfXGSLn196drf1+LH19vpiR8WT25pLiuPrLT48YVl2Dk54THqDowJCSgNPL9vuS2rHr05SV0LbbuCf0+1k4gbUBSFRXsXYa+zJ25wnNU+xXfxcef5mFBW7cliz5l8q7QhLCByMuSfhLy0Bu1u3JCAY6dOOPXoYeVg4lYoisKOz09iZ6dj+B+7W+387uTZiVl9Z/F5+uccyDlglTZE03nExlJ15gyVp6x7T6YUQAA1lZD+vQx/adh3Z75jx/kdLIhegLezt1XbmjEkhEGd2vD818mUVNZYtS1xizqPBGfPBg2DmauqKN6yBYM8/aVZJ/flkpWcz4gHQnFxd7RqWw+EPUB/v/4s2LOA0upSq7Ylbo37kCHYeXpiTLTuzdBSAAGc2QaVRbWfKoXm5JbmsvzAcu7qfBejgkZZvT07Ox2v3duLgtIqlv6QbvX2xC3QO0LoXbUPLvzOZfLSXbsxFxdjiJXhLy0qLqjgx68y6DHIn869LXtf343Y6exYPHQxBRUFvH7odau3JxpP5+iIx+hRFG+w7jCYFEBQ+ynSJxR8w9ROIq6jKAoL9yzExcGFuQPn2qzdoLauzBsfxhcHstlxMs9m7YpGiJwEBWdrJ0a8CWNiAk7duuLUrZuNgomGUhSF7Z+dwMHJnmH32a5/Onp05Nn+z/L1qa/ZdXGXzdoVDWeIiaXq3Dkq0633IVQKoOpyOLlB5v7RqNWnVrPn0h4WDVmEp5OnTdv+48AgbuvWjr9+c5yiMllLSHM6DQeXNjcdBjNXVlKydRsecvVHk1J/vMT5tAJGPhSKs5uDTdue0n0KQ9oPYeGehRRVyizwWuM2eBD2Xl5WXRpDCqDTW6CqRIa/NOh88XleP/Q693a/l2Edhtm8fZ1Ox/J7oiitqmHReplGX3PsHSD87psOg5Xs3Im5tBRDjBRAWlN0pZzd35wm/Lb2BEe0tXn7Op2ORUMWUV5dzvIDy23evrg5nYMDHmPGYExItNowmBRAKWvArye0k8vjWmJWzMzfPZ82zm14tv+zquVo7+XCwrsiWPPTRTam5qqWQ/yGiElQmA0Xj9xwc3FCAk6hoTh17mTjYOJmFLPCtk/TcXF3YOg9XVXL4e/mz9yBc1l/dj1bs7eqlkPcmGFcLNUXLlCRkmKV47fuAqiqFE4l1q79JTTl8/TPOXz5MEuGLsHNwU3VLPf07cDoMD/mrT1OQamsJaQpwcPAzeeGa4OZy8sp3r5Dbn7WoOTtF7iUUcioh8NwdNarmuXuLnczouMIFu9dzLUKmQVeS1z798e+bVurLY3RugugjE1QXSbDXxqTWZTJyiMreSDsAQb4D1A7DjqdjpcnR1JjVohbd9zqk3OJRrDXQ/gESF0HZnO9TSVJSSjl5RhiLT9pprh113JL2bvuDFEjA+nQw7pTWjSETqdjYfRCTIqJJfuWyPmtITq9HsPYMRgTE1GuO78toXUXQClrIKA3tOmsdhLxbzXmGuJ2xeHv5s+svrPUjlPH18OZ+ImRbDiey/rkHLXjiF+KmAzGC3DhYL2XjRsScI6IwDEoSKVg4npmk5mtn6Tj7u3E4Eld1I5Tp51LO+IGx7H53GYSs2yzErloGENsLDU5OZQfO2bxY7feAqiyuPYKkFz90ZRVqatIuZpC/NB4XPQuasep5w9R7RkfFcCCb1PIM1aoHUf8LGgwuPvXGwYzlZRSkpQkS19ozE+bs8nLMjJ6ejgOjvZqx6knJiSGsSFjWbp/KVfKrqgdR/ybS79+6H18rPI0WOstgDK2QE0FhE9UO4n4t1PXTvH20beZHjGd3r691Y5zQ0smRKK3s+OFNTIUphl29rX38f1iGKxkxw6UykoMMTL8pRVXL5ZwYH0mfcYE4d/ZtlNaNNS8QfPQ6/Qs2rtIzm+N0NnZ4RETQ3HiRosPg7XeAij9e+jQH7yD1U4igGpTNXG74ggxhDCz90y14/ymNm6OLJvck60n8vj68AW144ifRUyGklzI3guAMSEBl169cOjQQeVgAsBUY2bLqjS8/FwZ+Aft3nLg7ezNwuiFJF1I4tsz36odR/ybITaWmrw8yg8ftuhxW28BdHabDH9pyHvH3yPjWgbxw+JxtLfuWkBNdWe4H/f0DWTx+jQuFZarHUcABA4AQyCkrsFUXEzpzp14yM3PmnEoIYuCi6WMmhaGvYO2f+2MDBrJ3V3uZvmB5eSWytQXWuDSuxf6gACMCZa9P0sT/xPffvttQkJCcHZ2ZtCgQRw4cPNVelevXk1oaCjOzs707NmTDRs2NL5Rc7UMf2lE6tVU3k9+n0ejHiWibYTacRpkwV3huDnpef7rZLlUrgV2drXDYGnfUrx5M0p1tQx/aUTeOSOHE87RLzYY32CD2nEaZO7Aubg6uDJ/93w5vzVAZ2eHISYG48aNFj2u6gXQv/71L+bMmcPChQs5cuQIvXr1YuzYseTl3Xj9pT179nD//ffzyCOP8NNPPzFx4kQmTpxISmMnSuowADzl8rjaKk2VzPtxHt29u/No1KNqx2kwTxcHXr03il2n8/lsf7bacQTUDoOVXqF47Ze49OuHg7+/2olavZpqE1tWpdO2gxv9xoWoHafBDI4GlgxZwr6cfXx18iu14wjAEBuD6epVix5T9QLojTfe4NFHH2XGjBmEh4fz7rvv4urqykcffXTD/VeuXElMTAzPPfccYWFhLFmyhL59+/L3v/+9cQ2H32WB9KKp3j76NtnF2SwdthQHO9uuBdRUt3f34Y+Dgli2IZ1zV0vVjiM69MXk0pGSIyky+aFGHFifSdGVMkZPD8feXvVfN40ypMMQpnSfworDKzhvPK92nFbPuWdPHAIDLXpMnaLi9b2qqipcXV35+uuvmThxYt3r06ZNo7CwkG+//fVNaEFBQcyZM4fZs2fXvbZw4ULWrVvHsRvME1BZWUllZWXd34uKiggKCiL+/n/g7Ohq0e9H3Cqd2gFEi1H740zXvH7XtlhmHOjr9hVRbj+oHeWWlOrgkfbtyNXbo62H9lunyT+aefrdg3h4eKDTNf33hqpzkOfn52MymfDz86v3up+fHydOnLjhe3Jzc2+4f27ujW9WW7ZsGYsWLfrV63FfPHSLqYUQQrQesjyGViQDL33hSV5eHj4+Pk0+nrqLsNjACy+8wJw5c+r+XlhYSHBwMNnZ2Xh6anMuitbCaDTSsWNHzp8/j8HQPG6ObMmkP7RD+kI7pC+04+e+cHS0zJPCqhZA7dq1w97ensuXL9d7/fLly/j/xg2M/v7+jdrfyckJJyenX73u6ekp/5k1wmAwSF9oiPSHdkhfaIf0hXZYYvgLVL4J2tHRkX79+rF169a618xmM1u3biU6OvqG74mOjq63P8DmzZt/c38hhBBCiOupPgQ2Z84cpk2bRv/+/Rk4cCBvvvkmpaWlzJgxA4CHH36YDh06sGzZMgBmzZrF8OHDWbFiBePHj+fLL7/k0KFDvPfee2p+G0IIIYRoRlQvgKZOncqVK1dYsGABubm59O7dm8TExLobnbOzs7Gz+8+FqiFDhvDPf/6TuLg4XnzxRbp168a6deuIjIxsUHtOTk4sXLjwhsNiwrakL7RF+kM7pC+0Q/pCOyzdF6o+Bi+EEEIIoQaZLUMIIYQQrY4UQEIIIYRodaQAEkIIIUSrIwWQEEIIIVqdFlsALVu2jAEDBuDh4YGvry8TJ07k5MmT9fapqKhg5syZtG3bFnd3d+65555fTbIomu6dd94hKiqqbiKx6OhoEhIS6rZLP6jnlVdeQafT1VtbT/rDNl566SV0Ol29r9DQ0Lrt0g+2dfHiRR588EHatm2Li4sLPXv25NChQ3XbFUVhwYIFBAQE4OLiwujRo8nIyFAxccsVEhLyq3NDp9Mxc+ZMwHLnRostgJKSkpg5cyb79u1j8+bNVFdXM2bMGEpL/7Nq99NPP8369etZvXo1SUlJXLp0icmTJ6uYumUKDAzklVde4fDhwxw6dIg77riDCRMmkJqaCkg/qOXgwYP83//9H1FRUfVel/6wnYiICHJycuq+du3aVbdN+sF2rl27xtChQ3FwcCAhIYG0tDRWrFiBt7d33T6vvvoqb731Fu+++y779+/Hzc2NsWPHUlFRoWLylungwYP1zovNmzcDMGXKFMCC54bSSuTl5SmAkpSUpCiKohQWFioODg7K6tWr6/ZJT09XAGXv3r1qxWw1vL29lQ8++ED6QSXFxcVKt27dlM2bNyvDhw9XZs2apSiKnBe2tHDhQqVXr1433Cb9YFtz585Vhg0b9pvbzWaz4u/vr7z22mt1rxUWFipOTk7KF198YYuIrdqsWbOULl26KGaz2aLnRou9AnS9oqIiANq0aQPA4cOHqa6uZvTo0XX7hIaGEhQUxN69e1XJ2BqYTCa+/PJLSktLiY6Oln5QycyZMxk/fny9f3eQ88LWMjIyaN++PZ07d+aBBx4gOzsbkH6wte+++47+/fszZcoUfH196dOnD++//37d9szMTHJzc+v1h6enJ4MGDZL+sLKqqio+++wz/vSnP6HT6Sx6brSKAshsNjN79myGDh1aN2N0bm4ujo6OeHl51dvXz8+P3NxcFVK2bMePH8fd3R0nJycee+wx1q5dS3h4uPSDCr788kuOHDlSt7zML0l/2M6gQYNYtWoViYmJvPPOO2RmZnLbbbdRXFws/WBjZ8+e5Z133qFbt25s3LiRxx9/nL/85S988sknAHX/5j+vUPAz6Q/rW7duHYWFhUyfPh2w7M8o1ZfCsIWZM2eSkpJSb3xd2FaPHj04evQoRUVFfP3110ybNo2kpCS1Y7U658+fZ9asWWzevBlnZ2e147RqsbGxdX+Oiopi0KBBBAcH89VXX+Hi4qJistbHbDbTv39/Xn75ZQD69OlDSkoK7777LtOmTVM5Xev24YcfEhsbS/v27S1+7BZ/BejJJ5/k+++/Z/v27QQGBta97u/vT1VVFYWFhfX2v3z5Mv7+/jZO2fI5OjrStWtX+vXrx7Jly+jVqxcrV66UfrCxw4cPk5eXR9++fdHr9ej1epKSknjrrbfQ6/X4+flJf6jEy8uL7t27c/r0aTkvbCwgIIDw8PB6r4WFhdUNSf78b379k0bSH9Z17tw5tmzZwp///Oe61yx5brTYAkhRFJ588knWrl3Ltm3b6NSpU73t/fr1w8HBga1bt9a9dvLkSbKzs4mOjrZ13FbHbDZTWVkp/WBjo0aN4vjx4xw9erTuq3///jzwwAN1f5b+UEdJSQlnzpwhICBAzgsbGzp06K+mSTl16hTBwcEAdOrUCX9//3r9YTQa2b9/v/SHFX388cf4+voyfvz4utcsem5Y+GZtzXj88ccVT09PZceOHUpOTk7dV1lZWd0+jz32mBIUFKRs27ZNOXTokBIdHa1ER0ermLpl+utf/6okJSUpmZmZSnJysvLXv/5V0el0yqZNmxRFkX5Q2y+fAlMU6Q9beeaZZ5QdO3YomZmZyu7du5XRo0cr7dq1U/Ly8hRFkX6wpQMHDih6vV5ZunSpkpGRoXz++eeKq6ur8tlnn9Xt88orryheXl7Kt99+qyQnJysTJkxQOnXqpJSXl6uYvOUymUxKUFCQMnfu3F9ts9S50WILIOCGXx9//HHdPuXl5coTTzyheHt7K66ursqkSZOUnJwc9UK3UH/605+U4OBgxdHRUfHx8VFGjRpVV/woivSD2q4vgKQ/bGPq1KlKQECA4ujoqHTo0EGZOnWqcvr06brt0g+2tX79eiUyMlJxcnJSQkNDlffee6/edrPZrMyfP1/x8/NTnJyclFGjRiknT55UKW3Lt3HjRgW44b+xpc4NnaIoSpOvUwkhhBBCNCMt9h4gIYQQQojfIgWQEEIIIVodKYCEEEII0epIASSEEEKIVkcKICGEEEK0OlIACSGEEKLVkQJICCGEEK2OFEBCCCGEaHWkABJCCCFEqyMFkBBCM0aMGMHs2bPVjiGEaAWkABJCCCFEqyMFkBBCE6ZPn05SUhIrV65Ep9Oh0+nIysoiJSWF2NhY3N3d8fPz46GHHiI/P7/ufSNGjOCpp55i9uzZeHt74+fnx/vvv09paSkzZszAw8ODrl27kpCQUPeeHTt2oNPp+OGHH4iKisLZ2ZnBgweTkpKixrcuhFCBFEBCCE1YuXIl0dHRPProo+Tk5JCTk4OHhwd33HEHffr04dChQyQmJnL58mXuu+++eu/95JNPaNeuHQcOHOCpp57i8ccfZ8qUKQwZMoQjR44wZswYHnroIcrKyuq977nnnmPFihUcPHgQHx8f7rrrLqqrq235bQshVCKrwQshNGPEiBH07t2bN998E4D4+Hh+/PFHNm7cWLfPhQsX6NixIydPnqR79+6MGDECk8nEjz/+CIDJZMLT05PJkyfz6aefApCbm0tAQAB79+5l8ODB7Nixg5EjR/Lll18ydepUAAoKCggMDGTVqlW/KrCEEC2PXu0AQgjxW44dO8b27dtxd3f/1bYzZ87QvXt3AKKioupet7e3p23btvTs2bPuNT8/PwDy8vLqHSM6Orruz23atKFHjx6kp6db9HsQQmiTFEBCCM0qKSnhrrvuYvny5b/aFhAQUPdnBweHett0Ol2913Q6HQBms9lKSYUQzY0UQEIIzXB0dMRkMtX9vW/fvnzzzTeEhISg11v+x9W+ffsICgoC4Nq1a5w6dYqwsDCLtyOE0B65CVoIoRkhISHs37+frKws8vPzmTlzJgUFBdx///0cPHiQM2fOsHHjRmbMmFGvULpVixcvZuvWraSkpDB9+nTatWvHxIkTm/6NCCE0TwogIYRmPPvss9jb2xMeHo6Pjw9VVVXs3r0bk8nEmDFj6NmzJ7Nnz8bLyws7u6b/+HrllVeYNWsW/fr1Izc3l/Xr1+Po6GiB70QIoXXyFJgQotX5+Smwa9eu4eXlpXYcIYQK5AqQEEIIIVodKYCEEEII0erIEJgQQgghWh25AiSEEEKIVkcKICGEEEK0OlIACSGEEKLVkQJICCGEEK2OFEBCCCGEaHWkABJCCCFEqyMFkBBCCCFaHSmAhBBCCNHq/H/9O1oAMP5+JwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -524,115 +626,28 @@ "\n", "al = ctrl.Antecedent(np.arange(0, 0.3, 0.005), \"al\")\n", "ti = ctrl.Antecedent(np.arange(0, 0.3, 0.005), \"ti\")\n", - "density = ctrl.Antecedent(np.arange(1.03, 1.22, 0.00001), \"density\")\n", - "temp = ctrl.Consequent(density_train[\"T\"].sort_values().unique(), \"temp\")\n", - "# temp = ctrl.Consequent(np.arange(20, 70, 5), \"temp\")\n", + "density = ctrl.Antecedent(np.arange(1.13, 2.21, 0.00001), \"density\")\n", + "temp = ctrl.Consequent(train[\"T\"].sort_values().unique(), \"temp\")\n", "\n", "al.automf(3, variable_type=\"quant\")\n", "al.view()\n", "ti.automf(3, variable_type=\"quant\")\n", "ti.view()\n", - "density.automf(3, variable_type=\"quant\")\n", + "density.automf(5, variable_type=\"quant\")\n", "density.view()\n", - "temp.automf(3, variable_type=\"quant\")\n", + "temp.automf(5, variable_type=\"quant\")\n", "temp.view()" ] }, { "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [], - "source": [ - "# from skfuzzy.control.fuzzyvariable import FuzzyVariable\n", - "# from skfuzzy.control.rule import Rule as FuzzyRule\n", - "# from skfuzzy.control.term import Term\n", - "# from typing import List, Tuple\n", - "\n", - "# from functools import reduce\n", - "# from operator import and_\n", - "\n", - "# from src.rules import RuleAtom\n", - "\n", - "# def gfa(\n", - "# fuzzy_variable: FuzzyVariable, value: float\n", - "# ) -> Tuple[Term, float]:\n", - "# values = {}\n", - "# for term in fuzzy_variable.terms:\n", - "# mval = np.interp(value, fuzzy_variable.universe, fuzzy_variable[term].mf)\n", - "# values[term] = mval\n", - "# best_value = sorted(values.items(), key=lambda x: x[1], reverse=True)[0]\n", - "# return (fuzzy_variable[best_value[0]], best_value[1])\n", - "\n", - "\n", - "# def dsfr(\n", - "# rules: List[Tuple[List[RuleAtom], Term, float]]\n", - "# ) -> List[Tuple[List[RuleAtom], Term, float]]:\n", - "# same_rules: List[int] = []\n", - "# for rule1_index, rule1 in enumerate(rules):\n", - "# for rule2_index, rule2 in enumerate(rules):\n", - "# if rule1_index >= rule2_index:\n", - "# continue\n", - "# # Remove the same rules\n", - "# if str(rule1[0]) == str(rule2[0]) and str(rule1[1]) == str(rule2[1]):\n", - "# same_rules.append(rule1_index)\n", - "# break\n", - "# # If antecedents is equals, but consequents is not equals then\n", - "# # Remove rule with the higher antecedent weight\n", - "# if str(rule1[0]) == str(rule2[0]) and str(rule1[2]) <= str(rule2[2]):\n", - "# same_rules.append(rule2_index)\n", - "# break\n", - "# if str(rule1[0]) == str(rule2[0]) and str(rule1[2]) > str(rule2[2]):\n", - "# same_rules.append(rule1_index)\n", - "# break\n", - "# return [rule for index, rule in enumerate(rules) if index not in same_rules]\n", - "\n", - "# display(rules)\n", - "\n", - "# fuzzy_variables = {\"Al2O3\": al, \"TiO2\": ti, \"Density\": density, \"consequent\": temp}\n", - "# fuzzy_rules: List[Tuple[List[RuleAtom], Term, float]] = []\n", - "# for rule in rules:\n", - "# tmp_rule = []\n", - "# for atom in rule.get_antecedent():\n", - "# if fuzzy_variables.get(atom.get_varaible(), None) is None:\n", - "# continue\n", - "# variable = gfa(fuzzy_variables[atom.get_varaible()], atom.get_value())\n", - "# tmp_rule.append(variable)\n", - "# # if tmp_rule.get(variable[0].parent, None) is None:\n", - "# # tmp_rule[variable[0].parent] = variable\n", - "# # else:\n", - "# # if tmp_rule[variable[0].parent][1] > variable[1]:\n", - "# # tmp_rule[variable[0].parent] = variable\n", - "# consequent = gfa(\n", - "# fuzzy_variables[\"consequent\"], rule.get_consequent()\n", - "# )[0]\n", - "# fuzzy_rules.append(\n", - "# (\n", - "# # FuzzyRule(reduce(and_, [atom[0] for atom in antecedent]), consequent),\n", - "# [atom[0] for atom in tmp_rule],\n", - "# consequent,\n", - "# sum([atom[1] for atom in tmp_rule]),\n", - "# )\n", - "# )\n", - "# fuzzy_rules = dsfr(fuzzy_rules)\n", - "# frules = [FuzzyRule(reduce(and_, item[0]), item[1]) for item in fuzzy_rules]\n", - "# display(len(frules))\n", - "# display(frules)\n", - "\n", - "# # fuzzy_cntrl = ctrl.ControlSystem(frules)\n", - "\n", - "# # sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 109, + "execution_count": 410, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "9" + "11" ] }, "metadata": {}, @@ -641,36 +656,42 @@ { "data": { "text/plain": [ - "[IF density[average] AND al[high] THEN temp[low]\n", + "[IF density[low] AND al[high] THEN temp[lower]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF (density[low] AND ti[low]) AND al[low] THEN temp[average]\n", + " IF (density[lower] AND ti[low]) AND al[low] THEN temp[low]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF (density[low] AND ti[low]) AND al[high] THEN temp[high]\n", + " IF density[lower] THEN temp[high]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF density[low] AND ti[high] THEN temp[high]\n", + " IF (density[lower] AND ti[low]) AND al[high] THEN temp[high]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF density[average] THEN temp[average]\n", + " IF density[lower] AND ti[high] THEN temp[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF density[average] AND al[low] THEN temp[low]\n", + " IF density[low] AND al[low] THEN temp[lower]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF density[low] THEN temp[high]\n", + " IF density[average] THEN temp[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF density[high] AND al[low] THEN temp[low]\n", + " IF density[average] AND al[low] THEN temp[higher]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax,\n", - " IF density[high] AND al[high] THEN temp[low]\n", + " IF density[average] AND al[high] THEN temp[average]\n", + " \tAND aggregation function : fmin\n", + " \tOR aggregation function : fmax,\n", + " IF density[higher] AND al[low] THEN temp[low]\n", + " \tAND aggregation function : fmin\n", + " \tOR aggregation function : fmax,\n", + " IF density[higher] AND al[high] THEN temp[lower]\n", " \tAND aggregation function : fmin\n", " \tOR aggregation function : fmax]" ] }, - "execution_count": 109, + "execution_count": 410, "metadata": {}, "output_type": "execute_result" } @@ -680,6 +701,7 @@ "\n", "fuzzy_variables = {\"Al2O3\": al, \"TiO2\": ti, \"Density\": density, \"consequent\": temp}\n", "fuzzy_rules = get_fuzzy_rules(rules, fuzzy_variables)\n", + "fuzzy_rules.remove(fuzzy_rules[5])\n", "\n", "fuzzy_cntrl = ctrl.ControlSystem(fuzzy_rules)\n", "\n", @@ -691,7 +713,7 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 411, "metadata": {}, "outputs": [ { @@ -701,10 +723,12 @@ "=============\n", " Antecedents \n", "=============\n", - "Antecedent: density = 1.0569013636039\n", - " - low : 0.716812846952748\n", - " - average : 0.283187153047252\n", + "Antecedent: density = 1.247779461633941\n", + " - lower : 0.5637757326154149\n", + " - low : 0.4362242673845851\n", + " - average : 0.0\n", " - high : 0.0\n", + " - higher : 0.0\n", "Antecedent: al = 0.0\n", " - low : 1.0\n", " - average : 0.0\n", @@ -718,139 +742,175 @@ " Rules \n", "=======\n", "RULE #0:\n", - " IF density[average] AND al[high] THEN temp[low]\n", + " IF density[low] AND al[high] THEN temp[lower]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[average] : 0.283187153047252\n", + " - density[low] : 0.4362242673845851\n", " - al[high] : 0.0\n", - " density[average] AND al[high] = 0.0\n", + " density[low] AND al[high] = 0.0\n", " Activation (THEN-clause):\n", - " temp[low] : 0.0\n", + " temp[lower] : 0.0\n", "\n", "RULE #1:\n", - " IF (density[low] AND ti[low]) AND al[low] THEN temp[average]\n", + " IF (density[lower] AND ti[low]) AND al[low] THEN temp[low]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[low] : 0.716812846952748\n", + " - density[lower] : 0.5637757326154149\n", " - ti[low] : 1.0\n", " - al[low] : 1.0\n", - " (density[low] AND ti[low]) AND al[low] = 0.716812846952748\n", + " (density[lower] AND ti[low]) AND al[low] = 0.5637757326154149\n", " Activation (THEN-clause):\n", - " temp[average] : 0.716812846952748\n", + " temp[low] : 0.5637757326154149\n", "\n", "RULE #2:\n", - " IF (density[low] AND ti[low]) AND al[high] THEN temp[high]\n", + " IF density[lower] THEN temp[high]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[low] : 0.716812846952748\n", - " - ti[low] : 1.0\n", - " - al[high] : 0.0\n", - " (density[low] AND ti[low]) AND al[high] = 0.0\n", + " - density[lower] : 0.5637757326154149\n", + " density[lower] = 0.5637757326154149\n", " Activation (THEN-clause):\n", - " temp[high] : 0.0\n", + " temp[high] : 0.5637757326154149\n", "\n", "RULE #3:\n", - " IF density[low] AND ti[high] THEN temp[high]\n", + " IF (density[lower] AND ti[low]) AND al[high] THEN temp[high]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[low] : 0.716812846952748\n", - " - ti[high] : 0.0\n", - " density[low] AND ti[high] = 0.0\n", + " - density[lower] : 0.5637757326154149\n", + " - ti[low] : 1.0\n", + " - al[high] : 0.0\n", + " (density[lower] AND ti[low]) AND al[high] = 0.0\n", " Activation (THEN-clause):\n", " temp[high] : 0.0\n", "\n", "RULE #4:\n", - " IF density[average] THEN temp[average]\n", + " IF density[lower] AND ti[high] THEN temp[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[average] : 0.283187153047252\n", - " density[average] = 0.283187153047252\n", + " - density[lower] : 0.5637757326154149\n", + " - ti[high] : 0.0\n", + " density[lower] AND ti[high] = 0.0\n", " Activation (THEN-clause):\n", - " temp[average] : 0.283187153047252\n", + " temp[higher] : 0.0\n", "\n", "RULE #5:\n", - " IF density[average] AND al[low] THEN temp[low]\n", + " IF density[low] AND al[low] THEN temp[lower]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[average] : 0.283187153047252\n", + " - density[low] : 0.4362242673845851\n", " - al[low] : 1.0\n", - " density[average] AND al[low] = 0.283187153047252\n", + " density[low] AND al[low] = 0.4362242673845851\n", " Activation (THEN-clause):\n", - " temp[low] : 0.283187153047252\n", + " temp[lower] : 0.4362242673845851\n", "\n", "RULE #6:\n", - " IF density[low] THEN temp[high]\n", + " IF density[average] THEN temp[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[low] : 0.716812846952748\n", - " density[low] = 0.716812846952748\n", + " - density[average] : 0.0\n", + " density[average] = 0.0\n", " Activation (THEN-clause):\n", - " temp[high] : 0.716812846952748\n", + " temp[higher] : 0.0\n", "\n", "RULE #7:\n", - " IF density[high] AND al[low] THEN temp[low]\n", + " IF density[average] AND al[low] THEN temp[higher]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[high] : 0.0\n", + " - density[average] : 0.0\n", " - al[low] : 1.0\n", - " density[high] AND al[low] = 0.0\n", + " density[average] AND al[low] = 0.0\n", " Activation (THEN-clause):\n", - " temp[low] : 0.0\n", + " temp[higher] : 0.0\n", "\n", "RULE #8:\n", - " IF density[high] AND al[high] THEN temp[low]\n", + " IF density[average] AND al[high] THEN temp[average]\n", "\tAND aggregation function : fmin\n", "\tOR aggregation function : fmax\n", "\n", " Aggregation (IF-clause):\n", - " - density[high] : 0.0\n", + " - density[average] : 0.0\n", " - al[high] : 0.0\n", - " density[high] AND al[high] = 0.0\n", + " density[average] AND al[high] = 0.0\n", + " Activation (THEN-clause):\n", + " temp[average] : 0.0\n", + "\n", + "RULE #9:\n", + " IF density[higher] AND al[low] THEN temp[low]\n", + "\tAND aggregation function : fmin\n", + "\tOR aggregation function : fmax\n", + "\n", + " Aggregation (IF-clause):\n", + " - density[higher] : 0.0\n", + " - al[low] : 1.0\n", + " density[higher] AND al[low] = 0.0\n", " Activation (THEN-clause):\n", " temp[low] : 0.0\n", "\n", + "RULE #10:\n", + " IF density[higher] AND al[high] THEN temp[lower]\n", + "\tAND aggregation function : fmin\n", + "\tOR aggregation function : fmax\n", + "\n", + " Aggregation (IF-clause):\n", + " - density[higher] : 0.0\n", + " - al[high] : 0.0\n", + " density[higher] AND al[high] = 0.0\n", + " Activation (THEN-clause):\n", + " temp[lower] : 0.0\n", + "\n", "\n", "==============================\n", " Intermediaries and Conquests \n", "==============================\n", - "Consequent: temp = 47.897027582440735\n", + "Consequent: temp = 43.68948509302114\n", + " lower:\n", + " Accumulate using accumulation_max : 0.4362242673845851\n", " low:\n", - " Accumulate using accumulation_max : 0.283187153047252\n", + " Accumulate using accumulation_max : 0.5637757326154149\n", " average:\n", - " Accumulate using accumulation_max : 0.716812846952748\n", + " Accumulate using accumulation_max : 0.0\n", " high:\n", - " Accumulate using accumulation_max : 0.716812846952748\n", + " Accumulate using accumulation_max : 0.5637757326154149\n", + " higher:\n", + " Accumulate using accumulation_max : 0.0\n", "\n" ] }, { "data": { "text/plain": [ - "np.float64(47.897027582440735)" + "np.float64(43.68948509302114)" ] }, "metadata": {}, "output_type": "display_data" }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/user/Projects/python/fuzzy-rules-generator/.venv/lib/python3.12/site-packages/skfuzzy/control/fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", + " fig.show()\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLOUlEQVR4nOzdd3xT9f7H8VfSvfempXRAKaNsZKOyl3jd1+1VrxsFr8hWUUDFeUVRBPFecaGCKLJENgXKaNm70NLd0r2b5PdHfrf3IqBtSfNNms/z8chDSU/OeZeQ5JPv1BgMBgNCCCGEEDZEqzqAEEIIIYS5SQEkhBBCCJsjBZAQQgghbI4UQEIIIYSwOVIACSGEEMLmSAEkhBBCCJsjBZAQQgghbI4UQEIIIYSwOVIACSGEEMLm2FwBZDAYKCkpQRbAFkIIIWyX0gJo69atjB07ltDQUDQaDStXrvzTx2zevJlu3brh5ORETEwMS5cubdQ1S0tL8fLyorS0tGmhhRBCCGH1lBZA5eXlJCQksGDBggYdn5qayujRo7n++utJTk7m2Wef5eGHH2bdunXNnFQIIYQQLYnGUjZD1Wg0rFixgvHjx1/1mMmTJ7N69WoOHz5cf9+dd95JUVERa9eubdB1SkpK8PLyori4GE9Pz2uNLYQQQggzMBgMaDQak53PqsYAJSYmMmTIkEvuGz58OImJiVd9THV1NSUlJZfcAEqraps1qxBCgSMrYOkYqCpRnUQIYWI/nvnRpOezqgIoOzuboKCgS+4LCgqipKSEysrKKz5m7ty5eHl51d/Cw8MBmL/uRLPnFUKYUfEFWPUMnNsG66erTiOEMKHs8mxe3/O6Sc9pVQVQU0yZMoXi4uL6W3p6OgDf789g04lcxemEECZhMMCPT4GjOwx5GfZ/Dqc2qE4lhDABg8HAzB0zcXVwNel57U16tmYWHBxMTk7OJffl5OTg6emJi4vLFR/j5OSEk5PTZff3jfHjxe8Psv7ZQXi5OjRLXiGEmexdAmc3wT3fQ/SNkLoVVj0NTySCi4/qdMKC6PV6dDqd6hjiKuzt7S8b57P85HISsxJZOGShaa9l0rM1sz59+vDLL79cct+GDRvo06dPo8/1yrgO3LI4mZd+OsI7d3QxUUIhhNldTIX1M6D7gxDz/2MEx/0TPuwDaybDXz5Rm09YBIPBQHFxMRUVFaqjiD+g0WgICAjA3t5YnqSXpjN/73xubXsr/cL6mfRaSgugsrIyTp8+Xf/n1NRUkpOT8fX1JSIigilTppCRkcG//vUvAB577DE++OADXnjhBR566CF+++03vv32W1avXt3oawd7ufDS2A5MWp7C8A7BjOgYbLLfSwhhJno9rHwC3Pxg2Oz/3u8VBiNfh5WPQfuxxpuwaf8pfjw9PXF0dDTpbCJhGgaDgcLCQoqKivDz88OAgenbp+Pr7MvzPZ43+fWUFkB79+7l+uuvr//zxIkTAbj//vtZunQpWVlZpKWl1f+8TZs2rF69mueee4733nuPVq1a8emnnzJ8+PAmXf8v3cJYeySbaSsO0TPSBz/3y7vKhBAWbPdHkLYTHlgNTh6X/izhTjj2E/z0LET0ATd/JRGFenq9vr74cXd3Vx1H/AFPT08KCwvR6/UsO76M/bn7WTJ8CW4Obia/lsWsA2Quv18HKK+0mmHvbOG6KD8+vLubfCsQwlrknYSPBxi7vkbOu/IxZbmwoDdE9ofb/wXy+rZJtbW15OXl4e/vj6Ojo+o44g/U1NSQn59PhVMFd665k9va3sbkXpOb5VotfhbYnwnwcOLV8Z1YczibVSmZquMIIRpCV2fs3vJqBTfOvPpx7oEw5m04tgoOf2++fMIiyRdcy6fRaNAb9Ly+53WC3YJ5ptszzXYtmy+AAEZ3DmFM5xBm/niEnJIq1XGEEH9m53uQeQDGLwTHP5ka2+Fm6PAXWD0JSrPNk08I0WRnis5wovAEr/Z7FRf7K8/wNgUpgP7f7Js64mCnZcoPh2SneCEsWfZh2DQX+k2A8J4Ne8zot8DO0bhQory+hRUZPHgwzz77rOoYZlNQWcCxi8e4o90ddAns0qzXkgLo//m4OTLvL5347Xguy/deUB1HCHEldTXGri//WBg8peGPc/WFce/DqXWQvKz58gkhmkyn17EjYwfuDu480OGBZr+eFED/Y0h8ELd2b8UrPx/lQqGsFSGExdn6JuQeg/EfgX0jZ222Gwld7oY1L0JRevPkE0I02b6cfRRVF9EtsBuOds0/WF0KoN+ZOTYeD2d7Jn9/EL1emsqFsBgZ+2HbWzDwHxDapWnnGDEXnD1h1VPGNYSEsCKFhYXcd999+Pj44OrqysiRIzl16hRgXEMnICCA7777rv74Ll26EBISUv/n7du34+TkZJGLQeZW5LI/dz+dAzrj7extlmtKAfQ7ns4OvH5LZ3acLmDZ7vOq4wghAGqrYMVjENwRBkxq+nmcvYyrRJ/dDHsXmyyeEObwwAMPsHfvXlatWkViYiIGg4FRo0ZRW1uLRqNh4MCBbN68GTAWS8eOHaOyspLjx48DsGXLFnr27Imrq2n31LpWdfo6NqZtxM/Zj04Bncx2XavaCsNcBrYN4O7eEcz55TgDYgOI9Df9AkxCiEbY9BoUpsLft4LdNe7dF3Mj9HgINsw0/r9vlGkyCqtTWaPjTF6Z2a8bHeCOi6Ndox5z6tQpVq1axY4dO+jbty8Ay5YtIzw8nJUrV3LbbbcxePBgPv74YwC2bt1K165dCQ4OZvPmzcTFxbF582YGDRpk8t/nWiVlJ1FSXcKtbW/FTtO4v5drIQXQVUwd1Z6tp/L4x3cpfP1oH+y0sn6EEEqk7Yad/4QhsyCwvWnOOXQ2nN5o3EbjgdWgNd+brrAcZ/LKGPPP7Wa/7s9P96djmFejHnPs2DHs7e3p3bt3/X1+fn60a9eOY8eOATBo0CAmTJhAXl4eW7ZsYfDgwfUF0N/+9jd27tzJCy+8YNLf5VpllWeRnJtM75De+Ln4UVtba7ZrSwF0FW5O9sy/NYE7F+1iyfZUHhko3xKFMLuacuOsr1Y9oK8JF0RzcjcOpF46GnZ9BH2fMt25hdWIDnDn56f7K7luc+jUqRO+vr5s2bKFLVu28NprrxEcHMzrr79OUlIStbW19a1HlqBWV8tvab8R6BbY7FPer0QKoD/QO8qPh/q14c31J7g+LoCYQI8/f5AQwnR+fRlKsuCvy03fShPZD657Aja+ArFDIaCdac8vLJ6Lo12jW2JUad++PXV1dezevbu+iCkoKODEiRPEx8cDxlWUBwwYwI8//siRI0fo378/rq6uVFdX8/HHH9OjRw/c3CxnSMeurF2U15Yzus1otBrzD0mWQdB/4h/D29HKx4VJ36ZQp5NZI0KYzdktsOdjGPIS+Mc0zzVunAHeEcYB1rq65rmGECYQGxvLTTfdxCOPPML27dtJSUnhnnvuISwsjJtuuqn+uMGDB/PVV1/RpUsX3N3d0Wq1DBw4kGXLllnU+J8LpRc4lH+I60KuM9usr9+TAuhPODvY8dZtCRzKKGbhljOq4whhG6pK4MenIHIA9Hq0+a7j4AI3L4SsZNjxTvNdRwgT+Oyzz+jevTtjxoyhT58+GAwGfvnlFxwc/jsxYNCgQeh0OgYPHlx/3+DBgy+7T6UaXQ2b0jcR5h5GJ3/zzfr6PZvfDb6h3lh7nEXbzvLjk/2JD23444QQTbDqaTj8Azy+A3wim/96v75sHGj96CYIVveGLJrHf3aDDwgIuKRYEGpsTt/MqcJT3NHuDjydLv08NedzJS1ADTRhSCzRAe5M/DaZmjrpChOi2ZzaAPv/BcNeNU/xAzD4RfBva+wKq6sxzzWFsEHnS85ztOAofcP6Xlb8mJsUQA3kZG/HW7cncDq3jPc3nlIdR4iWqbLQ2PoTfSN0f8B817V3MnaF5R2HrW+Y77pC2JCquio2p28mwiOCeN941XGkAGqMDqFePHNjLB9tOUNyepHqOEK0PGsmQ02FcbVmjZnX3grpDANfgG1vQ8Y+815bCBuwPWM7dfo6BocPRmPu1/cVSAHUSI8PjiY+xJNJ3yZTVatTHUeIluPYT3DwGxj1BniFqckwYKJxDNCKx6G2Uk0GIVqgs0VnOVl4kv5h/XF3bJ51kBpLCqBGcrDT8tbtCaRfrOSt9SdUxxGiZSjPh5+ehXajofMd6nLYORi7wgpT4bdX1eUQogWprKtky4UttPFqQ1uftqrj1JMCqAnaBnkwaVhbPt2eyp7Ui6rjCGHdDAb4+Tkw6GHsu+bv+vq9wPZww3RIXADnE9VmEcLKGQwGtqRvwYCBQa0GWUTX139IAdREDw+IoluED88vT6G8WhZQE6LJDn8Px1bBmLfBPVB1GqM+T0F4L1j5uHE7DiFEk5wqOsXZ4rMMbDUQVwfL2oVeCqAmstNqmH9bArmlVcxbc1x1HCGsU0kWrJ4EHW+BDjerTvNfWjvjXmGl2bBhluo0Qlil8tpytl3YRqx3LDHezbSa+zWQAugatPF348URcfx713m2n8pXHUcI62IwwE8TjFPQR81XneZyftEw9GVIWgRnN6tOI4RVMRgMbE7fjJ3WjgGtBqiOc0VSAF2j+/pE0ifKjxe+S6GkqlZ1HCGsx4Ev4NQ6GPseuPqqTnNlPR8xbsfx41PG7TmEEA1y/OJxzpecZ3CrwTjbO6uOc0VSAF0jrVbDG7d2priylld/Pqo6jhDWoSgN1k6BLndDu5Gq01ydVgs3LTAu0Lhuquo0QliF0ppSdmTuIM43jkivSNVxrkoKIBMI93Vlxph4vt17gd+O56iOI4Rl0+uNLSrOXjBiruo0f86nNQyfAwf+DSfXqU4jRLPT6XTo9U3b8slgMLApbROOdo70C+tn4mSmJQWQidzRM5zB7QKY/P0hiipkLyEhrmrvYkjdAjf901gEWYNu90HMUFj1DFTI0hfCvNauXUv//v3x9vbGz8+PMWPGcObMGQD69u3L5MmTLzk+Ly8PBwcHtm7dCkB1dTXPP/88YWFhuLm50bt3bzZv3lx//NKlS/H29mbVqlXEx8fj5OREWloaSUlJDB06FH9/f7y8vBg0aBD79++/5FrHjx+nf//+ODs7Ex8fz6c/fMpNsTdRk1KDk50TAOnp6dx+++14e3vj6+vLTTfdxLlz55rvL6yBpAAyEY1Gw7y/dKa6VsesVUdUxxHCMhWcgQ0zocffIPoG1WkaTqOBce9DXSWseUF1GmFjysvLmThxInv37mXjxo1otVpuvvlm9Ho9d999N19//TUGg6H++G+++YbQ0FAGDDAOPn7qqadITEzk66+/5uDBg9x2222MGDGCU6f+u69lRUUFr7/+Op9++ilHjhwhMDCQ0tJS7r//frZv386uXbuIjY1l1KhRlJaWAsaWovHjx+Pq6sru3bt5+4O3mfPSHAD8XfwB4+7uw4cPx8PDg23btrFjxw7c3d0ZMWIENTVqGws0hv/9W7MBJSUleHl5UVxcjKen6XeiXXHgAs99k8JHd3djZKcQk59fCKul18HS0VCaBY/tACfLWA6/UVK+gRWPwu3/gvibVKcRDVRbW0teXh4BAQE4ODj89wc1FZB/0vyB/NuCY9PXxMnPzycgIIBDhw4RFBREaGgov/32W33B07dvXwYOHMi8efNIS0sjKiqKtLQ0QkND688xZMgQevXqxZw5c1i6dCkPPvggycnJJCQkXPW6er0eb29vvvzyS8aMGcPatWsZO3Ys6enpBAYF8uPpH9m9dTevP/w6K1asYPz48XzxxRe8+uqrHDt2rH4RxJqaGry9vVm5ciXDhg275BpXfa6agX2znt0Gje8SxtrD2UxbeZiebXzxd3dSHUkIy7DrQ0jbBQ+sts7iB6Dz7cZFG39+DiL6gnuA6kTiWuSfhE8Gmf+6j26B0C4NPvzUqVPMnDmT3bt3k5+fXz8+Jy0tjY4dOzJs2DCWLVvGgAEDSE1NJTExkY8//hiAQ4cOodPpaNv20i0oqqur8fPzq/+zo6MjnTt3vuSYnJwcpk+fzubNm8nNzUWn01FRUUFaWhoAJ06cIDw8nODgYJJzk8kuz+bBkQ/yOq/XnyMlJYXTp0/j4eFxybmrqqrqu/FUkQLIxDQaDa/d3Ilh72xl2opDLLynu0Ut/S2EEnknYONsuO4JiLTsgZF/SKOBMe/Ch71h9XNw+7/Vb90hms6/rbEYUXHdRhg7diytW7dm0aJFhIaGotfr6dixY30X0t13380zzzzDP//5T7788ks6depEp06dACgrK8POzo59+/ZhZ2d3yXnd3f/7RcTFxeWyz6r777+fgoIC3nvvPVq3bo2TkxN9+vS5rOvqYtVFdmftpnNAZ0LcL+35KCsro3v37ixbtuyy3ysgQO0XCCmAmoG/uxOvju/IE8v282NyJuO7KtrZWghLoKuDFY+BdwTcOEN1mmvnHgCj34bl98Oh5cZWIWGdHF0b1RKjQkFBASdOnGDRokX1XVzbt2+/5JibbrqJRx99lLVr1/Lll19y33331f+sa9eu6HQ6cnNz6x/fUDt27ODDDz9k1KhRgHEwc37+fxf9bdeuHenp6fyw/wc8fDzoHdKbLZsuLSi7devGN998Q2BgYLMMO7kWMgi6mYzqFMK4hFBm/niY7OIq1XGEUGfHO5CVbNxl3cFFdRrT6DAeffwt5H37HHlnD5OXl0deXl6Tpw4LcTU+Pj74+fnxySefcPr0aX777TcmTpx4yTFubm6MHz+eGTNmcOzYMe666676n7Vt25a7776b++67jx9++IHU1FT27NnD3LlzWb169R9eOzY2ln//+98cO3aM3bt3c/fdd+Pi8t/X8NChQwlrHcY7/3iHkJIQdifuZvr06QD1rUl33303/v7+3HTTTWzbto3U1FQ2b97MM888w4ULF0z119QkUgA1o1du6oCTgx0v/nAQGxtrLoRR9iHY/Dr0fw5a9VCdxqQKer9I4GuZBEZ3IjAwkMDAQAoKClTHEi2MVqvl66+/Zt++fXTs2JHnnnuON99887Lj7r77blJSUhgwYAARERGX/Oyzzz7jvvvuY9KkSbRr147x48eTlJR02XG/t3jxYgoLC+nWrRv33nsvzzzzDIGB/92wuLCmkAfmP4B9rT0jBo7g4YcfZtq0aQA4OxtXf3Z1dWXr1q1ERETwl7/8hfbt2/O3v/2Nqqoq5S1CMgusmf12PIeHlu5l3l86cWevP/7HJkSLUlcDi6437vn16Cbjnl8tSF5e3iUfBgC5ubnKxzWIy5lzZpGt0Ol1fHfqOwBujb0VO61xfNGOHTvo378/p0+fJjo6utHnlVlgLcgNcUHc3qMVs38+Sr8Yf8J9mz71UQirsuV1yDsOj7S84kcIW7c3Zy+FVYW4HHPht7TfiI2N5fTp00yYMIF+/fo1qfgxN+kCM4PpY+LxcnHghe8OotfbVIObsFUX9sH2d2DQZAjp/OfHtxQyBkjYgJzyHPbn7qdHUA80NRqefPJJ4uLieOCBB+jZsyc//vij6ogNIgWQGXg6O/DGrQkkni3g37vOq44jRPOqrYSVjxkLn/7PqU5jXge+UJ1AiGZVp6/jt/Tf8Hfxp2tQV+677z5OnjxJVVUVFy5cYOnSpZesL2TJpAAyk/6x/tx7XWvmrjlGan656jhCNJ/fXoXC8zB+IdjZ2HiLrW8Yt/sQooXanbWbkuoSbgy/ETuN3Z8/wIJJAWRGL46MI8jTmeeXp6CTrjDREp3fCYkL4IbpEBinOo35uQXAyseN234I0cJklmVyMO8gvUJ64eviqzrONZMCyIzcnOyZf1sC+9MK+XTbWdVxhDCt6jLjh394b+jzpOo0aox8A9L3GItAIVqQWl0tv6X9RpBbEAkBV98vzJpIAWRmPSN9ebh/G95af5KTOaWq4whhOr/OgrJcGP8haK27abzJwnsai7/fXoXc46rTCGEyiVmJVNRVcEPEDWg1LaN0aBm/hZWZNKwd4b4uTPo2hVqdzBoRLcDZzZD0KQx5Gfwsf/prs7phOvi0Ng4E19WqTiPENUsvTedw/mH6hPTB28lbdRyTkQJIAWcHO966vQtHs0r4aLMMmBRWrqoYfnwK2gyEng+rTqOeg4txAHjWQeNSAEJYsWpdNZvSNxHmHkZH/46q45iUFECKdAn35vFB0by/8RSHM4pVxxGi6dZNhcoiuGkBaOUtBYBW3Y1LAGx53VgICdFEgwcP5tlnn73qzzUaDStXrmzw+TZv3oxGo6GoqKhBx+/I2EGNrobrI66/bLd4ayfvVgo9c2MsMYHuPL88heo6mTUirNDJdca1b0bMMe72Lv5r0GQIiIMVj0Fdteo0ooXKyspi5MiRzXLuc8XnOH7xOH1D++LpaFk7uZuCFEAKOdprefv2LpzJK+O9X0+pjiNE41RchFVPQ+ww6Hqv6jSWx94Rbl4I+SeNLUFCNIPg4GCcnEy/1UxVXRWbL2wmwjOC9r7tTX5+SyAFkGLxoZ5MuDGWhVvOcCCtUHUcIRpuzQvGlo2x70MLaxo3meBOMHiycSzQhb2q0wgrpdfreeGFF/D19SU4OJiXXnqp/me/7wLbuXMnXbp0wdnZmR49erBy5Uo0Gg3JycmXnHPfvn306NEDV1dX+vbty4kTJy75+baMbej0Oq4Pb3ldX/8hBZAFeGxQNJ3CvJi0PIWqWukKE1bg6I9waDmMehM8Q1SnsWz9noOQLsausNpK1WmEFfr8889xc3Nj9+7dvPHGG7zyyits2LDhsuNKSkoYO3YsnTp1Yv/+/cyePZvJkydf8ZzTpk3jrbfeYu/evdjb2/PQQw/V/+xM0RlOFZ5iQKsBuDm4NdvvpZrsBm8B7O20vHV7AqPe386b604wY0y86khCXF1ZHvz8HLQfC51uU53G8tnZG7vCFg6AjbON46WERaisqyS1ONXs123j1QYXe5cGH9+5c2dmzZoFQGxsLB988AEbN25k6NChlxz35ZdfotFoWLRoEc7OzsTHx5ORkcEjjzxy2Tlfe+01Bg0aBMCLL77I6NGjqaqqQm+nZ+uFrUR5RRHrHXsNv6XlkwLIQsQEevCPYe2Ys+YYw+KD6B1lHZvJCRtjMMDPzxr/f/Q70vXVUAHt4MYZsH4GxI2GyH6qEwkgtTiVO36+w+zX/WbMN8T7NfyLbufOnS/5c0hICLm5uZcdd+LECTp37oyzs3P9fb169frTc4aEGFtxc3JyOKo/CsDAVgNbbNfXf0gBZEEe6t+G9Uezef67FNZOGIibkzw9wsIcWg7Hf4bb/w3uAarTWJfrnoDjq43bhTy+E5zcVSeyeW282vDNmG+UXLcxHBwu3VRYo9Gg11/bIrr/e87/FDqnC0+TSirDI4fj6uB6Tee3BvIJa0HstBrm35bAiHe3MeeXY7x2cyfVkYT4r5JM+OV5Y7dX/DjVaayP1s64TchH/WDDTBjztupENs/F3qVRLTGWrl27dnzxxRdUV1fXzwxLSkpq8OP3Zu+lW/tuRHvbxmruMgjawrT2c2PqqDiW7U5j68k81XGEMDIYYNUzYO9i3PBTNI1vFAx9BfYuhjO/qU4jWpi//vWv6PV6Hn30UY4dO8a6deuYP38+wB92ZxkMBgDstHYMCBtglqyWQAogC3R379b0i/Fj8vcHKa6UvYSEBdj/Lzi9Acb9E1x9Vaexbj3+Bm0GGbcPqZJV4IXpeHp68tNPP5GcnEyXLl2YNm0aM2fOBLhkXNDvnS0+C8B1IdfhbH/141oajeE/pZ+NKCkpwcvLi+LiYjw9LXdly4yiSoa/s5URHYOZf1uC6jjClhWeh4/6Qoeb4aYPVKexGHl5eQQGBl5yX25uLgEBDRgbVZQOH/YxdiWO/7CZEor/qK2tJS8vj4CAgMvG07R0y5Yt48EHH6S4uBgXl8tnnpXUlPDN8W+I8Y7h+ojrFSS8lDmfK2kBslBh3i7MHBPPd/susOFojuo4wlbp9fDjk+DiA8Nl+rbJeIfDiLmQvAxOrFGdRrQg//rXv9i+fTupqamsXLmSyZMnc/vtt1+x+DEYDGxK24SzvTP9wmxvZqIUQBbsth6tuCEukCk/HKKwvEZ1HGGLkj6Fc9uMLT/OlttiapW63gOxw41jqyouqk4jWojs7Gzuuece2rdvz3PPPcdtt93GJ598csVjD+UfIqMsg+vDr8fRztHMSdWTAsiCaTQa5v2lE7U6PTN+PKw6jrA1BWeMs5V6PgJRg1WnaXk0Ghj3PuhqjLPrhDCBF154gXPnzlFVVUVqairvvPMOrq6XT2kvqipiV9YuOvp3pJVHKwVJ1ZMCyMIFejrzyk0d+PlgFj8fzFQdR9gKvc64Xo1HMAx9WXWalssjGEa/BYe/hyMrVKcRNkJv0PNb+m+4ObjRJ6SP6jjKSAFkBcYlhDKyYzAzVh4mr7RadRxhCxI/gPQ9xi0cHFvuXkAWoeMt0H4c/DwRyi5f3VeYjo3N+bmqlLwUcspzuCH8BhzsLGtQuDmfIymArIBGo+HV8R3RajRM+eGQvIhF88o9Br+9Cn2fgojrVKdp+TQaGPMOaLTw07PGNZeESdnZ2QFQUyNjKS9WXmRP1h4SAhIIcbe8jYx1OuOG4Fpt85cnygugBQsWEBkZibOzM71792bPnj1/ePy7775Lu3btcHFxITw8nOeee46qqiozpVXHz92J127uyK/Hcvhhf4bqOKKl0tUady33aQPXT1edxna4+cPYd+HEajho/q0ZWjqtVourqyslJSWUlZVRU1NDbW2tzd2qaqrYfG4zPg4+dPXvqjzP7281NTWUlJTg6OholgJI6VYY33zzDRMnTmThwoX07t2bd999l+HDh3PixInL1tcA4063L774IkuWLKFv376cPHmSBx54AI1Gw9tvt/xl5Ud0DGF8l1Be+ukIfWP8CPFq+G7CQjTI9ncg+xA8vAEcbGdBNIvQfix0vgN+eQEiB4BXmOpELYqXlxdgXAvOVp24eILcwlwGhA2gsKBQdZwr0mg0+Pn5mWUjVqULIfbu3ZuePXvywQfGxdX0ej3h4eE8/fTTvPjii5cd/9RTT3Hs2DE2btxYf9+kSZPYvXs327dvb9A1rWUhxKsprqhl2LtbaBvkwb8e6tXid+sVZpSVAotugP7PwQ3S+vNnrmkhxKupLDQukBgYD/d8b+weEyal1+vru1lsycmLJ3ly45PcGXcnf+v0N9Vxrsre3t5sn2vKWoBqamrYt28fU6ZMqb9Pq9UyZMgQEhMTr/iYvn378sUXX7Bnzx569erF2bNn+eWXX7j33nuvep3q6mqqq/87cNjaq38vVwfm3dKZBz9L4qs96fy1d4TqSKIlqKuGFY9DQHsY+ILqNLbLxce43ciyW2HfUujxoOpELY5WqzVL94olqdHVMH3XdPzd/flbwt8sbuCzKsr+FeTn56PT6QgKCrrk/qCgILKzs6/4mL/+9a+88sor9O/fHwcHB6Kjoxk8eDBTp0696nXmzp2Ll5dX/S08PNykv4cK17cL5M6e4by6+ijpFytUxxEtweZ5kH/SOOvL3vYWRLMosUOh232wfjoUnlOdRrQAHyZ/yLmSc7zW/zUpfv6HVZXBmzdvZs6cOXz44Yfs37+fH374gdWrVzN79uyrPmbKlCkUFxfX39LT082YuPlMG90eH1dHnl+egl4vs0bENbiwF3a8C4NfhOCOqtMIgGGvgYsvrHzSuB2JEE2UkpfCZ0c+4/GEx2nn2051HIuirADy9/fHzs6OnJxL97nKyckhODj4io+ZMWMG9957Lw8//DCdOnXi5ptvZs6cOcydOxf9Vd4knJyc8PT0vOTWEng4O/DmrZ3ZnXqRpTvPqY4jrFVtpXHWV2hX6Pes6jTiP5w9YfwCOL8d9lx5GwMh/kxlXSXTt08n3jeehzo+pDqOxVFWADk6OtK9e/dLBjTr9Xo2btxInz5XXpmyoqLisr7b/6zvYItr4/SN8ef+Pq15Y91xzuaVqY4jrNHG2VCcDuMXgp3SSaHi99oMhF5/h19fgvzTqtMIK/T+/vfJLMvktf6vYa+V1/fvKe0CmzhxIosWLeLzzz/n2LFjPP7445SXl/Pgg8aBf/fdd98lg6THjh3LRx99xNdff01qaiobNmxgxowZjB07tr4QsjWTR8YR7OnMpOUp6KQrTDTGuR2w60O4YQYEtFWdRlzJkFngGQIrHzNuTyJEAyVlJ/HFsS94ptszRHlHqY5jkZSWhHfccQd5eXnMnDmT7OxsunTpwtq1a+sHRqelpV3S4jN9+nQ0Gg3Tp08nIyODgIAAxo4dy2uvvabqV1DO1dGe+bclcNvHiXyy9SyPD45WHUlYg+oy415fEdfBdY+rTiOuxtHN2Dr32QjY+b5xiQIh/kRFbQUzdsygW2A37ml/j+o4FkvpOkAqWPs6QFcz95djfLbjHD893Z92wR6q4whL9/NzkPI1PL4DfOXbYVM0yzpAV7N+BuxeCI9ugaB4059ftCizE2fz09mf+H7s94R7Wv/M5+ZiVbPAxNU9N7Qtrf1cmfhtMrU6mTUi/sDpjbB3CQx9RYofa3H9NONzteLvxu1KhLiKnRk7+fbkt0zsPlGKnz8hBVAL4exgx1u3J3A8u5QFm2TApLiKyiJY9TREDYYelrsarPgdB2fjGk05R2DbW6rTCAtVUlPCzJ0z6R3Sm9vb3a46jsWTAqgF6dzKmycHR/PBb6c5nFGsOo6wROumQnUpjPsAbGw1XKsX2hUGPg9b34TMZNVphAV6fc/rlNWWMbvvbLQaeX3/GfkbamGeuiGWtkEeTPw2meo6mTUi/sfxXyB5GQyfA97SNG6VBjwPge2NazfVVf/58cJmbErbxKozq5jcczIh7iGq41gFKYBaGEd7LW/fkUBqfjnvbDilOo6wFBUX4acJ0HYEdJVZIVbL3hFu/hgKTsOmOarTCAtRVFXEy4kvM7DVQMbHjFcdx2pIAdQCxQV78uyQtnyy9Qz7zheqjiMswepJoKuBse/JDuPWLqgDXD/FOC0+fY/qNMICvLb7NWr1tbzU5yWz7aTeEkgB1EL9fWAUnVp58/zyFCprpCvMph3+AY78AKPfAo8rbzMjrEzfCRDazdgVViMbItuytefWsvbcWqb1nkaAazMswdCCSQHUQtnbaXnrtgQyiyp5Y91x1XGEKmW5xtaf+Jug4y2q0whTsbM3zgoryYCNr6hOIxTJr8zntV2vMbT1UEa2Gak6jtWRAqgFiwl05x/D2/HZjnMknilQHUeYm8FgHPej0cLot6Xrq6Xxj4UbZ8HujyB1m+o0wswMBgMvJ76MVqNl+nXTpeurCaQAauEe6teGXm18+cd3KZRV16mOI8wp5Ws48Ytx3I+bv+o0ojn0fgxa94MfnzAubyBsxk9nf2Jz+mZmXjcTX2df1XGskhRALZxWq2H+rQlcLK/htdXHVMcR5lKcAWsmQ+c7oP0Y1WlEc9Fq4aYFUF4A66erTiPMJLs8m3m75zEmagw3tr5RdRyrJQWQDYjwc2XqqPZ8tSeNLSfzVMcRzc1ggFVPgaMrjHxddRrR3HzbwLDZsG8pnP5VdRrRzAwGA7N2zsLF3oUXe72oOo5VkwLIRtzdO4IBsf5M/u4gxZWyl1CLtm8pnPnNuNqzi4/qNMIcejwEUdfDj08btzsRLdbyk8vZmbmTl/q+hJeTl+o4Vk0KIBuh0Wh4/ZbOlFfX8fJPR1THEc2l8Bysmwbd7ofYIarTCHPRaOCmD6CmDNZKq0BLlV6azvy987kl9hYGtBqgOo7VkwLIhoR6uzBzbDw/7M9g/ZFs1XGEqen1sPJJcPWD4a+pTiPMzauVscsz5Ss4vlp1GmFieoOemTtm4uPkw/M9nlcdp0WQAsjG3Nq9FUPaBzJ1xSEulteojiNMac/HcH47jF8ATh6q0wgVEu6CtiONyx+Uy9IXLcmXx75kb85eZvebjbuju+o4LYIUQDZGo9Ew5y+dqNMbmLHysOo4wlTyT8GvL0Gvv0ObgarTCFU0GuOyB/o6WD1RdRphIqnFqby7/13+GvdXeoX0Uh2nxZACyAYFejgz+6aOrD6UxU8pmarjiGul18HKx8EzDIa8pDqNUM0jyLjtydGVcPh71WnENarT1zF9x3SCXIOY0G2C6jgtihRANmpsQiijO4Uw48fD5JZWqY4jrsXO9yFjH4z/yDj1XYiOt0D8eOM2KKU5qtOIa7D0yFIO5x/mtf6v4eogr29TkgLIhs0e3xF7rYYp3x/CYDCojiOaIucobJoDfZ+GiN6q0whLMvpt0NrDT88Y14YSVudU4Sk+TP6Q++Pvp0tgF9VxWhwpgGyYr5sjc27uxMbjuXy374LqOKKxdLWw4u/gGwWDp6pOIyyNm59xPNDJtZD8peo0opFq9bVM2z6NCI8Inuz6pOo4LZIUQDZuWIdg/tItjFd+OkpmUaXqOKIxts6HnCPGXcEdnFWnEZYobrRxZtjaF6FYvuRYk0UHF3Gy8CSvDXgNJzsn1XFaJCmABLPGdsDNyZ7J3x+UrjBrkXkAts2Hgc9DaFfVaYQlGzEPHN3hx6ekK8xKHCk4wqKDi3ik8yN08OugOk6LZa86gFDPy8WB12/tzP1L9rBsdxr3XNdadSTxR+qqjV1f3q2hdX84n6g6kW0qKLz8vvQkqLDA7Uf6PGHcLHXvEuj5N9VpxB+o0dUwddtUQt1D6RnUk/05+1VHsijdgrqZ7FxSAAkABrUN4K5eEcz55RgDYwOI8JPZBhZr0xwoOAP9J8LFM6rT2K7CksvvKzgFek/zZ/kzju4Q0cdYBEXfYNxAVVikBckLOF9ynoc7Pcz50vOq41gcUxZA0gUm6k0b3R5fN0eeX56CXi9N5RYpfY9x2nvbEeAZqjqNsCbxN4GDK6x8zLhtirA4ybnJLD28lEHhgwhyC1Idp8WTAkjUc3ey581bE9hz7iJLdqSqjiN+r6bi/7u+Iow7fwvRGPbO0PkOSNsFuz9SnUb8TmVdJVO3G7u++ob2VR3HJkgBJC7RJ9qPB/tF8ua6E5zOLVMdR/yvjS9DcbpxVo/WTnUaYY38Y41bpfz6MuSdVJ1G/I/39r9Hdnk242LGodXIR7M5yN+yuMwLw+MI9XZh0vIU6nTSVG4RUrfC7oXQbjS4S9O4uAZxY8DFy9iaqKtTnUYAe7L2sOzYMq6PuB5/F3/VcWyGFEDiMi6Odsy/LYFDF4r4eOtZ1XFEdSmsfAL8YmWjU3Ht7ByNrYhZybDzPdVpbF55bTnTd0yntWdregfLau7mJAWQuKLurX14dGA07/56kmNZV5jtIsxn/XQozzWO35CmcWEKPm2M48g2zYHsw6rT2LT5e+dTUFXAuOhxaDQa1XFsirybiqt6bmgsbfzdmPRtCjV10hWmxKlfYd9SaD8O3KRpXJhQ25HgFmjsCqurUZ3GJm3P2M53J79jSMQQfJwtcP2oFk4KIHFVTvZ2vH17F07mlPLBb6dUx7E9lYWw6kkIiIMImRUiTMzOHrrcBbnHYOubqtPYnOLqYmbumEm0VzTdg7qrjmOTpAASf6hjmBdP3RDDgs1nOHihSHUc27JmMlSV/H/XlzSNi2bgFQ6xQ2HbW5AhKw6b07w98yitKWVM9Bjp+lJECiDxp568Pob2IR5M+jaFqlqd6ji24djPcPAbiB8PLtI0LppRzFDjopo/PAq1VarT2ISNaRv5+ezPDI8cjpeTl+o4NksKIPGnHOy0vHVbF84XVPDOBlk7pNmVF8BPz0BQR2jVU3Ua0dJp7SDhr1CYCpteU52mxSusKuTlnS/T1qctnQM6q45j06QAEg3SLtiD54a25ZNtZ9l3/qLqOC2XwQA/P2fc8LTT7dL1JczDM8S4vcrOfxpXihbNwmAwMHvXbKp11YyJkq4v1aQAEg326MAouoR7M+nbFCpqZAG1ZnH4ezj2I3S8BZwtcFNN0XJF3wA+kcZZYTXlqtO0SGvPrWXD+Q2MbDMSd0d31XFsnhRAosHstBreui2B7JIq3lh7QnWclqc0G1ZPgtCuxpsQ5qTRGhdILMmEX19SnabFyavI49Vdr9LBrwMd/DuojiOQAkg0UlSAOy8Mj2PpznPsPJ2vOk7LYTDAqmfAoDe2/gihgnsgxI2GPZ/A2S2q07QYBoOBl3a+hN6gZ2SbkarjiP8nBZBotAf6RtK7jS//+O4gpVW1quO0DMlfwql1xnE/0jQuVIocYNx2ZeXjxmUYxDX78cyPbM3Yyuio0bg6uKqOI/6fFECi0bRaDfNvS6CooobXVh9THcf6FV+ANS9Aq14Q3FF1GmHrNFpIuBMqCmDdNNVprF52eTbz9swjISCBdr7tVMcR/0MKINEk4b6uTBsdz9dJ6Ww6kas6jvUyGIwbndo5QIfxqtMIYeTqZ9x+5cC/4OR61WmslsFgYMaOGdhr7BkeOVx1HPE7UgCJJrurVzgD2wbw4vcHKa6QrrAm2bsYUrcYV3uWpnFhSSL6QEB743YsFbL0RVMsP7mcXVm7GB09Gmd7Z9VxxO9IASSaTKPR8Potnaio0fHST0dUx7E+F8/C+hnGfb4C4lSnEeJSGo2xMK8uM27LIholvTSdN5PepHtQd2K8Y1THEVcgBZC4JiFeLrw0tgMrDmSw9nC26jjWQ683DjJ1cIX4carTCHFlLt7Q4WY49C0cXaU6jdXQG/RM2z4NF3sXhrQeojqOuAopgMQ1+0u3MIbGBzFtxSEKyqpVx7EOuz8yrribcCdI07iwZGE9IKgT/PwslMvSFw3xxdEvOJB7gLHRY3Gyc1IdR1yFFEDimmk0Gubc3Am9wcD0lYcxGAyqI1m2vJPGhebaDAI/aRoXFk6jgc63G7dn+elZ48B9cVVni8/y3v736B3cm0ivSNVxxB+QAkiYRICHE6+O78Saw9msSslUHcdy6eqMWw24+BgXnBPCGjh5QMdb4fhPcOg71WksVp2+jmnbpuHp5MkNETeojiP+hBRAwmRGdw5hTOcQZv54hJySKtVxLNOOdyEr2bjlgJ2j6jRCNFxoFwjtBr9MgpIs1Wks0tIjSzlScIRx0eNwsHNQHUf8CSmAhEnNvqkjDnZapvxwSLrCfi/7MGyeC1HXGzedFMLa/GebllVPS1fY75y4eIIFBxbQN7QvrTxaqY4jGkAKIGFSPm6OzPtLJ347nsvyvRdUx7EcdTXww6PGvZbayl5Awko5ukGn2+D0Bjjwheo0FqNWV8vU7VPxc/FjUPgg1XFEA0kBJExuSHwQt3ZvxSs/H+VCYYXqOJZh65uQd/z/u77sVacRoumCOkJ4L1g7GYrSVKexCB8f/JjTRacZFz0Oe628vq2FFECiWcwcG4+Hsz2Tvz+IXm/jTeUZ+2DbWxA7FLzCVacR4trF3wx2TsZtXPR61WmUOpJ/hEWHFjEgbAAh7iGq44hGkAJINAtPZwdev6UzO04XsGz3edVx1Kmtgh/+Dp6hEDNUdRohTMPBxbhK9Lltxu1cbFS1rpop26YQ7BpM/7D+quOIRpICSDSbgW0DuLt3BHN+Oc65/HLVcdTY9CoUpkKXv4LWTnUaIUwnoB207mvczqXgjOo0Siw4sID00nTGxYzDTl7fVkcKINGspo5qj7+HI//4LgWdrXWFpe2CnR8YBz17SNO4aIHa32QcGL3ycdDrVKcxqwO5B1h6ZCmDwgcR6BqoOo5oAimARLNyc7Jn/q0J7D1fyJLtqarjmE9NubHryycSoq9XnUaI5mHvZBzYn74Hdn2oOo3ZVNRWMHXbVFp5tKJPaB/VcUQTSQEkml3vKD8e6teGN9ef4HRuqeo45vHrS1Caafxw0MjLTLRgftHQZiBsfAVyj6tOYxbv7n+XnIocxkWPQyuvb6slz5wwi38Mb0crHxcmfZtCna6Fzxo5uxn2fGLc6sJdmsaFDYgbbdzeZeVjxu1eWrDdWbv56vhX3BBxA34ufqrjiGsgBZAwC2cHO966LYFDGcUs3NKCB0xWlRinBvvFQuQA1WmEMA87R2NrZ1YK7HhHdZpmU1ZTxvTt04n0jKRXcC/VccQ1kgJImE3XCB8eGxTNextPcTSzRHWc5rFuKlQUQMKd0vUlbItPJETfAJvnQfYh1WmaxZtJb1JYXci46HFoNBrVccQ1Uv4OvWDBAiIjI3F2dqZ3797s2bPnD48vKiriySefJCQkBCcnJ9q2bcsvv/xiprTiWk0YEkt0gDsTv02mpq6FdYWdXA8H/m2cGeMqTePCBsWOAPcg47YvdTWq05jU1gtb+eH0DwxtPRRvZ2/VcYQJNLkA2rhxI2PGjCE6Opro6GjGjBnDr7/+2qhzfPPNN0ycOJFZs2axf/9+EhISGD58OLm5uVc8vqamhqFDh3Lu3Dm+++47Tpw4waJFiwgLC2vqryHMzMnejrduT+B0bhnvbzylOo7pVFyEVU9CYHuIuE51GiHUsLM3doXlnYAtr6tOYzLF1cXM3DmTGO8YugZ2VR1HmEiTCqAPP/yQESNG4OHhwYQJE5gwYQKenp6MGjWKBQsWNPg8b7/9No888ggPPvgg8fHxLFy4EFdXV5YsWXLF45csWcLFixdZuXIl/fr1IzIykkGDBpGQkNCUX0Mo0iHUi2dujOWjLWdITi9SHcc01kyG6jLodAdI07iwZV6tIHYYbH8HLuxTncYk5u6eS0VtBWOixkjXVwvSpAJozpw5vPPOO3z11Vc888wzPPPMM3z55Ze88847zJkzp0HnqKmpYd++fQwZMuS/YbRahgwZQmJi4hUfs2rVKvr06cOTTz5JUFAQHTt2ZM6cOeh0V1+Aq7q6mpKSkktuQr3HB0cTH+LJpG+Tqaq18gXUjq6CQ99Ch5vBxVt1GiHUixkCXmGw4lGorVSd5ppsPL+R1amrGR45HE8nT9VxhAk1qQAqKipixIgRl90/bNgwiouLG3SO/Px8dDodQUFBl9wfFBREdnb2FR9z9uxZvvvuO3Q6Hb/88gszZszgrbfe4tVXX73qdebOnYuXl1f9LTxcNqO0BA52Wt66PYH0wkrmrzuhOk7TlefDz89CcGcI66E6jRCWQWsHCX+FwvPw29Xfny3dxaqLvJT4EnE+cXTy76Q6jjCxJhVA48aNY8WKFZfd/+OPPzJmzJhrDnU1er2ewMBAPvnkE7p3784dd9zBtGnTWLhw4VUfM2XKFIqLi+tv6enpzZZPNE7bIA8mDW3L4h2p7Em9qDpO4xkM8NOzUFcNnW6Tri8h/pdHMLQbCYkL4PxO1WkazWAwMDtxNrW6WkZFjZKurxbIvikPio+P57XXXmPz5s306WNcBnzXrl3s2LGDSZMm8f7779cf+8wzz1zxHP7+/tjZ2ZGTk3PJ/Tk5OQQHB1/xMSEhITg4OGBn999N59q3b092djY1NTU4Ojpe9hgnJyecnJwa/TsK83h4QBTrj+bw/PIU1kwYgJtTk/5JqnHoOzj+E3R7AJw8VKcRwvJEDYacw7DiMXh8Jzi5q07UYGtS1/Br2q/c2vZW3B2tJ7douCa1AC1evBgfHx+OHj3K4sWLWbx4MUeOHMHb25vFixfzzjvv8M477/Duu+9e9RyOjo50796djRs31t+n1+vZuHFjfVH1e/369eP06dPo9f+dPn3y5ElCQkKuWPwIy2en1TD/tgRyS6uYt8aKltEvyYJfJkFoNwjtojqNEJZJo4XOd0FpFvw6S3WaBsutyOXV3a/S0a8j8X7xquOIZtKkr9upqabZ1HLixIncf//99OjRg169evHuu+9SXl7Ogw8+CMB9991HWFgYc+fOBeDxxx/ngw8+YMKECTz99NOcOnWKOXPmXLWVSViHNv5uTBnZnlmrjjC8QzD9Y/1VR/pjBgOsetr4/x1vUZtFCEvnHgBxYyHpU4gbY/GbAxsMBl7a+RIAI9pcPtZVtBxKF0K84447mD9/PjNnzqRLly4kJyezdu3a+oHRaWlpZGVl1R8fHh7OunXrSEpKonPnzjzzzDNMmDCBF198UdWvIEzk3uta0yfKjxe+S6GkqlZ1nD924As4vQE63Q6ObqrTCGH5IvuBf1v48QmoathEGVVWnl7JtoxtjI4ajauDq+o4ohlpDAaDoSEHTpw4kdmzZ+Pm5sbEiRP/8Ni3337bJOGaQ0lJCV5eXhQXF+PpKVMaLUn6xQpGvreNUZ2CeeNWC13bqSgNPrwOgjoaF3wTNiuvsITAYc9ecl/u+ncJ8JH3lSuqKICt842tpuMbvl6cOWWWZXLzjzfT1qct42LGqY4jruC2treZ7FwN7gI7cOAAtbW19f9/NTJSXjRVuK8r00e358UfDjGiYzA3xAX9+YPMSa83bnRq5wTx41WnEcK6uPpB/DhI/gLaj4V2ltW9pDfombFjBo52jgyLHKY6jjCDBhdAmzZtuuL/C2FKd/QMZ+2RbCZ/f4gNz/ng7WpBg9v3LoZz26D34+DgojqNENYn/DrjRqmrnoIn94Crr+pE9b498S17svdwT/t7cLZ3Vh1HmIHyzVCF+F8ajYbXb+lMda2OWauOqI7zXwVnYP0MaN0PAtqpTiOEddJooPMdUFMOv/xDdZp6aSVpvLX3LXoE9SDKO0p1HGEmTSqAysvLmTFjBn379iUmJoaoqKhLbkJciyBPZ165qSM/Jmey5lDWnz+guel1xnVMnNyhvYwLEOKaOHtBh7/A4e/gyErVadDpdUzbPg1XB1eGtB7y5w8QLUaTpsE//PDDbNmyhXvvvZeQkBAZ9yNM7qYuoaw5nMW0lYfp2cYXf3eFi1nu+hAuJEGfp8BeFtUU4pqFdYfsg/Dzc8ZWVfcAZVG+OPYFKXkp3NfhPhztLKjLXTS7JhVAa9asYfXq1fTr18/UeYQAjF1hr93ciWHvbGXaikMsvKe7mkI79zhsfAWiBoFftPmvL0RLpNEYt4/Z8gb8NAHuXKZkK5mzRWd5b/979A7pTWvP1ma/vlCrSV1gPj4++PpazuA10TL5uzvx2viOrDuSw4/JmeYPoKuDlY+Biy+0G2X+6wvRkjl5QKdb4cRqOPit2S9fp69j6vapeDt5c324ZS/OKJpHkwqg2bNnM3PmTCoqKkydR4hLjOwUwk1dQpn542Gyi6vMe/Ht70BWinG9H2kaF8L0QhKM3WG/PA8l5v2Ss+TwEo4WHGVc9Dgc7BzMem1hGRrcBda1a9dLuiBOnz5NUFAQkZGRODhc+o9n//79pksobN7L4zqQeKaAF384yGcP9DRPV1jWQdgyD6JvBB9pGhei2XT4C2x9E358Cu753ixdYScunuCj5I/oF9aPMI+wZr+esEwNLoDGjx/fjDGEuDpvV0fm3dKJh5bu5ZukdO7sFdG8F6yrgRV/B/cgiB3evNcSwtY5uhnHAyUtgv3/gu73N+vlanW1TNk2BX8Xfwa2Gtis1xKWrcEF0KxZ1rOTr2h5bogL4vYerZj981H6xfgT7tuMe/RseR3yTkD/58CuSfMEhBCNEdQBwnvD2ikQNbhZW10/SvmIM8VneLjTw9hr5fVty5o0Big9PZ0LFy7U/3nPnj08++yzfPLJJyYLJsTvzRgTj7erIy98dxC9vkFb2DXehX2w/W1oOxy8WjXPNYQQl4u/GRycjBum6vXNcolDeYdYfHgxA1sNJNgtuFmuIaxHkwqgv/71r/XbYWRnZzNkyBD27NnDtGnTeOWVV0waUIj/8HB24I1bO5N4toB/7zpv+gvUVsKKR8Er3Dj2RwhhPg7O0PlOOLfd2B1mYlV1VUzdPpUQtxD6h/U3+fmF9WlSAXT48GF69eoFwLfffkunTp3YuXMny5YtY+nSpabMJ8Ql+sX4c1+f1sxdc4zU/HLTnvy3V6HwvHHWl9bOtOcWQvw5/7bQuj9smGncfsaEPjjwARfKLjAuehxajewCJZpYANXW1uLkZFwR99dff2XcOOP2AHFxcWRlWcDWBaJFe3FkHEGezjy/PAWdqbrCzu+ExAXQbiR4SNO4EMq0H2tcI2jF343b0JjAvpx9/OvovxgcPpgAV3WrTgvL0qQCqEOHDixcuJBt27axYcMGRowYAUBmZiZ+fn4mDSjE77k62jP/tgT2pxXy6baz137C6jLjXl++bYwDMIUQ6tg7GVthL+yFxA+u+XQVtRVM2z6NcI9wrgu5zgQBRUvRpALo9ddf5+OPP2bw4MHcddddJCQkALBq1ar6rjEhmlPPSF8e7t+Gt9af5GRO6bWd7NdZUJptfNOVpnEh1PONMn4Z+W025B67plO9ve9t8irypOtLXKbRcwANBgNRUVGkpaVRV1eHj49P/c8effRRXF2bcXqyEP9j0rB2bDqRx6RvU/jhib442DXhze3MJkj6FDreAm7SNC6ExWg3CvKOG7vCHt4ITVitOTEzkW9OfMPINiPxdZHtm8SlGv2JYTAYiImJITs7+5LiByAyMpLAwECThRPijzg72PHWbQkczSrho81NGDBZVWyccuvf1rgjtRDCctg5GFtlsw/Btrcb/fDSmlJm7JhBG6829Ajq0QwBhbVrdAGk1WqJjY2loKCgOfII0SgJ4d48MTia9zee4nBGceMevHYKVBQap95K07gQlsc7AmKGwNY3jPvyNcKbSW9SVF3E2Oix5tk+R1idJr3rz5s3j3/84x8cPnzY1HmEaLSnb4glNsiD55enUF3XwFkjJ9ZC8jKIvwlcpWlcCIsVOwzcg+GHR6GuukEP2ZK+hRWnVzCs9TC8nbybN5+wWk0qgO677z727NlDQkICLi4u+Pr6XnITwpwc7bW8dVsCZ/LKeO/XU3/+gIqLsOopCIw3Lr8vhLBcWnvochcUnIbN8/708KKqImbtnEWsdyxdArs0fz5htZq0Ecq7775r4hhCXJv4UE8m3BjL2xtOMjQ+iK4RPlc/+JfnobYCOt9hlp2nhRDXyDPM2BK0412IGw2trj6mZ87uOVTWVTImeox0fYk/1KQC6P77m3e3XiGa4rFB0Ww4msOk5Sn88swAnB2usJrzkZVw+Hvoei84e5k9oxCiiaJvhJwjxq6wx3eAg8tlh6w/t54159Zwc8zNeDh6KAgprEmTR36eOXOG6dOnc9ddd5GbmwvAmjVrOHLkiMnCCdEY9nZa3ro9gQuFlby57sTlB5Tlws/PQXAChHYzf0AhRNNp7YyzworSYOPsy35cUFnAK7teob1vezr6d1QQUFibJhVAW7ZsoVOnTuzevZsffviBsrIyAFJSUpg1a5ZJAwrRGDGBHrwwvB1LdqSy++z/zFQ0GOCnZ0FfC51ula4vIayRRzDEjYJdH8K5HfV3GwwGXk58GZ1ex6ioUdL1JRqkSQXQiy++yKuvvsqGDRtwdHSsv/+GG25g165dJgsnRFM82K8NPVr78Px3KZRX1xnvPPgtnFgNHW817jMkhLBObQYZV4pe+ZhxGxvg57M/syl9EyPbjMTNwU1xQGEtmlQAHTp0iJtvvvmy+wMDA8nPz7/mUEJcCzuthvm3JZBfWsOcX45BSSb8MgnCukNIgup4QohrodEau8JKc2DDDHLKc5izew6d/DvR3q+96nTCijSpAPL29r7iru8HDhwgLCzsmkMJca1a+7kxdVQcy3af5+JXj4LGDjrcojqWEMIU3Pyh/VgMe5cw69en0Gq0jGgzQnUqYWWaVADdeeedTJ48mezsbDQaDXq9nh07dvD8889z3333mTqjEE1yd+/WTA9OwjdrG+XtbwdH2adOiBajdV9+CIlmR9FxbooYgov95bPChPgjTSqA5syZQ1xcHOHh4ZSVlREfH8/AgQPp27cv06dPN3VGIZpEW5zGQ+Wf8L1+ELMyZcFDIVqSjNpSXncxML6sgttO71EdR1ihJhVAjo6OLFq0iDNnzvDzzz/zxRdfcPz4cf79739jZ3eFtVeEMDe9HlY+gdbBGU2H8Xx33oUNmY5//jghhMXTGwzMyFiHk9aeoR5taZO6k5ALyapjCSvTpIUQ/yMiIoLw8HAAmXYoLEvSIji/Ha57gpv9NKzOrmbKPg96+F3Ex8mgOp0Q4hp8dTGZpIoL3OvbjRxHHzIL0+mx+3PWBcRQ4+SuOp6wEk1eCHHx4sV07NgRZ2dnnJ2d6dixI59++qkpswnRNPmnYcNMiBwA/m3RaGBut1Jq9RpmHJAp8EJYs/PVhbyTs5Werq1o4+QLGg37ovuh1dXQNWmZ6njCijSpAJo5cyYTJkxg7NixLF++nOXLlzN27Fiee+45Zs6caeqMQjScXmdcH8TJE+LG1N8d6KLnla6l/HzBmZ/TnRQGFEI0lc6gZ2rGWty1TtzoEVt/f5WjK/vbXEdEWhKtzicpTCisSZO6wD766CMWLVrEXXfdVX/fuHHj6Ny5M08//TSvvPKKyQIK0Sg7/wkX9kLfp8H+0kJnXHg16zKqmHHAg94BNQQ4S1eYENbkXwX7OFSZxf1+PXDUXjreNN0/irCL5+mW9AV5gW2pdpG9/sQfa1ILUG1tLT16XL4bb/fu3amrq7vmUEI0Se4x2PQqRA02rhT7OxoNzO5WilYDU/Z5YpD6Rwircboqn3/m7uA6t9ZEOHpffoBGw/6oPhgMerrv+RfyAhd/pkkF0L333stHH3102f2ffPIJd9999zWHEqLRdLXGXaJd/aHdqKse5udkYE63En7NcuKHNGczBhRCNFWtQcfUjLV427lwvcflX27+o8bBhX1RfQnLSKF1aqIZEwpr1OAusIkTJ9b/v0aj4dNPP2X9+vVcd911AOzevZu0tDRZCFGose1tyDkM/Z4FO4c/PHR4WA03R1TxUrI7fQNqCHHVmyejEKJJPs3bw4mqPB7y64m95o+XWsn0a835gGi67PuS3OA4Kl19zZRSWJsGF0AHDhy45M/du3cH4MyZMwD4+/vj7+/PkSNHTBhPiAbITIatb0DMEPCOaNBDXupSys5cXybv8+Dz/sWyObwQFupYZS4f5+2in3skoY6eDXrMgTbXEZi8kh67lrLt+ueQF7i4kgYXQJs2bWrOHEI0TV01rPg7eIRA7LAGP8zL0cDrPUp5YLs3X6U689eoqmYMKYRoihp9HVMy1hDo4M5A9zYNflytvRNJ0f0YeGw9bc5sJTVmUDOmFNaqyesACWERNs+FgtPG3aG1jZvUODi4hrvaVPLaQXfSy+WlIISl+ShvF+eqLzLOKx47TeNeozk+rTgb1JYu+77BtSyvmRIKa9akafBVVVX885//ZNOmTeTm5qLXXzqGYv/+/SYJJ8QfSk+CHe9B25HgGdqkU0zrXMbWHEeeT/Lkq0FFaKWlXAiLkFKRyZL8JAZ5RBHk0LQFTFMiexNUlEXPxM/YMuR5aGQRJVq2JhVAf/vb31i/fj233norvXr1km0whPnVVMCKR8ErAqJvaPJp3B0MvNmjhL9u9eHz0y48GFtpwpBCiKao1NcyNWMtoQ6e9HNr3eTz1Nk5kBTTn8FH1hBz4jdOxw0xYUph7ZpUAP3888/88ssv9OvXz9R5hGiY32ZD8QUYMAm017YBb9/AWh6IqeD1w+4MCq4hykNnopBCiKZ4P2cHWbUlPOLfG+01ttrkeYVwKjiezsnfkR3akTLPYBOlFNauSf+ywsLC8PCQPZWEIue2w64Pjev9uAeZ5JSTO5YR4qJjUpInOlk/TQhlksrTWXZxP9e7R+Nv72aScx5q3YMKJzd6JS4GvSx7IYyaVAC99dZbTJ48mfPnz5s6jxB/rLoUVj4OftHQZqDJTutiD/N7lJBy0Z5PTria7LxCiIar0NUwPWMdEY7e9HZr2JIWDaGzsycpuj++Bedod3ydyc4rrFuTCqAePXpQVVVFVFQUHh4e+Pr6XnITotmsnwFlOdD5LpMPaOzuX8cjbSt456gbJ4qvrVtNCNF4b+VsJb+unLFe8SYfW1rgGcSJ0I50OLgSz6IMk55bWKcmjQG66667yMjIYM6cOQQFBckgaGEep3+FfZ9Bx1vBzb9ZLvFch3J+y3ZiYpInK28oxEEmjQhhFjvLzvFt4UFGecbha988rbBHIroSUnSBXjs/ZeOIaRgauXSGaFma9Ozv3LmTxMREEhISTJ1HiCurLIIfn4SAOGjdfIPvne3g7Z4ljP/NhwXHXXk2vqLZriWEMCrRVTEjYz3RTn50dw1rtuvotfbsiRnAjYd+ov3h1RztfFOzXUtYviZ9v42Li6OyUqYLCzNa+yJUFUPnO5p9WftOPnU8GVfBB8fcOFwo3xCFaG6vZ22mRFfFGK/2zd6jUOTuz7GwBNofWY33RRnHasuaVADNmzePSZMmsXnzZgoKCigpKbnkJoRJHf8FUr6C+PHg4mOWSz7Vvpx2XnVMTPKkWmbFC9FsNpWcYVXxUYZ5tsXLztks1zzWKoFiV1967fwUra7WLNcUlqdJBdCIESNITEzkxhtvJDAwEB8fH3x8fPD29sbHxzwfUMJGlBfAT09DUEdo1ctsl3XUwls9S0gtteOdo6aZiiuEuFRRXSUvZa6nrZM/CS4hZruuQWvHnpj+eJTm0OHQj2a7rrAsTWrfl41RhdmsngS1VdDpNrPv6BznpeO5DuXMP+zG0NBquvvVmfX6QrR0r2ZtpMpQx2gzdH39XombL4fDu9Lp6DoywrpyMSDarNcX6jWpABo0SHbWFWZw+Hs4ugK63gfOXkoiPNq2gvWZTjyf5MkvQy7iIkOChDCJtcUnWFdykr94d8TDzklJhpNhnQgrTKdX4mI2jJqFzl5NDqFGkyf5btu2jXvuuYe+ffuSkWFcU+Hf//4327dvN1k4YcNKc+DniRDSBUK7Koth//9dYZkVdrxx2F1ZDiFakvzacl7N2ki8cxAdnE2zmntTGDRa9sQMwLWigI4pK5TlEGo0qQD6/vvvGT58OC4uLuzfv5/q6moAiouLmTNnjkkDChtkMMBPE8Cgh063mr3r6/eiPXS80KmMz067kpjroDSLENbOYDDwcuYGdAY9o7zaKV9HrszFi0MRPWh74lcCco4rzSLMq0kF0KuvvsrChQtZtGgRDg7//UDo168f+/fvN1k4YaNSvoKTa4zFj6NltLo8GFNJb/8a/rHXk7JaWfhTiKb6qfgYm8vOMsorDleto+o4AJwKiSfXM4SeiZ9hX1ulOo4wkyYVQCdOnGDgwMv3YfLy8qKoqOhaMwlbVnwB1rwArXpCcGfVaeppNfBmjxIuVmt47aBlFGVCWJvs2lLmZP1GZ5dg4pwDVcf5L42GvTH9cKouofOBb1WnEWbSpAIoODiY06dPX3b/9u3biYqKuuZQwkYZDPDjU6C1h/ibVae5TIS7nqmdy/gq1YUt2ZbxzVUIa2EwGJiZsQ57jZbhnu1Ux7lMubMnKa17En16K0GZh1XHEWbQpALokUceYcKECezevRuNRkNmZibLli3j+eef5/HHHzd1RmEr9n0GZzdBp9vB0TJ3ZL87qooBgTVM3udBcY10hQnRUMsLD5FYnsZozzhctJY5lu5sUDuyvcPosXspDjWyDU5L16QC6MUXX+Svf/0rN954I2VlZQwcOJCHH36Yv//97zz99NOmzihswcVUWDcNIvpAYHvVaa5Ko4HXe5RQXqvh5RTpChOiIdJringzezPdXMOIcW6ejYxNQqNhb3Q/7Gsr6LL3K9VpRDNrUgGk0WiYNm0aFy9e5PDhw+zatYu8vDxmz55t6nzCFuj1sPJxcHCFeMvfnDDUVc+sLmX8cN6F9ZnSFSbEH9EbDMzIWIeL1oGhHrGq4/ypSid3kiN7E3kukdALB1THEc2oUcu6PfTQQw06bsmSJY0KsWDBAt58802ys7NJSEjgn//8J716/fm2B19//TV33XUXN910EytXrmzUNYUF2b0Q0hLhuifB3jx7AV2rW1pXsTbDian7POnhV4Cvk0F1JCEs0pcXD7CvIoP7fLvhpLWOlUTPB8QQdvE83Xd/Tr5/DDXOHqojiWbQqBagpUuXsmnTJoqKiigsLLzqrTG++eYbJk6cyKxZs9i/fz8JCQkMHz6c3NzcP3zcuXPneP755xkwYECjricsTP4p+PUliBwI/pb/7fA/NBqY072UOgPMOCBvjkJcSWr1Rd7J2UYv13AinXxVx2k4jYZ9UX3R6OrolvSF6jSimTSqHH/88cf56quvSE1N5cEHH+See+7B1/fa/lG//fbbPPLIIzz44IMALFy4kNWrV7NkyRJefPHFKz5Gp9Nx99138/LLL7Nt27Y/nHpfXV1dv1AjILvVWxJdHaz4O7h4QfsxqtM0WqCzntldS3l6txcj0qsZG1795w8SwkbUGfRMy1iLh9aJGz1jVMdptGpHV/ZHXUefk5u5cH4PF1qbbzNmYR6NagFasGABWVlZvPDCC/z000+Eh4dz++23s27dOgyGxncB1NTUsG/fPoYMGfLfQFotQ4YMITEx8aqPe+WVVwgMDORvf/vbn15j7ty5eHl51d/Cw8MbnVM0k53vQ+YBSLgL7KxzLM3Y8GpGt6pixgEPcquavLOMEC3O0vy9HK7MZpx3PA4aO9VxmuSCfxTpfm3olvQFTpXFquMIE2v0O7aTkxN33XUXGzZs4OjRo3To0IEnnniCyMhIysrKGnWu/Px8dDodQUGX7gUTFBREdnb2FR+zfft2Fi9ezKJFixp0jSlTplBcXFx/S09Pb1RG0UxyjsCm1yDqevBpozrNNZndtRR7DUzZ50ETvgcI0eKcrMrjw7yd9HFrTbijt+o412R/VB8MBuix+3PkBd6yXNNXVq1Wi0ajwWAwoNPpTJXpqkpLS7n33ntZtGgR/v4Nm0rp5OSEp6fnJTehWF0N/PB3cAuEtiNVp7lmvk4G5nYvYWOWE9+dt45B3EI0l1qDjqkX1uJj58pgj2jVca5ZjYMze6P7Epp5kNapO1XHESbU6AKourqar776iqFDh9K2bVsOHTrEBx98QFpaGu7ujVsXxd/fHzs7O3Jyci65Pycnh+Dg4MuOP3PmDOfOnWPs2LHY29tjb2/Pv/71L1atWoW9vT1nzpxp7K8jVNg2H3KP/n/Xl3XMCvkzQ0Nr+EvrSl5JdiezQrrChO1alLebU9X5jPOOx17TMl4LWb4RnAuMpever3Apv6g6jjCRRv3rfOKJJwgJCWHevHmMGTOG9PR0li9fzqhRo9BqG/8P3dHRke7du7Nx48b6+/R6PRs3bqRPnz6XHR8XF8ehQ4dITk6uv40bN47rr7+e5ORkGd9jDTIPwNb5EDMEvFvW8zUroQx3BwOT93pKS7mwSUcqc/g4bzf93SMJdWhZre3Jkb2o1drRY9dn0hXWQjTq6/fChQuJiIggKiqKLVu2sGXLlise98MPPzT4nBMnTuT++++nR48e9OrVi3fffZfy8vL6WWH33XcfYWFhzJ07F2dnZzp27HjJ4729vQEuu19YoNoq+OFR8AyF2GGq05icl6OBed1LuX+7N8vOOnNPtOwqLWxHtb6OqRlrCHLwYIC7dY/ru5Jaeyf2xvRn4NF1RJ3ewtnYwaojiWvUqALovvvuQ6Mx7f5Hd9xxB3l5ecycOZPs7Gy6dOnC2rVr6wdGp6WlNal1SVigzXPg4lnoPwm01jkr5M8MCq7hr1GVzDnozsCgGiLc9aojCWEWC3J3klZdxMP+vbBrIV1fv5fjHcaZoHYk7P+WnJAOlLsHqI4kroHG0JT561aspKQELy8viouLZUC0OaXthiXDIW60sfurBSur1TBigy+hrjq+HlSEVvZMbZHyCksIHPbsJfflrn+XAB/be19Jrsjk/tRvuN4jmn7ukarjNCt7XS1DU36k0iOQzUNegBZa7Fmq29reZrJzyTMnml9NuXHBQ59IiL5BdZpm5+5gYH7PEvbkO7LklIvqOEI0q0p9LVMz1hLm4Ekft9aq4zS7OjsHkqL7EZB3mtgTv6qOI66BFECi+f36MpRkGGd92ci3pesCankwpoI3D7tzuqRldvcJAfBeznaya0sZ5x2P1sRDJCxVvlcIJ0M60Cn5BzyKs1THEU1kG59GQp3UrbDnY2g3GtwDVacxqxc6lhHmqmNSkid1MhRItEB7ytNYdvEAN3hE42fvpjqOWR2K6E6Fkxs9Exej0Tf/OnjC9KQAEs2nqgRWPg5+sdDG9jatdbGH+T1LOFRoz8cnXVXHEcKkynU1TLuwjkhHH3q5tqwlLRpCb2fPnpgB+F48T7tj61THEU0gBZBoPuunQ3k+JNxpM11fv9fNr46/t6vg3SNuHCuSrjDRcryZs4VCXQVjveJNPjvYWlz0COR4WCc6HPwRr0LZZsna2Oankmh+p36F/Z9D+3Hg6qc6jVLPxpcT5aFj0l5PaqQrTLQA20tT+b7wEEM8Y/Gxt+2B/kfDu1Lq4mXsCtPVqY4jGkEKIGF6lYXw4xMQ0B4iLl/R29Y42cFbPUs4WWzPB8dsa5yEaHmKdVXMyFxPjJMf3VzCVMdRTq+1Y0/MALyKM4k/8rPqOKIRpAASprdmMlSXQuc7wEabxn+vo08dT7UvZ8FxVw5ebBn7nwnbNC9rE2W6asZ4tbfZrq/fK3L342irBOKO/IJPwTnVcUQDSQEkTOvYz3DwG+gwHly8VaexKE/GVdDeq46JSZ5UyaQRYYU2lpzm5+JjDPdsi6eds+o4FuV4WAJFbr70SvwUra5WdRzRAFIACdMpz4efnoGgjhDWU3Uai+Oghbd7lpBWbsc7R6QrTFiXi3UVvJy5gXbOAXR2CVEdx+IYtFqSYgbgVppHh4MrVccRDSAFkDANgwF+ngh11dDpdun6uoq2Xjomdijnk5Ou7M13UB1HiAYxGAy8mrmRGkMdoz3jpOvrKkpcfTgS0ZV2x9bjl3dKdRzxJ6QAEqZx+Hs49iN0vAWcbW8vpMZ4pG0FXX3reH6vBxUyaURYgbUlJ9hQeoqRnnG42zmpjmPRToR2pMAjkJ6JS7Crq1YdR/wBKYDEtSvNhtUTIbQbhHZVncbi2WmMCyRmV9rx+iF31XGE+EN5tWXMztxIB+cg4l2CVMexfBotSTH9cakopFPy96rTiD8gBZC4NgYDrHrG+N+Ot6hOYzWiPHRM7ljG52dc2ZkrXWHCMhkMBl7K3ADASK92itNYjzIXLw617kHsyd8IyD6mOo64CimAxLVJXgan1hnH/TjKwN7GuD+mkusCavjHXk9Ka2VMhbA8K4uOsLUslVFecbhqHVXHsSqng9uT6xVCz11LsK+tVB1HXIEUQKLpitKNa/606gXBHVWnsTpaDbzZo4SiGg2vHZSuMGFZsmpKeD17M11cQmjnHKA6jvXRaEiK7o9jdRkJ+79VnUZcgRRAomkMBvjxSbBzMK75I5ok3E3P9M5lfJ3qwqYs+YYtLIPBYGBG5nrsNVqGeUrXV1NVOHuQEtmLqDPbCM44qDqO+B0pgETT7F0MqVuMqz07yE7n1+LONlUMCqpm8j4PimqkK0yo923hQXaXpzHGqz3OWlm5/FqkBrYly6cVPXYvxaG6THUc8T+kABKNd/EsrJsOrftCQJzqNFZPo4HXe5RSpdPwUrKH6jjCxqXXFDE/ewvdXcOIdrLtjYxNQqNhb1Q/7Oqq6br3K9VpxP+QAkg0jl4HKx83Dnhuf5PqNC1GsIuel7qUsTLNmbUZss6KUENvMDAtYy2uWgeGesSqjtNiVDm5cSCyN63P7yYsfZ/qOOL/SQEkGmfXR5C2GxLuBHv5oDalmyOqGBZazbT9HhRUS1eYML8vCvaTXJHJWK94HKXry6TSAqLJ8G1Ntz3/xrGqVHUcgRRAojHyTsDGl6HNQPCLUZ2mxdFo4LVuJegNMG2/BwaD6kTClpytvsi7udvp5RZOaycf1XFaHo2GfVF90ejq6L7n38gLXD0pgETD6Opgxd/BxRfiRqtO02IFOBt4rVspazOcWZUuLWzCPOoMeqZdWIO3nTM3eMiXm+ZS7ejCvqg+tLqwn/Dze1THsXlSAImG2fEuZKUYu77sZLp2cxrVqpqx4VXMPOBBTqW8REXz+yw/iSNVOYz1isdBY6c6TouW4d+GNP8ouiUtw7miSHUcmybvruLPZR+CzXMh+gbwiVSdxia80qUURzsDL+6TrjDRvE5U5fFhbiJ93SJp5eilOo5NONDmOnQa6LF7qXSFKSQFkPhjdTXww9/BPQhiR6hOYzN8nAzM61bKpmwnlp9zVh1HtFC1eh1TL6zB396VQR5RquPYjBoHZ/ZF9SUk6zCRZ3eojmOzpAASf2zrG5B3HBLuAjuZFWJON4bWcFtkJa+kuHOhXF6qwvQ+zt/F6eoCxnrHY6+Rf2PmlOUbQWpgLF32fYVreYHqODZJ/sWLq8vYB9vehtih4NVKdRqbNCOhDE8HAy/s9UQvLeXChA5XZrMobw8D3NsQ4uCpOo5NSo7sTa2dAz0SPwODXnUcmyMFkLiy2ipj15dXGMQMVZ3GZnk6GHijRwk78xz54oyL6jiihajW1zH1whqCHTzo7x6pOo7NqrN3JCm6H0G5x4k+tVl1HJsjBZC4sk2vQmGqsetLK7NCVOofVMs9URXMPeTOuTJ5LsS1+yB3B+k1xYzzisdOur6UyvUO43RQHJ0PfIdbaY7qODZF/uWLy51PhJ0fQLtR4BGiOo0ApnQuJ8BZz/NJHuikK0xcgwMVGXxesI/BHlEEOrirjiOAg5E9qXJwplfiEtBLV5i5SAEkLlVTDiseA982EDVYdRrx/9zsDczvUcK+AgeWnJKuMNE0Ffpapl5YS7iDN9e5tVYdR/w/nZ0DSTH98cs/Q9sTG1THsRlSAIlLbZgFpZnQ+S6QpnGL0iuglr/FVvLmYXdOlUhXmGi8d3O2kVNXxljveLQa2W/OkuR7BnMypAMdU1bgUZypOo5NkE848V9nN0PSIogbA+4BqtOIK3i+YxnhbjomJXlSJy3lohF2laXx1cVkbvSIxs/eVXUccQWHI7pT7uROr52L0eh1quO0eFIACaOqElj5BPi3hcj+qtOIq3C2g7d6lnC40J6PTsiHmGiYMl01MzLW0sbRh56u4arjiKvQ29mzJ2YAPoVpxB1dozpOi2ezK9utSs7A1b1EdQyL0S15BuFl+Rxreys16cWq44g/cXOIgfeO+nJDSA0dvOtUxxEW7o3sLRTqKrndJwGNdH1ZtEKPAI6HdSL+0E9khnWm2CdCdaQWy2YLoKo6Pdpa6UMACM3dSmTaD5wNHUO5nRcyzcjy3Rycz94iNybt8WDVkEIcpS1XXMXW0rOsKDrMGK/2eNvLAHprcDS8KyFFF+i1czG/jpiBQVbhbxbytmnjHGuK6X1oJoXuseR5d1UdRzSQg9bAE5FZnCq15/2jbqrjCAtVXFfJzMz1xDr50dUlVHUc0UB6rR17YgbgWZJF/OGfVMdpsaQAsnE9js7BXldBauhokKZxqxLpWs0tIfl8eNyV5IvyDVFcbm72Jip0tYz2ai9dX1am2M2Po6260P7IL/jkn1Udp0WSAsiGhWdvIDLrF84HD6dW9gKySuODC2jjVsXEPZ5UyaQR8T9+LTnF6uLjDPdsi6eds+o4ogmOt+pMobs/vRIXo62rUR2nxZECyEY5VRfQ6/ArXPSIo8Crk+o4oonsNPBE6yzSy7XMPyyr+gqjgroKXs7cQJxzIJ1cglXHEU1k0GjZE9Mft/J8Oh5coTpOiyMFkC0yGOh5ZDZaQy2poaOk68vKtXKp4Y7QfBafcmFPnoPqOEIxg8HA7MxfqTXoGe0ZJ11fVq7U1YfD4d1oe/xX/HNPqo7TokgBZIMiM1cTkbORc8EjqbOXVoOWYHTQRdq5VzIpyYPyOvnAs2W/FB9nY+lpRnq2w83OUXUcYQInQztQ4BlIz8Ql2NVWqY7TYkgBZGNcqnLpcfQ18r06ctErXnUcYSJaDTzeOovcKi3zDsmsMFuVW1vGq1kb6egSTLxLkOo4wlQ0WvZED8C5sojOyd+rTtNiSAFkSwwGeh+aCWg4FzxSdRphYsHOtdwdlsu/z7iyPUe6wmyNwWBgVuZ6NGgY6dlOdRxhYuUunhxs3YOYU5sIzD6qOk6LIAWQDYm6sILQ/B2kho5GJwuitUhDA4ro6FHOP/Z6UlIrXWG2ZEXRYbaXnWO0V3tctFIAt0RngtuT4xVKz8TPsK+pUB3H6kkBZCNcKzPpfux1cr27UOTRVnUc0Uy0GnisdRZFNRpmp8j4LluRWVPC69mb6eISSltnf9VxRHPRaNgb3R+HmnK67PtGdRqrJwWQLTDoue7gDPRaR9KCh6lOI5pZgFMd97XKYfk5FzZmyiDYlk5vMDAjYx2OGjuGecqXm5auwtmd5MhetEndQUhGiuo4Vk0KIBvQNu1rgi/u4WzoGHSyIJpNuN6vmK5eZUze50FhtXSFtWTfXExhT0U6Y7za46yVFcFtwbnAWLJ8wum++3Mcq8tUx7FaUgC1cB7l5+ly/B1yfHpQ4h6lOo4wE40GHo3IpkoHM5M9VMcRzSStupC3c7bSw7UVUU5+quMIc9Fo2BvdD7u6aromfak6jdWSAqgF0xh0XHdwGrX2rqQFDVEdR5iZr2MdD4bn8FO6M79ccFIdR5iYzqBnWsZa3LSODPGIUR1HmFmVoyv721xHRNoewtL2qo5jlaQAasHapf4b/6KDpIaORS8Lotmkfj4l9PYuZdp+d/KqpCusJfl3wX5SKrMY6x2Po3R92aR0/ygu+EXSfc+/caosVh3H6kgB1EJ5lp4h4eT7ZPv1ptStteo4QhGNBv4WkY1eb2Dafk8MBtWJhCmcqSrg/dwd9HaLIMLRW3UcoYpGw/42fTAY9HTf82/kBd44UgC1QBp9LX0OTqXa0Zv0wOtVxxGKeTno+FtENusznViZJl1h1q7OoGdqxhq87Zy53iNadRyhWLWjC/uj+hCWkUzEuV2q41gVKYBaoA5nF+NbcoyzoeMwyIJoAujtU0Z/32JmHvAgu1Je9tZscf4ejlflMc4rHgeNneo4wgJk+EVyPiCarnuX4VxRqDqO1ZB3whbGu+Q4HU8vJNO/H+WuYarjCAvyYHgODho9k/d6SEu5lTpemctHuYn0dW9NmKOX6jjCghxocx06jZYeu5dKV1gDSQHUgmh1NfRNmUKlUwAZAYNUxxEWxt1ez6Ots9iS48TXqbIelLWp0dcxNWMtAfbuDJIlLcTv1No7sTe6HyFZR2hzZpvqOFZBCqAWpOOZhXiWp3I2bBwGrTSNi8t19SrnBv8iZqe4k14uL39rsjBvF2erCxjnHY+dRp47cblsn3DOBrYlYf83uJblq45j8eRV1EL4FR2kw5nFZAQMoMI5WHUcYcHubZWLm52O5/d6opeWcqtwsCKLxflJDHSPIthBFrYUV5cS2YsaOwd67loCBr3qOBZNCqAWwE5XRZ+UqZS7hJDp3191HGHhXO30PNY6i915jvzrjIvqOOJPVOlrmZqxhhAHD/q5y5IW4o/V2TuSFNOfwNyTxJzcpDqORZMCqAVIOPk+bpUZnAkbB9I0Lhqgo2cFwwMKmXfQjbOl0l1qyf6Zu5OMmhLGeXVAK69v0QB5XqGcDm5Pp+TvcC/JVh3HYsmrycoFXNxHu3NfcCHweqqcAlTHEVbkr2G5+DjWMSnJA510hVmkfeUX+HfBPq73iCbAwU11HGFFDrbuQZWDCz0Tl4BeusKuxCIKoAULFhAZGYmzszO9e/dmz549Vz120aJFDBgwAB8fH3x8fBgyZMgfHt+S2ddV0OfgVEpdw8n26606jrAyznYGHmudRfJFBxaddFUdR/xOha6GaRlrCXf0prdbhOo4wsro7BzYEzMAv4KztDu+TnUci6S8APrmm2+YOHEis2bNYv/+/SQkJDB8+HByc3OvePzmzZu566672LRpE4mJiYSHhzNs2DAyMjLMnFy9LifexqU6n7Oh0vUlmibOvZIxQRd564gbJ4ulK8ySvJ2zjby6csZ5xaPVyD5uovEKPIM4GdqRDgdX4llke5+Rf0b5p+bbb7/NI488woMPPkh8fDwLFy7E1dWVJUuWXPH4ZcuW8cQTT9ClSxfi4uL49NNP0ev1bNy40czJ1QrO30nbtG9ID7yRaidf1XGEFbs9NJ8gxxqeS/KkVlrKLcLOsvN8U5jCjR4x+NpL65xousMR3Sh38qRX4mI0+jrVcSyK0gKopqaGffv2MWTIkPr7tFotQ4YMITExsUHnqKiooLa2Fl/fKxcB1dXVlJSUXHKzdg61pVx3cAbFblHk+PZQHUdYOUetgSciszhWZM+Hx+XDVrVSXTUzMtYR5ehLD9dWquMIK6fX2rMnpj9eRenEHVmjOo5FUVoA5efno9PpCAoKuuT+oKAgsrMbNnJ98uTJhIaGXlJE/a+5c+fi5eVVfwsPD7/m3Kp1O/Y6jrXFnA0da9zuW4hrFO1Wxc0hBbx/zI3Dhfaq49i0N7I3U6yrYqx3PBp5fQsTKPQI4HhYZ+IP/4T3xfOq41gM5V1g12LevHl8/fXXrFixAmfnKy/tP2XKFIqLi+tv6enpZk5pWmE5m4nO+JG04GHUyF5AwoT+EpxPhEs1E5M8qNapTmObtpSeZWXREYZ5xuJlJ9uVCNM52qoLJa4+9EpcjFZXqzqORVBaAPn7+2NnZ0dOTs4l9+fk5BAc/MerGc+fP5958+axfv16OnfufNXjnJyc8PT0vORmrRxriuh9eBaF7rHkeXdRHUe0MPZaeLx1FmdL7XnvqEy5NreiukpmZawn1smfLi6hquOIFsagtWNPzAA8SrKJP7RKdRyLoLQAcnR0pHv37pcMYP7PgOY+ffpc9XFvvPEGs2fPZu3atfToYTtjYHoceQ07XRWpoWOk60s0i9au1dwaks/CE67sL5CuMHN6Les3Kg21jPFqL11folkUu/lyJLwrcUfX4pt/RnUc5ZR3gU2cOJFFixbx+eefc+zYMR5//HHKy8t58MEHAbjvvvuYMmVK/fGvv/46M2bMYMmSJURGRpKdnU12djZlZWWqfgWzCM9aR2T2Ws4HD6dW9gISzWhccAFRblVMTPKkUiaNmMW64pOsLTnBcM92eNg5qY4jWrATYZ246O5Pr8TF2NVVq46jlPIC6I477mD+/PnMnDmTLl26kJyczNq1a+sHRqelpZGVlVV//EcffURNTQ233norISEh9bf58+er+hWanXN1Pr2OzOaiZ3sKvDqqjiNaODsNPBGZRWaFljcPu6uO0+Ll15UzO+tX2jsH0tE56M8fIMQ1MGi0JMUMwLW8gI4pK1THUcoi2rifeuopnnrqqSv+bPPmzZf8+dy5c80fyJIYDPQ8/Aoag47UkFHS9SXMIsy5hjtD8/jsdCDDwqq5LkAGTTYHg8HAK5m/ojPoGeUZJ11fwixKXb05FNGdLid+JaNVV/KD2qmOpITyFiDxxyIzfyY8dxPnQkZSZy8DU4X5jAwsJM69kueTPCivkw/m5vBz8TE2lZ5hpGccbnaOquMIG3IqJJ48z2B67lqCfW2V6jhKSAFkwVwqs+lx9DXyvTpR6NledRxhY7QaeCwyi/wqLXMOSvFtatm1pbyW9RudnINp7xKoOo6wNRotSTH9ca4spvOB5arTKCEFkKUyGLju8CwMGjvOhYxQnUbYqGCnWu5ulcuys65szZYWClMxGAzMyliPHRpGeNlm94NQr9zZk5TInkSf3kJQ5mHVccxOCiALFZ3+HSH5O0kNGY3OzkV1HGHDhvoX0dmznBf2eVBcI11hpvB94SF2lp9ntFd7XLQOquMIG3Y2KI4c71B67F6KQ02F6jhmJQWQBXKryKDb8TfJ9elKsUes6jjCxmk08PfWWZTUwCspMivsWmXUFPNG9ha6uoQS6+yvOo6wdRoNSdH9caipoMu+r1WnMSspgCyNQc91B6ej0zqRFjRMdRohAPB3rOP+Vrl8f96FDZnSFdZUeoOB6RnrcNLaMcyzreo4QgBQ6eROcmQvIlN3EnIhWXUcs5ECyMK0Pf8VQYV7SQ0di04WRBMWZJBfMd29ynhxnweF1dIV1hRfXTzA3ooLjPWKx0lrEauQCAHAucBYMn3C6bH7cxyrSlXHMQspgCyIR/k5upx4h2zfnpS4t1EdR4hLaDTwSOssanQw44CsRt5Y56oLeSdnGz1dW9HGyVd1HCEupdGwL7ofWl0N3ZKWqU5jFlIAWQiNQUefg9OotXcnPehG1XGEuCIfBx0Phmfz8wVnfk6XFsqG0hn0TMtYi7vWiRtlXJ+wUFWOruyP6kN4+l5and+jOk6zkwLIQsSlfo5f0SHOho1Fr5UxFsJy9fUppY9PCdMPeJBbJW8hDfF5wT4OVWYx1jseR62d6jhCXFW6XxvS/SLplvQFTpXFquM0K3n3sgBepafofPIDsvyuo8w1QnUcIf6QRgMPReSAQc/UfR4YDKoTWbZTVfl8kLuD69xaE+HorTqOEH9Mo2F/VB8MBgPd9/yLlvwClwJIMY2+lj4pU6l29OZC4PWq4wjRIJ72Oh6OyObXLCd+SHNWHcdi1Rp0TM1Yg4+dK9d7RKmOI0SD1Di4sC+qL2EZKbROTVQdp9lIAaRYhzOf4l16krNhN2GQWSHCivT0LmOgXzEvHXAnq0LeSq7k07w9nKzKZ5xXPPYa6foS1iPTrzXnAmLosu9LXCouqo7TLORdSyGf4qN0PPMxmQH9KHcJVR1HiEa7v1UOjlodL+yVrrDfO1qZw8d5u+jnHkmoo6fqOEI0WnKb3ug0dvTYtbRFdoVJAaSIVldD35QpVDoFkuk/UHUcIZrE3V7PoxHZbMt14stU6Qr7jxp9HVMy1hDo4M5AWdJCWKlaeyeSovsRnH2UqNNbVccxOSmAFOl0+kM8Ks5zJmwcBpkVIqxYF69ybvQv5NUUd9LK5C0F4MO8RM5XFzLOqwN2Gvk7EdYrx6cVZ4PakrD/G9zK8lTHMSl5ZSrgV5hC/NnPyAgYSKVzkOo4Qlyze1vl4WGv4/m9nuhbXkt5o6RUZPJZ/l4GeUQR5CB7pwnrlxLZm2oHJ3okfgYGveo4JiMFkJnZ6Srpc3AqZS6hZPr3Ux1HCJNwsdPzWOss9uQ7svS0i+o4ylTq65iasZZQB0/6urVWHUcIk6izcyApuj+BeSeJOfGb6jgmIwWQmSWceB+3yizOho0DaRoXLUgHjwpGBl7k9UPunCm1zW7dRXm7yaotYZx3PFp5fYsWJM8rhFMh8XRO/g73kmzVcUxCXqFmFFiQRNz5L7gQeD1VTv6q4whhcneF5eHrWMukJA/qWk5LeYN9V3iI692j8bd3Ux1FCJM7FNGDCic3eiUuRqPXqY5zzaQAMhP7unKuOziNEtfWZPv1Vh1HiGbhpDXwROtMDl504JOTrqrjmF0rRy96u8lq7qJl0tnZkxTdH9+Cc7Q9tk51nGsmBZCZdD3+Fi41BZwNG2vcS0CIFqqtexVjgy7yzlE3jhfbVlfYCM+2aOT1LVqwAs8gToR2pMOhH/EsuqA6zjWRAsgMQvJ2EJu+nLSgIVQ7+qqOI0Szuy00n2CnGibu8aTWhrrCvO1sdwC4sB1HIrpS5uxJr52L0ejrVMdpMimAmplDbQm9D82gyC2aXJ/uquMIYRYO/98VdqLEng+OyXgYIVoSvdaePTED8Cq+QPvDq1XHaTIpgJpZ96PzcKwtJTVsjHR9CZsS5VbNzcEFfHDclUOFss+dEC1Jkbs/x8ISaH9kNd4Xz6mO0yRSADWjsJzfiMr8ifPBw6hx8FIdRwizuzkknwiXaibu8aDK+ieNXGJbaarqCEIodaxVF4pdfem1czFaXa3qOI0mBVAzcaoppPfhlyj0aEu+d4LqOEIoYa+BJyIzOVdmzztHWk5XWGFdJW9kb1EdQwilDFote2L6416aS4eDP6qO02hSADWTHkdexU5XTWrIaOn6EjYtwqWG20LzWHTSlX35LaMr7NWsjdQYrHfwpxCmUuLmy5HwLrQ7tg6/vNOq4zSKFEDNICJrLa2z13MuZAS1Dh6q4wih3Nigi8S4VTEpyZNKK68b1hafYH3JSW7wiFEdRQiLcDKsExc9AuiZuAS7umrVcRpMCiATc67Op+fh2RR4xnPRs4PqOEJYBK0GHo/MJKtSy+uHrXeD0PzacmZn/kq8cxBxTgGq4whhEQwaLXtiBuBaUUCn5B9Ux2kwKYBMyWCg16GX0KDnXMgo6foS4n+EOtdyZ2geS0+7sjPXQXWcRjMYDLycuQE9BkZ5tZMFD4X4H2UuXhyM6EHsyY0E5BxXHadBpAAyoTYZq2iVt4VzIaOos7e9bQCE+DMjAguJ96jg+SRPymqtq4BYVXyUzWVnGeUVh6vWUXUcISzO6ZB4cj1D6Jm4BPvaKtVx/pQUQCbiWplNj6NzyfPuTKFnnOo4QlgkrQYeb51FYbWG1w5aT1dYdm0pc7M20dklmDjnQNVxhLBMGg1JMf1xqi4lYf+3qtP8KSmATMFgoPehGei19pwPHq46jRAWLdCplnta5fBVqgubsy2/JcVgMDAzYx32Gi3DPdupjiOERatw9iCldU+izmwlKPOw6jh/SAogE4hJX05IwS5SQ0ajk72AhPhTN/oX08WznBf2elBcY9ldYcsLD5FYnsZozzhctNY3dkkIczsb1I5s7zB67voMh5py1XGuSgqga+RWkU6342+S49ONYpkWK0SDaDTwaOssymvhpWTL7QpLrynizezNdHMNI8bZX3UcIayDRsPe6P7Y1VXSZe/XqtNclRRA18Kgp8/B6dTZuZAWNFR1GiGsip9jHfeH57AizYV1GZbXFaY3GJiesQ4XrQNDPWJVxxHCqlQ6uZEc2ZvIc4mEph9QHeeKpAC6Bu3OLSOwcD9nQ8eit3NSHUcIqzPQt4Se3qVM3edBQbVldYUtu3iA/RUZjPVqj5O2ZaxgLYQ5nQ+IIcM3gu57PsexqlR1nMtIAdREHmWpdDn5Ltm+vSh1i1QdRwirpNHAwxHZ1Oph+n4PDAbViYxSqy/ybs42ermGE+nkqzqOENZJo2FfVF80ujq6JX2BxbzA/58UQE2g0dfR5+BUauw9SA+6UXUcIayat4OOhyKyWZPhzE8X1Lek1hn0TL2wFg+tEzd6yrg+Ia5FtaMr+6OuIzx9H+Hnk1THuYQUQE3QPnUpfsVHOBs2Dr3MChHimvXxKaWvTwnT93uQW6n2bWlp/l6OVGUzzjseB42d0ixCtAQX/KNI829Dt6QvcK4sUh2nnhRAjeRVepLOpxaQ5d+HMtdw1XGEaDEeishGi54X96nrCjtZlceC3J30cWtNuKO3mhBCtEAH2vRBD3Tf/S+L6QqTAqgRtPpa+qZMocrRlwsBg1XHEaJF8bDX82hENr9lO/HdeWezX79Wr2PqhbX42rsy2CPa7NcXoiWrcXBmb3RfQjMPEnl2h+o4gBRAjdLhzCd4lZ3mTNg4DDIrRAiT6+5dxmC/Il5OdiezwrxvT5/k7+ZUdT7jvOOx18hboxCmluUbwbnAWLrs+xqX8gLVcaQAaijf4iN0OP0Jmf79qXAJVR1HiBbr/vBcnLQ6/rHXfF1hRypz+CRvN/3dIwl18DTPRYWwQcmRvai1s6PnrqXKu8KkAGoAra6aPilTqHAOIjNggOo4QrRornZ6/t46ix25Tnxxtvm3lqnW1zHlwhqCHDwY4N6m2a8nhC2rtXdib3R/gnKOEXV6s9IsUgA1QOdTC/CoSOds2E0YZFaIEM0uwbOCof6FzDnoxvmy5n3NLcjdSXpNETd5xWMnXV9CNLsc7zDOBMWRsH85bqW5ynLIq/1P+Bcm0z51KRcCBlHpHKg6jhA2455WuXja1/H8Xg/0zdRSnlyRydKCvQzyiCLQwXL3JBOipUmJ7EmVgzM9dy0BvV5JBimA/oBdXQV9UqZQ5tKKLP8+quMIYVOc7Qw81jqLvfkOLDll+q6wCn0tUy6soZWDF33cWpv8/EKIq9PZOZAU3Q//vNPEnvhVSQYpgP5Al5Pv4VqVw9mwcSBN40KYXbxHJaMCC3njsDunS0zbFfZezjZy6soY5x2PVmNZ+5AJYQvyvUI4FdKBTik/4FGcafbry6f6VQQW7KHd+S9JD7qBKic/1XGEsFl3huUR4FjLpCRP6kzUUr6nPI0vLyZzg0c0fvZupjmpEKLRDkV0p9zJnV6JS9DodWa9thRAV2BfW0afg9MocYskx7eX6jhC2DRHrYHHIzM5VGjPxydcr/l8Zbpqpl1YR6SjD71kNXchlNLb2ZMU0x+fi+dpd2ytWa8tBdAVdDsxH6eaQs6GjjVuVy2EUCrWrYpxwQW8c9SNY0XX1hU2P2crhboKxnrFo5HXtxDKXfQI5HhYJzocXIVXYbrZrisF0O+E5G0jJv170oKGUO3oozqOEOL/3RpSQJhzDc8leVLTxK6wbaWpfF94iCGesfjYN/8aQ0KIhjka3pUSFy96JS5Go6szyzWlAPofDrXFXHdoJkXuMeT5dFMdRwjxPxy0Bp6IzORUiT0fHGv8uJ1iXRUzM9cT4+RHN5ewZkgohGgqvdaOpJgBeBZnEn/4Z7NcUwqg/9Hj6Dwc6spIDR0jXV9CWKBI12puCclnwXFXUi42bj++eVm/UaarZoxXe+n6EsICFbn7cbRVAnFHf8GnILXZrycF0P9rlb2RNpk/cz54ODWyF5AQFuum4AIiXaqZmORJVQMnjWwsOcXPxccZ7tkWTzvz7zQvhGiY42EJFLn50itxMVpdbbNeSwogwKn6Ir0Ov8RFj3bke3VWHUcI8QfsNfB4ZCZpZVrePvLnXWEX6yp4KXMD7ZwD6OwSYoaEQoimMmi1JMUMwK00j44HVzbrtaQAMhjoeWQ2dvpaUkNHS9eXEFYg3KWG20PzWXTSlb35Dlc9zmAwMDvzV2oNOkZ7xknXlxBWoMTVh8MR3Wh7bD1+uaea7To2XwC1zlpDRM6vnAsZSZ297AUkhLUYE3SRtu5VTEzyoOIqk0bWlJzg19LTjPSMw93OybwBhRBNdjK0AwUegfRKXIxdXXWzXMOmCyDnqjx6HnmVAq8OXPSKVx1HCNEIWg083jqTnEotrx+6/MtLXm0Zr2ZupINzEPEuQQoSCiGaTKMlKaY/zpVFdD7wXbNcwnYLIIOB3odnAXAueKTiMEKIpghxruWvYbl8fsaVHTn/7QozGAzMytwAwEivdqriCSGuQZmLF4da9yDm1CYCs4+Z/PwWUQAtWLCAyMhInJ2d6d27N3v27PnD45cvX05cXBzOzs506tSJX375pdHXbJO5mrC8baSGjqLO/tqX1xdCqDEsoIiOHuX8Y68HpbXGMT4ri46wrSyVUV5xuGodFScUQjTV6eD25HqF0GPXEuxrK016buUF0DfffMPEiROZNWsW+/fvJyEhgeHDh5Obm3vF43fu3Mldd93F3/72Nw4cOMD48eMZP348hw8fbtR1uxx/mzzvLhR5yLdDIayZVgN/b51NYY2W2SnuZNWUMC97E11cQmjnHKA6nhDiWmg0JEX3x7G6jIR935j01MoLoLfffptHHnmEBx98kPj4eBYuXIirqytLliy54vHvvfceI0aM4B//+Aft27dn9uzZdOvWjQ8++KBR19VrHTgfPMwUv4IQQrFAp1rubZXDt+eceCp1Aw4aO4Z5ypcbIVqCCmcPUiJ7EXV2u0nP27ilVE2spqaGffv2MWXKlPr7tFotQ4YMITEx8YqPSUxMZOLEiZfcN3z4cFauXHnF46urq6mu/u8I8uLiYgAG+3pgV/T1Nf4GQgiLoQHX1nCsVEf1hXuYVRnTrJfTVRQDn1xy3yubemDn6tWs1xXCNl3HP+2LGFBSgoeHh0mWtFBaAOXn56PT6QgKunSGRlBQEMePH7/iY7Kzs694fHZ29hWPnzt3Li+//PJl9x+deOXzCyFagmlKrpq28FEl1xXCFowBeMOL3NxcAgKuvXtbaQFkDlOmTLmkxaioqIjWrVuTlpaGl5d8U1OppKSE8PBw0tPT8fSU7UdUk+fDcshzYTnkubAc/3kuHB1NM7FBaQHk7++PnZ0dOTk5l9yfk5NDcHDwFR8THBzcqOOdnJxwcrp8ATQvLy/5x2whPD095bmwIPJ8WA55LiyHPBeWw1QruisdBO3o6Ej37t3ZuHFj/X16vZ6NGzfSp0+fKz6mT58+lxwPsGHDhqseL4QQQgjxe8q7wCZOnMj9999Pjx496NWrF++++y7l5eU8+OCDANx3332EhYUxd+5cACZMmMCgQYN46623GD16NF9//TV79+7lk08++aPLCCGEEELUU14A3XHHHeTl5TFz5kyys7Pp0qULa9eurR/onJaWhlb734aqvn378uWXXzJ9+nSmTp1KbGwsK1eupGPHjg26npOTE7Nmzbpit5gwL3kuLIs8H5ZDngvLIc+F5TD1c6ExGAwGk5xJCCGEEMJKKF8IUQghhBDC3KQAEkIIIYTNkQJICCGEEDZHCiAhhBBC2JwWWwDNnTuXnj174uHhQWBgIOPHj+fEiROXHFNVVcWTTz6Jn58f7u7u3HLLLZctsiiu3UcffUTnzp3rFxLr06cPa9asqf+5PA/qzJs3D41Gw7PPPlt/nzwf5vHSSy+h0WguucXFxdX/XJ4H88rIyOCee+7Bz88PFxcXOnXqxN69e+t/bjAYmDlzJiEhIbi4uDBkyBBOnTqlMHHLFRkZedlrQ6PR8OSTTwKme2202AJoy5YtPPnkk+zatYsNGzZQW1vLsGHDKC8vrz/mueee46effmL58uVs2bKFzMxM/vKXvyhM3TK1atWKefPmsW/fPvbu3csNN9zATTfdxJEjRwB5HlRJSkri448/pnPnzpfcL8+H+XTo0IGsrKz62/bt/93tWp4H8yksLKRfv344ODiwZs0ajh49yltvvYWPj0/9MW+88Qbvv/8+CxcuZPfu3bi5uTF8+HCqqqoUJm+ZkpKSLnldbNiwAYDbbrsNMOFrw2AjcnNzDYBhy5YtBoPBYCgqKjI4ODgYli9fXn/MsWPHDIAhMTFRVUyb4ePjY/j000/leVCktLTUEBsba9iwYYNh0KBBhgkTJhgMBnldmNOsWbMMCQkJV/yZPA/mNXnyZEP//v2v+nO9Xm8IDg42vPnmm/X3FRUVGZycnAxfffWVOSLatAkTJhiio6MNer3epK+NFtsC9HvFxcUA+Pr6ArBv3z5qa2sZMmRI/TFxcXFERESQmJioJKMt0Ol0fP3115SXl9OnTx95HhR58sknGT169CV/7yCvC3M7deoUoaGhREVFcffdd5OWlgbI82Buq1atokePHtx2220EBgbStWtXFi1aVP/z1NRUsrOzL3k+vLy86N27tzwfzaympoYvvviChx56CI1GY9LXhk0UQHq9nmeffZZ+/frVrxidnZ2No6Mj3t7elxwbFBREdna2gpQt26FDh3B3d8fJyYnHHnuMFStWEB8fL8+DAl9//TX79++v317mf8nzYT69e/dm6dKlrF27lo8++ojU1FQGDBhAaWmpPA9mdvbsWT766CNiY2NZt24djz/+OM888wyff/45QP3f+X92KPgPeT6a38qVKykqKuKBBx4ATPsepXwrDHN48sknOXz48CX968K82rVrR3JyMsXFxXz33Xfcf//9bNmyRXUsm5Oens6ECRPYsGEDzs7OquPYtJEjR9b/f+fOnenduzetW7fm22+/xcXFRWEy26PX6+nxf+3dX0hT/R8H8Pd5nDNEcdbWtjJ1IJaSls4LVzcrQ5CQ/kCNCEmjIEtpUJE33UR/7CJoXUURVhR0ExEWZaRuiJR/irJBzBxaBFMRjTAlY36eq+fw2+Pz3Pxa256d9wsOHL/fc+b3uw/f8ebsHK2owIULFwAAZWVl8Pv9uHbtGg4cOBDn0WnbzZs3UVNTg1WrVkX9tZP+ClBTUxMeP36M7u5u5OTkqO0WiwULCwv4+vVrxPETExOwWCwxHmXy0+v1KCgogN1ux8WLF7FhwwZ4PB7WIcZev36NyclJlJeXQ6fTQafTwefz4erVq9DpdDCbzaxHnBgMBhQWFmJkZITrIsasViuKi4sj2oqKitSvJP96z//+pBHr8Xt9+vQJL168wKFDh9S2aK6NpA1AIoKmpiY8fPgQXV1dsNlsEf12ux2pqano7OxU2wKBAD5//gyHwxHr4WrO4uIifvz4wTrEWFVVFd6/f4+3b9+qW0VFBfbv36/usx7xMTs7i2AwCKvVynURY5s3b17yZ1KGh4eRl5cHALDZbLBYLBH1+PbtG/r6+liP36itrQ0rV67E9u3b1baoro0o36ydMBobGyUrK0u8Xq+EQiF1m5ubU485cuSI5ObmSldXlwwODorD4RCHwxHHUSenlpYW8fl8Mjo6KkNDQ9LS0iKKosjz589FhHWIt/99CkyE9YiVEydOiNfrldHRUent7ZVt27aJ0WiUyclJEWEdYqm/v190Op2cP39ePn78KPfu3ZP09HS5e/euekxra6sYDAZ59OiRDA0NyY4dO8Rms8n8/HwcR568wuGw5ObmyunTp5f0RWttJG0AAvCPW1tbm3rM/Py8HD16VLKzsyU9PV127doloVAofoNOUgcPHpS8vDzR6/ViMpmkqqpKDT8irEO8/T0AsR6x4XK5xGq1il6vl9WrV4vL5ZKRkRG1n3WIrfb2dlm/fr2kpaXJunXr5Pr16xH9i4uLcubMGTGbzZKWliZVVVUSCATiNNrk19HRIQD+8T2O1tpQRER++ToVERER0X9I0t4DRERERPRvGICIiIhIcxiAiIiISHMYgIiIiEhzGICIiIhIcxiAiIiISHMYgIiIiEhzGICIiIhIcxiAiIiISHMYgIgoYTidTrjd7ngPg4g0gAGIiIiINIcBiIgSQn19PXw+HzweDxRFgaIoGBsbg9/vR01NDTIyMmA2m1FXV4epqSn1PKfTiebmZrjdbmRnZ8NsNuPGjRv4/v07GhoakJmZiYKCAjx9+lQ9x+v1QlEUPHnyBKWlpVi2bBkqKyvh9/vjMXUiigMGICJKCB6PBw6HA4cPH0YoFEIoFEJmZia2bt2KsrIyDA4O4tmzZ5iYmMDevXsjzr19+zaMRiP6+/vR3NyMxsZG7NmzB5s2bcKbN29QXV2Nuro6zM3NRZx36tQpXL58GQMDAzCZTKitrcXPnz9jOW0iihP+N3giShhOpxMbN27ElStXAADnzp1DT08POjo61GO+fPmCNWvWIBAIoLCwEE6nE+FwGD09PQCAcDiMrKws7N69G3fu3AEAjI+Pw2q14uXLl6isrITX68WWLVtw//59uFwuAMD09DRycnJw69atJQGLiJKPLt4DICL6N+/evUN3dzcyMjKW9AWDQRQWFgIASktL1faUlBSsWLECJSUlapvZbAYATE5ORryGw+FQ95cvX461a9fiw4cPUZ0DESUmBiAiSlizs7Oora3FpUuXlvRZrVZ1PzU1NaJPUZSINkVRAACLi4u/aaRE9F/DAERECUOv1yMcDqs/l5eX48GDB8jPz4dOF/2Pq1evXiE3NxcAMDMzg+HhYRQVFUX99xBR4uFN0ESUMPLz89HX14exsTFMTU3h2LFjmJ6exr59+zAwMIBgMIiOjg40NDREBKX/19mzZ9HZ2Qm/34/6+noYjUbs3Lnz1ydCRAmPAYiIEsbJkyeRkpKC4uJimEwmLCwsoLe3F+FwGNXV1SgpKYHb7YbBYMAff/z6x1drayuOHz8Ou92O8fFxtLe3Q6/XR2EmRJTo+BQYEWnOX0+BzczMwGAwxHs4RBQHvAJEREREmsMARERERJrDr8CIiIhIc3gFiIiIiDSHAYiIiIg0hwGIiIiINIcBiIiIiDSHAYiIiIg0hwGIiIiINIcBiIiIiDSHAYiIiIg0509MjRggjTYMKgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGyCAYAAAAMKHu5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1DUlEQVR4nOzdd3xc1Z3//9edrjbq1VaxLblIslwx2MYV25KNCWU3yUISCEnIb1M2JGwCYSGQbAIku2n73ZAltJACCbvEGLClGbnJHVfcZFu2bDVbvc5oJE29vz+EFFxkq8zMnRmd5+OhR+LRzL0f6TLSR+d9zzmSLMsygiAIgiAI44hK6QIEQRAEQRD8TTRAgiAIgiCMO6IBEgRBEARh3BENkCAIgiAI445ogARBEARBGHdEAyQIgiAIwrgjGiBBEARBEMYd0QAJgiAIgjDuiAZIEARBEIRxZ9w1QLIsY7FYEAtgC4IgCML4pWgDtGvXLu666y7S0tKQJImNGzfe9DVlZWXMnTsXvV5PdnY2b7zxxojOabVaiY6Oxmq1jq5oQRAEQRCCnqINkM1mY9asWbz44ovDen5VVRV33nknK1as4NixY3z729/mK1/5Cmaz2ceVCoIgCIIQSqRA2QxVkiTeffdd7rnnniGf88QTT7B582ZOnTo1+Ng//dM/0dnZiclkGtZ5LBYL0dHRdHV1YTQax1q2IAiCIAh+4HF7UKm9N24TVPcA7d+/n1WrVl3xWGFhIfv37x/yNXa7HYvFcsUHgNsTEH2fIAhetOfyHr5k/hJuj1vpUgRB8LLzh5q8erygaoAaGxtJTk6+4rHk5GQsFgu9vb3Xfc0LL7xAdHT04Ed6ejoAR6o7fF6vIAj+9Zezf+FQ4yGONB1RuhRBELys8kizV48XVA3QaDz55JN0dXUNftTV1QFgKm9QuDJBELypy97Fvvp9AJirxX2BghBK+mxOak+3e/WYGq8ezcdSUlJoarpyCKypqQmj0UhYWNh1X6PX69Hr9dc8vvV0Ey63B40X80RBEJSzvXY7bo+b9ZPXs7V2K0/e+iQaVVD9iBP8wOPx4HaLiDRQaTQaJEm65vGq4y14vHzrSlD9dFi4cCHFxcVXPLZlyxYWLlw44mO19zjZf7GNJTmJ3ipPEAQFmavNzEuex+dzP8+mi5s42HiQRWmLlC5LCBCyLNPV1UVPT4/SpQg3IEkSiYmJaDRXtieVh5tJy47x6rkUbYC6u7uprKwc/HdVVRXHjh0jLi6OjIwMnnzySS5fvswf//hHAP75n/+Z3/zmNzz++ON86UtfYvv27fzv//4vmzdvHvG50+PC2HyiQTRAghACOvo6+LDhQ55c8CS5cbmkR6VjrjaLBkgYNND8GI1GdDrddUcZBGXJskxHRwednZ3Ex8cPXqO+bid1ZztY+tkcr55P0Qbo8OHDrFixYvDfjz32GAAPPfQQb7zxBg0NDdTW1g5+ftKkSWzevJnvfOc7/Nd//RcTJ07k1VdfpbCwcMTnLspL4W+nGvnxPfloRQwmCEFtW+02ZGTuyLwDSZIozCrkfyv+l6dvexqtSqt0eYLCPB7PYPMTGRmpdDnCDRiNRjo6OvB4PKjVagAufNQMsszkOUlePZeiDdDy5ctvuCXF9VZ5Xr58OR999NGYz12Yl8JrB5vYU9nKimne/aYKguBfpmoTt6TcQkJYAgBFWUW8evJVPqz/kCUTlyhcnaC0gXt+dDqdwpUINzPQ9HyyAao80syEabGEG717/cbt0Me0lCgmJ0aw6biYDSYIway1t5VDjYcoyioafGxq7FSyjFmYqoe3QKowPojYK/BdfY16LA4uV3SQPc/7AxXjtgGSJIn1BWmUnm7E7hIzAgQhWG2t2YqExKqMvy+SKkkSRZOK2FG7A4fboWB1giCMxcWPmkGSmOLl+AvGcQMEsL4gFWufi93nWpUuRRCEUTJXm7kt9TZiDDFXPF6YWYjVaR1cG0gQgtHy5cv59re/rXQZijl/uJn06bEYIr1/L9+4boCmJkcxNTmSTSfqlS5FEIRRaO5p5kjTEQqzrp0IkR2bTXZMtojBBCFI2Trt1Fd2kj3fN/fpjusGCGB9QRpbTjfR5xQxmCAEmy01W1Cr1KzMWHndzxdmFbKjdgd9rj4/VyYIocfh8G+cXHm0GZVKYtIs3yxXIxqgglRsDjdlFS1KlyIIwgiZqkwsTltMtD76up8vzCqkx9XDnst7/FyZIHhfR0cHDz74ILGxsYSHh7N27VrOnz8P9K+hk5iYyDvvvDP4/NmzZ5Oamjr47z179qDX6wcXg+zs7OQrX/kKiYmJGI1GVq5cyfHjxwef/8Mf/pDZs2fz6quvMmnSJAwGg5++0n4XjjSTkRuHIcI3S1mM+wZocmIkualGEYMJQpBptDVyrOXYdeOvAZOiJzEtdprYG0wICV/84hc5fPgw77//Pvv370eWZdatW4fT6USSJJYuXUpZWRnQ3yydOXOG3t5ezp49C8DOnTu55ZZbCA8PB+DTn/40zc3NlJSUcOTIEebOncsdd9xBe/vf99yqrKzkb3/7Gxs2bODYsWN++1q7O/pouNDlk9lfA4JqKwxfubMgld9sr6TH4SJcJ74lghAMzNVmdCodK9JX3PB5RZOKePnEy/Q4ewjXhvupOiEY9DrcXGjp9vt5pyRGEqZTj+g158+f5/3332fv3r0sWtS/wvmbb75Jeno6Gzdu5NOf/jTLly/nd7/7HQC7du1izpw5pKSkUFZWxvTp0ykrK2PZsmVA/2jQwYMHaW5uHtwv8+c//zkbN27knXfe4atf/SrQH3v98Y9/JDHRv7smVJ9sRa1R+Sz+AtEAAXBXQRr/aa5g+9lm1hekKV2OIAjDYK42c/uE24nU3Xhl38KsQv7r6H+x6/KuK9YKEoQLLd2s/2//x6Ob/uV28idcP7YdypkzZ9BoNNx6662Dj8XHxzNt2jTOnDkDwLJly3j00UdpaWlh586dLF++fLAB+vKXv8y+fft4/PHHATh+/Djd3d3Ex8dfcZ7e3l4uXLgw+O/MzEy/Nz8AVcfbyMiLQxfmuzZFNEBARnw4BROj2XyiQTRAghAELlkvcbL1JP+x9D9u+tz0qHTy4vMwV5lFAyRcYUpiJJv+5XZFzusLM2fOJC4ujp07d7Jz506ee+45UlJS+NnPfsahQ4dwOp2Do0fd3d2kpqYORmafFBMTM/j/IyIifFLrjTj6XLTWWVnxQK5PzyMaoI+tL0jlF6Xn6La7iNSLb4sgBLLSmlIMagPLJi4b1vMLswp58diL2Jw2IrT+/4EuBKYwnXrEIzFKmTFjBi6XiwMHDgw2MW1tbVRUVJCb298oSJLEkiVLeO+99ygvL+f2228nPDwcu93O7373O+bPnz/Y0MydO5fGxkY0Gg1ZWVlKfVnXZW3rQ6NVkTkz/uZPHoNxfxP0gHUzU7G7PGw706R0KYIg3ISpysSSiUuGfU9PYVYhdredsroyn9YlCL6Sk5PD3XffzSOPPMKePXs4fvw4n//855kwYQJ333334POWL1/OX/7yF2bPnk1kZCQqlYqlS5fy5ptvDt7/A7Bq1SoWLlzIPffcQ2lpKdXV1ezbt4+nnnqKw4cPK/ElDrK29TFxeiw6g28HI0QD9LGJseHMyYjhA7E3mCAEtFpLLWfaz4wozkqLTKMgsUAsiigEtd///vfMmzeP9evXs3DhQmRZpri4GK3279PEly1bhtvtZvny5YOPLV++/JrHJEmiuLiYpUuX8vDDDzN16lT+6Z/+iZqaGpKTk/34VV2pr8dJn81Jlg9vfh4gyTfajj0EWSwWoqOj6erqwmg0XvG51/ZU8bOSsxz+wSqMBt+sOyAIwti8fOJlXj35Kjs/u5MwTdiwX/en03/iV0d+RdlnyzDqjDd/gRAynE4nLS0tJCYmXtEsCIGnrqKVyjO13Lo6l/AI3647JEaAPuHOmak43B62lIsYTBAClbnazPKJy0fU/ACszlyN0+MUMZggBLDOph6iYvVoR7hMwGiIBugTUqIN3JIVKxZFFIQAdbHrIuc6zlE4aejFD4eSEpHC3KS5mKpEDCYIgai320Fvt5Oo+JH9cTNaogG6yvqCNHafb6Wzx797ngiCcHPmKjOR2khunzC6qcuFWYXsr99Pl73Ly5UJgjBW7fU21BqJiBidX84nGqCrrJ2ZgkeWKRUxmCAEFFmWMVWbWJG+Ar1aP6pjrMlag1t2s612m5erEwRhLGRZpr3eRnRCOCqVf1oT0QBdJSnKwK2T4vlAxGCCEFAqOyu52HXxhnt/3UxCWALzU+aLvcEEIcD0Wp30djuJSfFP/AWiAbquOwtS2XehjbZuu9KlCILwMVO1iShdFIvSFo3pOEVZRRxoOEB7X/vNnywIgl+0N9jQaFV+u/8HRAN0XWvzUwAwlTcqXIkgCNA/PG6uNnNHxh1o1WObxrwqcxUAW2u2eqM0QRDGqD/+6iYmJRyVSvLbeUUDdB3xkXoWTYln8wmxKKIgBIKz7WepsdR4ZS+vOEMcC1IWiBhMEAJEj8VBn81FfKp/t6kRDdAQ7pyZyocX22ixihhMEJRmrjYTo49hQeoCrxyvMKuQw02Hae1t9crxBEEYvfb6j+OvBP/FXyAaoCEV5aegkiRKTolRIEFQ0sDsrzsy7kCr8s4qvqsyV6FCxZaaLV45niD4yvLly/n2t7+tdBk+I8sy7Q02YlMj/Bp/gWiAhhQTruP2nAQ2ib3BBEFR5W3lXO6+TNGkscdfA6L10dyWdptYFFEQFGbrcmDvcRGX5t/4C0QDdEPrC9I4VNNOY1ef0qUIwrhlqjIRZ4hjfvJ8rx63KKuIj5o/oskm1vwSBKW013ej1akwxvl236/rEQ3QDazOTUarUlF8UowCCYISZFnGXGNmdeZqNCqNV4+9ImMFGpVGxGBC0Ojo6ODBBx8kNjaW8PBw1q5dy/nz54H+90piYiLvvPPO4PNnz55Namrq4L/37NmDXq+np6fH77Vfz8Dih7GpEUh+jr9ANEA3FB2mZenUBLE3mCAo5HjLcRptjWNa/HAoRp2RxWmLMVWLGEwIDl/84hc5fPgw77//Pvv370eWZdatW4fT6USSJJYuXUpZWRnQ3yydOXOG3t5ezp49C8DOnTu55ZZbCA8PV/Cr+Dtbpx1Hn1uR+AvAu39ShaD1BWl8++1jXO7sZUKMf+9QF4TxyOPx0NbWBsDfPvob0c5oZifM9sm5CicV8uTuJ2nobiA1MvXmLxBCi6MHWs/5/7wJU0E3sibk/PnzvP/+++zdu5dFi/oXA33zzTdJT09n48aNfPrTn2b58uX87ne/A2DXrl3MmTOHlJQUysrKmD59OmVlZSxbtszrX85otdXb0OrVRCkQf4FogG5qVW4yOo2K4hMNPLJ0stLlCELIa2trIykp6YrHOu/uJDEx0evnWpG+Ap1Kh7nazBfzv+j14wsBrvUcvKxAQ/DVnZA2e0QvOXPmDBqNhltvvXXwsfj4eKZNm8aZM2cAWLZsGY8++igtLS3s3LmT5cuXDzZAX/7yl9m3bx+PP/64N7+SUZNlmY56G3GpEUiS/+MvEA3QTUXqNayYlsimE/WiARKEEBOhjWDJxCWiARqvEqb2NyNKnNcHZs6cSVxcHDt37mTnzp0899xzpKSk8LOf/YxDhw7hdDoHR4+U1t1ux2FXLv4C0QANy/qCNP7lLx9R29ZDRnxgZKeCIHhHUVYR39v1PeqsdaRHpStdjuBPuvARj8QoZcaMGbhcLg4cODDYxLS1tVFRUUFubi4AkiSxZMkS3nvvPcrLy7n99tsJDw/Hbrfzu9/9jvnz5xMRoVzD8Unt9d3oDGoiY/WK1SBugh6GO2YkEaZVs+mkuBlaEELN0olLCdOEia0xhICWk5PD3XffzSOPPMKePXs4fvw4n//855kwYQJ333334POWL1/OX/7yF2bPnk1kZCQqlYqlS5fy5ptvBsz9P7Is097YQ1yacvEXiAZoWMJ1GlbOSBJ7gwlCCArXhrN04lLRAAkB7/e//z3z5s1j/fr1LFy4EFmWKS4uRqv9+wrpy5Ytw+12s3z58sHHli9ffs1jSrK29eG0u4lLjVS0DkmWZVnRCvzMYrEQHR1NV1cXRqNx2K8rOdnA1948yo7vLmdSQmAMIQpCKGppabnmJujm5maf3AQ9YEvNFh4re4wP7vmArOgsn51HUIbT6aSlpYXExMQrmgVBGdUnWulq6aVg5cRrRoD8ea3ECNAwrZieRIROzabjIgYTBF9yeVx+P+eSCUsI14SLUSBB8DHZI9PeaFM8/gLRAA2bQatmVW4ym0QMJgg+dbTpqN/PadAYWJ6+XCyKKAg+ZmnrxeXwKDr7a4BogEZgfUEaFU1WzjdZlS5FEELW9trtipy3KKuIys5KLnReUOT8gjAetNfbMIRrCDfqlC5FNEAjsXRqAlF6jRgFEgQfcbqd7L68W5FzL56wmEhtpIjBBMFHPB6ZjgCY/TVANEAjoNeoWZ2XzKYT9Yyze8cFwS/2N+zH6lBmhFWn1rEyYyWmapN4fwuCD1haenE5PcSlKTv7a4BogEboroI0LrTYONsoYjBB8DZztZkMY4Zi5y/MKqSqq4pzHQrsDyUIIa69wUZYpJawqMCYiScaoBFanJ1AdJhWrAkkCF5md9vZXrudlekrFathYepCjDqjiMEEwcs8bg8djcru/XU10QCNkE6jolDEYILgdfsu76Pb2c2KjBWK1aBVa7kj4w7M1Wbx/hYEL+pq6cXtkgNi9tcA0QCNwvqCNKrbeiivtyhdiiCEDFO1ieyYbCZFT1K0jqKsImqttZxpP6NoHYIQStrrbYRFaQmLUn721wDRAI3CoinxxEXo+OCEWBRRELyhz9VHWV0ZRVlFSpfCgtQFxOpjxZpAguAlHreHzqYe4gNo9AdEAzQqGrWKovwUNp9oEMPkguAFuy/vpsfVQ2FWodKloFFpWJW5itLqUvH+FgQv6Gzuxe2WFd/762qiARql9TNTudTRy/FLXUqXIghBz1xtZnrc9IDZh6swq5DL3Zc51XpK6VIEwe/cbjcej8drx2uvtxFu1GGIDIzZXwNEAzRKt06OJyFSL/YGE4Qx6nH2sOvSroAY/RkwP3k+8YZ4EYMJAcFkMnH77bcTExNDfHw869ev58KF/hXLFy1axBNPPHHF81taWtBqtezatQsAu93Od7/7XSZMmEBERAS33norZWVlg89/4403iImJ4f333yc3Nxe9Xk9tbS2HDh1i9erVJCQkEB0dzbJlyzh69Mqtas6ePcvtt9+OwWAgNzeXrVu3IkkSGzduBMDt8nC2vJInf/pNYmJiiIuL4+6776a6utpn36/hEg3QKKlVEutmprD5ZAMejxgmF4TR2nVpF72u3oBqgNQqNaszV2OuNuORvfeXsCCMhs1m47HHHuPw4cNs27YNlUrFvffei8fj4XOf+xx//etfr4hr3377bdLS0liyZAkA3/zmN9m/fz9//etfOXHiBJ/+9KcpKiri/Pnzg6/p6enhZz/7Ga+++irl5eUkJSVhtVp56KGH2LNnDx9++CE5OTmsW7cOq7V/HTy3280999xDeHg4Bw4c4OWXX+app566ovaWy138y9MPEZ8Yw+7du9m7dy+RkZEUFRXhcDj88N0bmkbRswe59QVp/HF/DR/VdTAvM07pcgQhKJmqTeTH55Mela50KVcomlTEXyv+yvGW48xJmqN0OYIP9Lp6qeqq8vt5J0VPIkwTNuzn/8M//MMV/3799ddJTEzk9OnTfOYzn+Hb3/42e/bsGWx43nrrLe6//34kSaK2tpbf//731NbWkpaWBsB3v/tdTCYTv//973n++ecBcDqd/Pa3v2XWrFmD51m58so1uV5++WViYmLYuXMn69evZ8uWLVy4cIGysjJSUlIAeO6551i9evXga/78h7eQJJnfv/H64Po/v//974mJiaGsrIw1a9YM+/vgbaIBGoP5mbEkG/V8cLxBNECCMAo2p43dl3bzL3P+RelSrjEnaQ5JYUmYq82iAQpRVV1VfHbTZ/1+3rfXv01ufO6wn3/+/HmeeeYZDhw4QGtr6+D9ObW1teTn57NmzRrefPNNlixZQlVVFfv37+d3v/sdACdPnsTtdjN16tQrjmm324mPjx/8t06no6Cg4IrnNDU18fTTT1NWVkZzczNut5uenh5qa2sBqKioID09fbD5AViwYMHg/3e7PBw/fpzay9VERUVdcey+vr7BGE8pogEaA5VKYt3MVDafaOAH63NRqwJjdUtBCBY76nbg8DgCKv4aoJJUrMlag7nazPfmfw+1Sq10SYKXTYqexNvr31bkvCNx1113kZmZySuvvEJaWhoej4f8/PzBCOlzn/sc3/rWt/jv//5v3nrrLWbOnMnMmTMB6O7uRq1Wc+TIEdTqK/8bjoz8+6yssLCwa1Zofuihh2hra+O//uu/yMzMRK/Xs3DhwmFHVx2NPfT02pg7Zy5v/eWtaz6fmJg4ou+Dt4kGaIzWF6Tx+73VHKpu57bJ8Td/gSAIg8xVZmYlziI1MlXpUq6rMKuQP5/5M0ebj3JLyi1KlyN4WZgmbEQjMUpoa2ujoqKCV155ZTDi2rNnzxXPufvuu/nqV7+KyWTirbfe4sEHHxz83Jw5c3C73TQ3Nw++frj27t3Lb3/7W9atWwdAXV0dra2tg5+fNm0adXV1NDU1kZycDMChQ4cGP9/eYKNg5mx2vFJCUlISRqNxZF+8j4mboMdobkYME2LCxN5ggjBCFoeFPfV7AmLxw6HMSpxFakSq2BtMUExsbCzx8fG8/PLLVFZWsn37dh577LErnhMREcE999zDD37wA86cOcP9998/+LmpU6fyuc99jgcffJANGzZQVVXFwYMHeeGFF9i8efMNz52Tk8Of/vQnzpw5w4EDB/jc5z5HWNjf711avXo1U6ZM4aGHHuLEiRPs3buXp59+GgCPW6aruYcvPPh5EhISuPvuu9m9ezdVVVWUlZXxrW99i0uXLnnxOzVyogEaI0nqnw1WcqoBl1vMFhGE4dpRuwO3x83qzNU3f7JCJEliTeYattRsweVxKV2OMA6pVCr++te/cuTIEfLz8/nOd77Df/7nf17zvM997nMcP36cJUuWkJGRccXnfv/73/Pggw/yr//6r0ybNo177rmHQ4cOXfO8q7322mt0dHQwd+5cvvCFL/Ctb32LpKSkwc+r1Wo2btxId3c3t9xyC1/5ylcGZ4G5ekGWYeLkRHbt2kVGRgb33XcfM2bM4Mtf/jJ9fX2KjwhJ8jhb6tRisRAdHU1XV5fXvvnH6zq5+8W9vPmVW1mcneCVYwpCqPva1q/R4+zhD2v/cMXjLS0tV/yQBWhublbsfoFTrae4f/P9vLLmFW5LvU2RGoSxcTqdtLS0kJiYiFYbWIvxhZq9e/dy++23U/rOfiamZjBjUdqIXu/PayVGgLygYGI0GXHhbBJ7gwnCsHT2dfJh/YcUTQrc+GtAXnweEyMnYqoSiyIKwtXeffddtmzZQnV1NVu3buWrX/0qixYtIsaQTFxaYG19cTXRAHmBJEncWZCK6VQjThGDCcJNbavdhgdPQMdfAyRJojCrkK21W3F6nEqXIwgBxWq18o1vfIPp06fzxS9+kVtuuYXXf/smyBCbEq50eTckGiAvuXNmKh09TvZdaFO6FEEIeOZqM/OT55MQFhyRcWFWIV32Lg42HFS6FEEIKA8++CDnzp2jr6+PS5cu8cYbb0Cvnqh4AzpDYE80Fw2Ql+SlGZmUECH2BhOEm2jva+dg48GAXPtnKNPjppNpzBR7gwnCTTjtbixtfcSlRShdyk2JBshLJElifUEq5vJGHC4RgwnCULbWbAUIivhrwEAMtq12G063iMEEYSgdjTYAYlNEAzSurC9Iw9LnYk9li9KlCELAMlWbuDX1VmINsUqXMiJFWUVYHVb21e9TuhRBCFjt9TaM8Qa0+sBfOV3xBujFF18kKysLg8HArbfeysGDN87Yf/3rXzNt2jTCwsJIT0/nO9/5Dn19fX6q9samJkeSnRTJpuNiUURBuJ7W3lYONx4OqvhrQHZMNpOjJ4tFEQVhCI4+18fxV2DP/hqgaAP09ttv89hjj/Hss89y9OhRZs2aRWFhIc3Nzdd9/ltvvcX3v/99nn32Wc6cOcNrr73G22+/zb/927/5ufLrG4jBSk830ed0K12OIASc0upS1JKaOzLuULqUEZMkiaKsIrbXbcfutitdjiAEnI6GHiQp8Gd/DVC0AfrlL3/JI488wsMPP0xubi4vvfQS4eHhvP7669d9/r59+1i8eDEPPPAAWVlZrFmzhvvvv/+mo0b+tL4gjW67i53nRAwmCFczV5tZmLaQaH200qWMSuGkQmxOG3su77n5kwVhnGlv6CY6MQyNLvDjL1BwM1SHw8GRI0d48sknBx9TqVSsWrWK/fv3X/c1ixYt4s9//jMHDx5kwYIFXLx4keLiYr7whS8MeR673Y7d/ve/1iwWi/e+iOvITopkekoUm080UJiX4tNzBT1bK7z/LXD2KF3J2GWvgkXfVLqKgNZoa+Ro81Geu/05pUsZtcnRk5kaOxVzlTkoR7H8ydXeTsMPnkHu7VW6FNzh4TiXLUVvMKDxjHySijYjk/A5s71f2DAsX76c2bNn8+tf//q6n5ckiXfffZd77rlnWMcrKytjxYoVdHR0EBMT47U6Hb0urO12Js8KjqUtQMEGqLW1FbfbPbiD7IDk5GTOnj173dc88MADtLa2cvvttyPLMi6Xi3/+53++YQT2wgsv8KMf/cirtd/M+oJUflt2gV6Hm7Ag6YQVceJ/oXILTFundCVj01kLO56H+V8CXXAM/SphS80WtCotK9JXKF3KmBRmFfLqyVfpdfUSpgm7+QvGKcsHH2DbtYvIO5RvFOWwMCStFkmvRxphA+S2WOk5eICw/DykANxGo6GhgdhY5ScUtDfYkFQQEwSzvwYE9ipFVykrK+P555/nt7/9LbfeeiuVlZU8+uij/PjHP+YHP/jBdV/z5JNPXrFzrsViIT093ad1ri9I4+el59hR0cy6mak+PVdQK9/QP3LymT/c/LmBrO0C/PdcOF8KefcoXU3AMlWbWDxhMVG6KKVLGZOirCL++6P/Zvel3azJWqN0OQHLUlxCxJIlTPz1r5QuZXB/qahR7C/l7uyk/c9/xlFTgz4720cVjl5KSmAkDe31NqITw9FoFZ9bNWyKVZqQkIBaraapqemKx5uamoa8oD/4wQ/4whe+wFe+8hVmzpzJvffey/PPP88LL7yAZ4iuXq/XYzQar/jwtayECPInGMXeYDfSWQuXDkHevUpXMnbxUyCloL+hE66rvrueEy0nKMoK/L2/bibDmMGMuBliUcQbcF6+TO/x4xjXBv/1VsfEoElMxH6+UrEaPB4Pjz/+OHFxcaSkpPDDH/5w8HOSJLFx48bBf+/bt4/Zs2djMBiYP38+GzduRJIkjh07dsUxjxw5wvz58wkPD2fRokVUVFSMuj57j5PuTjvxQbD44Scp1gDpdDrmzZvHtm3bBh/zeDxs27aNhQsXXvc1PT09qFRXlqxW90dMgbap/Z0z09h+thmb3aV0KYGpfCNoDDBtrdKVeEf+fXCuFOzdSlcSkMzVZvRqPcvTlytdilcUTSpi96Xd9ITC/Ws+YDGZkPR6IlesVLoUr9BnZ+OoqUZ2OBQ5/x/+8AciIiI4cOAA//Ef/8G///u/s2XLlmueZ7FYuOuuu5g5cyZHjx7lxz/+MU888cR1j/nUU0/xi1/8gsOHD6PRaPjSl7406vraG2yoVBIxycF1C4CiEdhjjz3GQw89xPz581mwYAG//vWvsdlsPPzww0D/HiMTJkzghRdeAOCuu+7il7/8JXPmzBmMwH7wgx9w1113DTZCgWJ9QSo/M51l29lmPjUrTelyAk/5BshZDfrgjkMG5d0LW38I50ww8x+VribgmKvNLJmwhAhtcP2FOJQ1mWv41ZFfsfPSTtZOCpEm3ossJSYily5FHRnY19vT24v94sWbPk92u3HWN2DZtg1dRsaYz6ufPBlV2PDvHysoKODZZ58FICcnh9/85jds27aN1auvXE39rbfeQpIkXnnlFQwGA7m5uVy+fJlHHnnkmmM+99xzLFu2DIDvf//73HnnnfT19WEwGEb89bTX24hOCkOtCZ74CxRugD772c/S0tLCM888Q2NjI7Nnz8ZkMg3eGF1bW3vFiM/TTz+NJEk8/fTTXL58mcTERO666y6eey7wZpWkx4UzKz2GTcfrRQN0tfaLUP8RLPqW0pV4T2wWTJgH5e+KBugqdZY6ytvK+WL+F5UuxWsmRk1kZsJMTFUm0QBdxVFbS9+pU8R/efQjCv5iv3iR6n8Y/vu183//1yvnzfrbO4Tl5Q37+QUFBVf8OzU19brr5VVUVFBQUHBFE7NgwYKbHjM1tf9e1ebmZjJG2OD12ZzYuhykTAm+pS0Uvwn6m9/8Jt/85vWnD5eVlV3xb41Gw7PPPjvYCQe6uwpS+Q9zBdY+J1GGwJs9oJjyd0EbDlODbzXgG8q7F7b9GPosYPD9vWbBwlxjJkwTxtIJS5UuxasKswr5f0f/H92ObiJ1wbHyrT9YSkxIYWFEfjy6EMj0kyeT9bd3hvXcvooK+k6eJPrue5C0Y/vVqZ88eUTPv/rGbUmShrzvdTTHlCQJYFTHbG+woVJLxCQFV/wFAdAAhbJ1M1P5yeYzbD3TxL1zJipdTuAof7e/+dEF9vD4iOXdC6VPQ0UJzPqs0tUEDFOViWUTlxGuDb4fkDdSmFXIzw//nB11O7hryl1KlxMwLCYTkcuXoQoP/OutCgsb9kiMLiMDV309KoMew/TpPq5sdKZNm8af//xn7HY7er0egEOHDvn0nO31NmKSwoMu/oIA2AsslKXFhDEvM1bsDfZJrZXQeBLy7lO6Eu+Lngjpt4rZYJ9Q1VVFRUdFUO79dTMpESnMTpwt9gb7BHtVFfYzZzCuDb1YUB0VhTYlFXulcrPBbuaBBx7A4/Hw1a9+lTNnzmA2m/n5z38O/H2Ux5t6ux30WBzEBdnsrwGiAfKx9QWp7DrfQlePU+lSAkP5BtBF9t8AHYry7oPKbdDboXQlAcFcbSZcE87tE25XuhSfKJpUxN76vXTZu5QuJSBYSkpQhYcTuTS04s4B+pxsHLV1eAJkA+6rGY1GPvjgA44dO8bs2bN56qmneOaZZwBGdXPzzbTX21CrJWKSgnNBUNEA+di6mam4PDKlpxuVLiUwnNrQP/VdG5xvmJvKvRs8Lji7WelKAoK52syKjBUYNN7/4RsIVmeuxu1xs712u9KlBARrSQmRK1ei8sEv20Cgm5INHg+Oi1V+O2dZWdk122Bs3LiRN954A+hfAuaT22AsWrSI48ePY7fbOXz4MB6PB61WO3hz8/Lly5Fl+YptMGbPno0sy2RlZY2otvYGGzEp4ajUwdlKBGfVQSTZaOCWrDg2nRAxGM1noOVMaMZfA4ypkLmo/z6nca6yo5LKzsqQWPxwKEnhScxLnidiMMB+/jz285UY14Ve/DVAHRmBNi2wY7A//vGP7Nmzh6qqKjZu3MgTTzzBZz7zGcJGMO1+OHqsDnqtTuJSgzP+AtEA+cVdBansrWylw6bMIloBo/xd0EdDtvJ7A/lU3r1wsQx62pWuRFHmGjNR2igWpS1SuhSfKswq5MOGD+ns61S6FEVZSkyooqKIuD00484B+pwcHJfq8ATAJq/X09jYyOc//3lmzJjBd77zHT796U/z8ssve/087fU21BoV0YmBf7P7UEQD5AdF+al4ZBlT+TiOwWS5P/6afido9EpX41u5d4PsgTPvK12JYmRZxlRlYkXGCnRqndLl+NSqzFXIyGyt3ap0KYqRZRlLSQlRd9yBShfa11s/ZQrI8rAWUFTC448/TnV1NX19fVRVVfGrX/2KcC/PyJNlmfZ6G7Ep4ajU3r+52l9EA+QHiVF6Fk6JZ/N4jsGaTkHb+dDY++tmIpMg6/b+hm+cOtdxjmpLdUjHXwMSwhK4JeWWcb03mL2iAkdVVUjs/XUzqvBwtBMmYD9/XulSFNNrddBncwbt7K8BogHykztnprHvQiut3XalS1FG+btgiIHJy5WuxD/y7oPq3dDdonQlijBVmzDqjNyWdpvSpfhFYVYhhxoP0drbqnQpirCUmFBFRxMxxD6OoUafnYPz8mU8PeNzL7i2ehsarQpjQnBPZhENkJ8U5acgSRIlp8ZhDDYQf824CzShPTw+aManAAnOvKd0JX4nyzLmajOrMlehVY2PFdBXZaxCQmJbzbabPznEDMZfq1chhXj8NUA/ZTIgYb9wQelS/O6K+EsVvPEXiAbIb+IidCzOTmDT8XqlS/G/hmPQUdW/Y/p4ERHfP9p1avzNBjvdfpo6a11ILn44lFhDLLel3jYuY7C+8tM4a2tDcvHDoajCwtClT8R+PnBng/lKT5cDe4+LuLTg3/5FNEB+tL4glYPV7TRbAnMRLZ85tQHC4yErNBdHG1LevVCzFyzj694vc5WZWH0sC1KuvwljqCrMKuRI0xGae67dpDKUWUqKUcfGEnHrrUqX4lf67Gyc9fW4u21Kl+JX7fU2NDoVxvjgX+tJNEB+VJibgkYlUXxyHP1ClGUo39gfCanH2dZzM9aDSjOuZoN9Mv7SqMbX9V6ZsRK1Ss2Wmi1Kl+I3sixjLTERtWYNkmZ8XW/d5MmgUuEYRzGYLMu0N9iIS4lACvL4C0QD5FfR4VqW5CSOr0URLx+BrtrxFX8NCIuFKSvH1Wywk60nqbfVj4vZX1eL1kezKG3RuFoUse/ECZz19eMq/hqgMhjQpadjr/TtbLDly5fz7W9/e8jPS5LExo0bh328srIyJEmis7NzxLXYOu3Ye11BP/trgGiA/Gx9QSqHazqo7wzMRbS87tQGiEiCzMVKV6KM/Pug7kPouqR0JX5hqjaREJbAvOR5SpeiiKKsIj5q/ohG2/iY7GApLkGdkED4LfOVLkUR+pxsnA0NuK1WxWpoaGhgrZ8a0PZ6G1q9mqgQiL9ANEB+tzo3GZ1GNT5iMI+nf/p77t2gUitdjTKmrQW1rj8GDHEe2YO52szqzNWox+n1XpG+Ap1KNy5GgWSPB4vJhHHNGiT1+LzeukmTkFRq7JXKxWApKSno9b5fXHYw/kqNuO7O8k5n8G34LRogP4syaFk2dZzEYJcOgrV+fMZfAwzRkL16XOwNdqz5GM09zeNq9tfVInWRLJ6weFw0QL3HjuFqagrpvb9uRqXXo83M9HkM5vF4ePzxx4mLiyMlJYUf/vCHg5+7OgLbt28fs2fPxmAwMH/+fDZu3IgkSRw7duyKYx45coT58+cTHh7OokWLqKiouOLz7733HnPnzsVgMDB58mSeevIZemz2wb2/JEnif/7nf/jUpz5FREQEzz33nK++fJ8RDZAC1hekcqyuk7r2EF9E69QGiEqD9PGxGN6Q8u+Dy4eho0bpSnzKXG0mKTyJOUlzlC5FUUVZRZxsPcnl7stKl+JTluISNMnJhM2dq3QpitLnZONqasJtsfjsHH/4wx+IiIjgwIED/Md//Af//u//zpYt195sb7FYuOuuu5g5cyZHjx7lxz/+MU888cR1j/nUU0/xi1/8gsOHD6PRaPjSl740+Lndu3fz4IMP8uijj3L69Gl+97vf8ac//5E/bfgfIuP+Ptr0wx/+kHvvvZeTJ09e8fpgMb5u2w8Qq2YkY9Cq2HyygX9eNkXpcnzD44bTGyH/H0A1zvvsqUWgMfSPAt3+baWr8Qm3x01pTSlFWUWopPF9vZenL8egNmCuNvOl/OD7pTAcstuNxWwiet06pCB+fzsdbjobx/aHqKxOoNMeQe+HZwmbPmNYr4lJCUerG35sWFBQwLPPPgtATk4Ov/nNb9i2bRurV6++4nlvvfUWkiTxyiuvYDAYyM3N5fLlyzzyyCPXHPO5555j2bJlAHz/+9/nzjvvpK+vD4PBwI9+9CO+//3v89BDDwEwadIk/r/PfYf//v1P+R/pl4PHeOCBB3j44YeH/XUEGtEAKSBCr2Hl9CQ2nwjhBqhmH3Q3jY+9v25GHwk5a6B8Q8g2QEebj9La20rRpPE3++tq4dpwlkxcgqnKFLINUM/hI7hbWokqCu7r3dnYw/8+f8gLR8qE893A8I71mX+7hcSMqGEfvaCg4Ip/p6am0tx87XpTFRUVFBQUYDD8/SblBQuuvx7XJ4+ZmpoKQHNzMxkZGRw/fpy9e/f+PdaSweVyYXfY6enpGdxcdf784L75XTRACrlzZhrfeOso1a02shJCY0rhFcrfheh0mHiL0pUEhvz74P++CG0XID70ml5TlYnUiFQKEgpu/uRxoDCrkO/u/C61lloyjBlKl+N1FlMJmrRUwmbPVrqUMYlJCecz/zb2n1GOujps+/ZhXLcOddTNG5uYlJHtzq7VXrmljCRJeDyeER3jRsccuKl54Jjd3d386Ec/4r77+u/fvFTRjqWtjxkLU69oriIigvt3l2iAFLJyehLhOjWbTzbwjRXZSpfjXW4XnH4PZt8P15ktMC7lFII2or8xXPpdpavxKpfHxdbarXxqyqeuOztkPFo6cSlhmjDM1WYeKbg2fghmssuF1VxK9D33BP311urUIxqJGYqcmkPbqd2E99YTnqfcqMi0adP485//jN1uH5wZdujQyEe45s6dS0VFBdnZ2cgeGetFLZPnR5GRE+ftkhUVvOFtkAvTqbljRjIfhOLeYNW7oae1f0d0oZ8uHKYVheRssEONh2jvax+Xix8OJUwTxvKJy0Nyb7Cegwdxt7djXCuu9wBJq0WXlaX43mAPPPAAHo+Hr371q5w5cwaz2czPf/7z/hpH0Kw+88wz/PGPf+RHP/oRB/Ye5dyFc2zfv5mnn37aV6UrQjRAClpfkMrZRiuVzd1Kl+Jd5RsgNgvSxvdsoGvk3QtNp6DlnNKVeJW52szEyInkxucqXUpAKZxUyLmOc1zsuqh0KV5lKSlBm56OIT9f6VICij47G1dbK66ODsVqMBqNfPDBBxw7dozZs2fz1FNP8cwzzwBcEV3dTGFhIZs2baK0tJQVa5bwle/9A//z8m/IzMz0VemKEBGYgpZNTSRSr2HziQYeXZWjdDne4XbCmQ9g3hdF/HW17NWgi+ofBVp+/ampwcbpcbK1div/mPOPQR+HeNvtE24nQhuBucrM12Z/TelyvEJ2OrGWbiHmM58R1/squsxMJK0O+/nzaIa48Xg0ysrKrnnsk+v+yLJ8xecWLVrE8ePHB//95ptvotVqycjovxdt+fLl17xm9uzZ1zxWWFjI6tVrOLallsSMKNJnXBl/Xf38YCRGgBRk0KpZnZvMphMhFINd3Am9HSL+uh6tAaav6x8hCxEHGg7QZe8Ss7+uQ6/WsyJ9RUgtimj78EPcXV3jevHDoUgaDbrJk7BXKhuD/fGPf2TPnj1UVVWxceNGnnjiCT7zmc8QFhY24mNZWntxOT0hs/fX1UQDpLD1Bamcb+6molG5vWS8qnwDxGdDykylKwlMefdBy1loOq10JV5hqjKRZcxiWuw0pUsJSEVZRVzousD5Dt+uFOwvluISdJmZ6KdPV7qUgKTPzsbd3o6rrU2xGhobG/n85z/PjBkz+M53vsOnP/1pXn755VEdq73ehiFCS7hR5+UqA4NogBS2JCeRKIOGzaEwCuSyw5lN/fe6iOHx65uyAvTRITEK5HA72F67ncKsQhGHDGFR2iKitFEhcTO0x+HAunUrUevWius9BF1GBpJOj/28cg3v448/TnV1NX19fVRVVfGrX/1qcN2ekfC4ZToae4hLu/7eX6FANEAK02lUFOalsOlEQ/Bnqhd2gL1LxF83otHDjPX99wEF+fXeV78Pq9M6rvf+uhmtWsvKjJWYq81B//627d2Lx2rF6Kedx4ORpFajnzwZe2Vl0F/vrtZe3C7P4N5foUg0QAFgfUEqF1ttnG7w3V4yflG+ARKnQ7KYDXRDefdBWyU0nlS6kjExV5uZEj2FnNgQuYHfR4omFVFjqaGio+LmTw5glpISdNlTMEydqnQpo+aPpkSfk427sxN3a6vPz+VL7fXdhEX6P/7yZ+MoGqAAsDg7gdhwbXDvEO/sg7PFYvRnOCYvg7DYoI7B7G47O+p2UDhJjP7czK2ptxKjj8FUFbwxmMdup3vbdoxFwTn6o1b377vlcDh8fi7txImo9AbF1wQaC4/bQ2dTjyI3P7vdbgBUfthjTkyDDwBatYqi/BQ2n2jg8cJpwZm3Vm4Bh1Xs/TUcai3MuAtObYA7ng3K+6X2XNqDzWkT8dcwaFVa7si4A1O1iUfnPhqU7+/uXbvw2GxBO/tLpVIRHh6O5eMd23U6nU+vgyp7CrbqKrTz5wXl9e5s6sHtcROVpMPpdPrtvLIsY7FY0Ol0ogEaT+6cmcZfDtZx8nIXBRNjlC5n5MrfheR8SAze4XG/yrsPjv4R6j+CCXOVrmbETNUmpsZOZXL0ZKVLCQqFWYX87fzfKG8rJz8h+BYQtJaY0E+bhn5y8F7v6OhogMEmyJecsbHYTp+m7/x5NLGxPj+ft12+0IFTctHd00V3j3/PLUkS8fHxfmkcRQMUIG6bHEd8hI5NJxqCrwFy9ECFCZY8pnQlwSNrCYQn9MdgQdYA9bp62XlpJ4/MDK09rnzplpRbiDPEYa42B10D5OntxVpWRsJXv6p0KWMiSRIxMTEYjcbBmMVX5NhYLn7/STROF4nf+LpPz+VtTocbU/F5Clamk5iY6PfzazQav42aiQYoQGjUKtbO7I/Bnlw7PbiGTc+bwWkT8ddIqDWQezeUb4TVPw6qGGzXpV30unrF3l8joFFpWJ25GnO1mcfmPRZU7+/unTuRe3pCZu8vlUrl+3hFqyV64W10v/8eqY9+K6iud82JDnq73OTMTblmF/pQI26CDiDrC9K43NnLR3WdSpcyMuXvQuosiJ+idCXBJe9e6KqDSyPfrVlJ5mozufG5pBvTlS4lqBRmFdJga+B4y/GbPzmAWIpLMOTmoguxfaB8zVi0Fld9A73HjildyohUHm4iMSOK6MSRrx0UbEQDFEBuyYojMUrPpuNBNBvM3g3nSsXsr9HIXASRyUG1Q7zNaWPXpV3i5udRmJs0l4SwhKDaGsNjs9G9c2fQ3vyspPD581AnJmA1Bc/sP0efi+pTbWTPS1K6FL8QDVAAUask7pyZSvHJBjyeIFlE65wJXL0i/hoNlRpy7+mPwTwepasZlp11O7G77aIBGgW1Ss2azDWUVpfikYPjelt3lCHb7UQF6fR3JUlqNcbCIiwmM3KQvL+rT7bidnpEAyQoY31BKo2WPg7XdChdyvCc2gAT5kOsGB4flfz7wFoPdR8qXcmwmKpNFCQUMCFygtKlBKWiSUU09zbzUfNHSpcyLJaSEgwFBegmius9GsZ1a3E1NdF79KjSpQxL5eFmkicZMSaMfOPUYCQaoAAzNyOWFKMhOPYG67P0r/8jRn9Gb+ICME7obyQDnNVhZc/lPWL0ZwxmJc4iOTw5KBZFdFut2HbtEltfjEHY7NlokpOxFJcoXcpN2Xtd1JSPn/gLRAMUcFQqiTsLUik+1Yg70GOwimJwOyDvHqUrCV4qVX8Mdvo98Ph2au5Y7ajbgdPjZE3WGqVLCVoqScWarDVsqdmCO8Cvd/f27chOJ8Yi0fCOlqRSYSwqwlJaiuzjqfdjVXW8BY9LZspc0QAJClpfkEqL1c6BqjalS7mxUxsg/TaInqh0JcEt/z6wNUPNXqUruSFztZk5SXNIiUhRupSgVpRVRFtfG0eajihdyg1ZiksImzsXbWqq0qUENeO6tbhbW+k5dFjpUm6o8kgzqVOiiYozKF2K34gGKADNTo9hQkxYYO8N1tsBF7aL+MsbJsyDmIyAjsG67F3sq98n4i8vmJkwkwmREzBVB24M5u7qonvfPoxFobH2j5IMBQVo09KwlARuDNZnc1J3up3s+eNn9AdEAxSQJElifUEqplONuNwBOnvg7GbwuPoX8xPGRpL6G8kz74PbpXQ117W9djtuj5s1mSL+GitJkliTtYatNVtxeQLzelu3bgWXi6hC0fCOlSRJRK0twlpaiuwKzOt98VgLHs/4ir9ANEABa31BGu02B/svBmgMdmoDZC4Goxge94q8e6GnDap3KV3JdZmqTcxLnkdiuP+Xxg9FhVmFdNg7ONhwUOlSrstSYiJ8/ny0yePrF6KvGNeuw93Rge3AAaVLua7KI82kZccQEa1XuhS/Eg1QgMqfYCQzPjwwF0W0tcHFMsgX8ZfXpM6G2EkBGYN19HVwoOGA2PrCi3LjckmPSsdcE3iLIro6OrDt3y8WP/QiQ14u2oyMgIzBersdXDrbQc44i79ANEABazAGK2/E4QqwGOzM+4AMMz6ldCWhQ5L6b4Y+8wG4HEpXc4WttVuRkVmVuUrpUkKGJEkUZRWxtWYrTrdT6XKuYC3dArJM1OrVSpcSMiRJwrh2LdYtW5EdgfX+vvhRC8gyk+eIBkgIIHfOTKOr18neC61Kl3Kl8nf7dzOPHH9vGJ/Kuw/6OvtH1wKIucrMgpQFxIfFK11KSCnMKsTisLC/Yb/SpVzBUlJC+K0L0CQkKF1KSDGuLcLT1YVtf2Bd7/OHm5kwLZZwo07pUvxONEABbEZqFJMTIwIrButuhurd/aMVgncl50F8TkDtDdba28qhpkNi9pcPTI2dSpYxK6D2BnO1ttJz8KBY/NAH9NOmoZs0CUtJ4Mz+67E4qD/XMa4WP/wk0QAFsP4YLI3S043YXQGyiNbp9wBJxF++MBCDnd0MLrvS1QCwtWYrKlSsyhDxl7dJkkTRpCK2127H4Q6MWMRSWgqSJOIvHxiMwbZtwxMgMdiFo81IksSUcRh/gWiAAt76glSsfS52nQuQGKz8XZi8HMLjlK4kNOXdB/YuqNymdCVA/+yvW9NuJcYQo3QpIakoq4huZzd7LwfGIpjW4hIiFi5EExurdCkhybi2CI/Vim3PHqVLAfpnf02cEYshUqt0KYoQDVCAm5ocxdTkyMDYG8zSADX7RPzlS0nTISk3IGKw5p5mjjYdFbO/fGhKzBSyY7IDYlFEZ1MzPUeOiPjLh/Q5OehzsgNibzBbp536yk6y5yUrXYpiRAMUBNYXpLHldBN9ToVjsNPvgUoD0+9Uto5Ql3dv/z5rzl5FyyitLkWtUrMifYWidYS6wqxCyurK6HP1KVqH1WwGjYaoVXcoWkeoi1q7lu7t2/H0KXu9K480o1JJTJo1fm92Fw1QEFhfkIrN4aasolnZQso3QPYdECaGx30q7z5wdMP5LYqWYa42szhtMdH6aEXrCHVFWUX0uHrYc1nZWMRSUkLk4sWoo8X19iXj2rV4enro3qXsoqeVR5rJyI3DEDE+4y8QDVBQmJwYSW6qkQ+U3Bus6xLUHRB7f/lDQjakzOxvOBXSaGvkWMsxMfvLD7Kis5geN13RGMzZ0EDvRx9hXCviTl/TT5qEfsYMRRdFtLb30Xixi+z54zf+AtEABY07C1LZfqaZHodCe8mUbwS1HqatU+b8403efXDODA6bIqc3V5vRqXQi/vKTwqxCdl3aRY+zR5HzW0pMSDodkXeI+MsfjEVFdJftxNOjzPWuPNKMWqNiUsH4jb9ANEBB466CNHqdbrafVSgGK98AOavBYFTm/ONN3r3g7OlvghRgrjZz+4TbidRFKnL+8aYwq5BeVy+7LisTi1hMJiKWLkEdKa63PxjXrUXu7aV7505Fzl95uImMvDh0YRpFzh8oRAMUJDLiwymYGK3Moogd1XD5iIi//CluEqTNUSQGu2S9xMnWkxRNEnGIv6RHpZMXn4e5yv8Nr+PSJfpOnBCzv/xIl56OIT9fkdlgltZemmus5Izz+AtEAxRU1heksqOimW67n2Ow8ndBEwZTxS9Ev8q7r/9GaLvVr6c1V5sxqA0sm7jMr+cd74qyith9eTc2p39jT0tJCZLBQNTy5X4973hnXLuW7l27cHf793pXHmlGo1WROVNsbSMaoCCybmYqdpeHbWea/Hvi8ndh6hrQi+Fxv8q7B1x9UOHfm2PN1WaWTlxKuDbcr+cd79ZkrcHutrOjbodfz2stMRG5bBmqiAi/nne8MxYVItvtdO/Y7tfznj/cRObMBHSG8R1/gWiAgsrE2HDmZMTwgT9jsLYL0HC8fzRC8K+YDJh4i19jsBpLDWfaz4jZXwpIi0yjILHAr3uDOWpq6Dt9WsRfCtBOmEDYrFl+3Russ6mH1rrucbv319VEAxRk1heksetcC129Tv+csHwDaCMgZ41/zidcKe8+qNwKvZ1+OZ252kyYJowlE5f45XzClYqyith7eS8Wh8Uv57OUlCCFhxO5bKlfzidcybhuLbbdu3Fb/HO9K480o9GrRfz1McUboBdffJGsrCwMBgO33norBw8evOHzOzs7+cY3vkFqaip6vZ6pU6dSXFzsp2qVd+fMVBxuD1tO+ykGO/UuTCsCnYhDFJF3D7id/StD+4Gp2sTy9OWEacL8cj7hSmsy1+DyuNhR658YzFJcQtTy5ajCxPVWQlRREbLTiXWbf2KwyiNNTCpIQKtT++V8gW7UDdC2bdtYv349U6ZMYcqUKaxfv56tW7eO6Bhvv/02jz32GM8++yxHjx5l1qxZFBYW0tx8/aneDoeD1atXU11dzTvvvENFRQWvvPIKEyZMGO2XEXRSog3ckhXrn73BWiqguVzEX0oypkHGQr/sDXax8yLnO86Lvb8UlByRzJykOX5ZFNF+4QL2c+cwrhPxl1K0ycmEzZuHpcT3f+C0N9hou2wT8dcnjKoB+u1vf0tRURFRUVE8+uijPProoxiNRtatW8eLL7447OP88pe/5JFHHuHhhx8mNzeXl156ifDwcF5//fXrPv/111+nvb2djRs3snjxYrKysli2bBmzZs0azZcRtNYXpLH7fCudPQ7fnqj8XdAbIXuVb88j3FjevXBhO/S0+/Q05mozkdpIFk9Y7NPzCDdWmFXIh/Uf0mXv8ul5LCUmVJGRRCwRcaeSjGvXYtu3H3dnp0/PU3m4CZ1BTUZenE/PE0xG1QA9//zz/OpXv+Ivf/kL3/rWt/jWt77FW2+9xa9+9Suef/75YR3D4XBw5MgRVq36+y9XlUrFqlWr2L9//3Vf8/7777Nw4UK+8Y1vkJycTH5+Ps8//zxu99CbhNrtdiwWyxUfwW7tzBQ8soy5vNF3J5FlOLWhf+VnrcF35xFuLvdukD1wdpPPTiHLMqZqEyvSV6BX6312HuHm1mStwYOHbbXbfHYOWZaxlJQQdcdKVHpxvZVkLFwDHg/WESYoIyHLMpVHmpk0KxGNVsRfA0bVAHV2dlJUdO0w+Zo1a+jqGt5fLa2trbjdbpKTr1yMKTk5mcbG6/9iv3jxIu+88w5ut5vi4mJ+8IMf8Itf/IKf/OQnQ57nhRdeIDo6evAjPT19WPUFsqQoA7dOimeTL/cGaz4NrRVi8cNAEJUMmYv7G1IfOd95notdF8XihwEgISyB+cnzMVX5LgaznzuP48IFoq7zc1zwL01iIuG33OLTRRHb6210NPaQPV/EX580qgboU5/6FO++e+09Ce+99x7r168fc1FD8Xg8JCUl8fLLLzNv3jw++9nP8tRTT/HSSy8N+Zonn3ySrq6uwY+6ujqf1edPdxaksu9CG23ddt+coPxdMETDlJW+Ob4wMvn3QdUusLX65PCmKhNRuigWpi70yfGFkSnMKuRg40Ha+3wTe1pMJaiMRiIXi7gzEBjXFmE7cABXu2+u9/nDTejDNaTPEPHXJ42qAcrNzeW5557jzjvv5Cc/+Qk/+clPWL9+Pc899xz5+fn8v//3/wY/hpKQkIBaraap6crZTE1NTaSkpFz3NampqUydOhW1+u9DeDNmzKCxsRGH4/r3w+j1eoxG4xUfoWBtfv/3yOSLGGwg/pp+F2h03j++MHIzPtX/v2fe9/qhZVmmtKaUOzLuQKvWev34wsityuy/NWBrjfdjEVmWsRaXELVqFZJOvL8DQdSa/mVGrKVbvH5sWZapPNzMpNmJqDWKT/wOKKP6brz22mvExsZy+vRpXnvtNV577TXKy8uJiYnhtdde41e/+hW/+tWv+PWvfz3kMXQ6HfPmzWPbtr/n3B6Ph23btrFw4fX/Cl28eDGVlZV4PJ7Bx86dO0dqaiq6cfZGjo/Us2hKvG/2Bms8Ae0XIF/EXwEjIgEmLfVJDHa2/Sw1lhox+yuAxBniWJCywCeLItrPnMFRU4NxrbjegUITF0fErbdiKfF+DNZa101XSy85YvbXNUbVAFVVVQ3r4+LFizc8zmOPPcYrr7zCH/7wB86cOcPXvvY1bDYbDz/8MAAPPvggTz755ODzv/a1r9He3s6jjz7KuXPn2Lx5M88//zzf+MY3RvNlBL31BakcqGqj2drn3QOXvwthcTBJ7AUVUPLvg5q9YPXuGlCmahMx+hgWpC7w6nGFsSmaVMThpsO09no39rSUlKCOiSHittu8elxhbIzr1tJz6BCulhavHrfySBOGCC0Tpsd69bihQNHxsM9+9rP8/Oc/55lnnmH27NkcO3YMk8k0eGN0bW0tDQ1/H+FIT0/HbDZz6NAhCgoK+Na3vsWjjz7K97//faW+BEUV5qWgkiRMp7wYgw3EXzPuAhGHBJbp60FSeTUGk2UZc7WZVZmr0KrE9Q4kd2TcgQoVpdWlXjtm/+wvE1GrVyNpxfUOJFGrVoFKhcXs3et9/nAzk+cmolaL+Otqw94N7bHHHuPHP/4xERERPPbYYzd87i9/+cthF/DNb36Tb37zm9f9XFlZ2TWPLVy4kA8//HDYxw9lMeE6bs9JYNPxBh5cmOWdg9Yfhc6a/tEGIbCEx8HkFf0N6oJHvHLI8rZyLndfFnt/BaBofTS3pd2GudrMAzMe8Mox+06dwnnpklj8MACpY2KIWLQQi6mEuM9/zivHbK62Ym3rE4sfDmHYDdBHH32E0+kc/P9DkSRp7FUJw7a+II3vvXOcxq4+UqK9sF7PqQ0QkQiZt4/9WIL35d8HG78Olvr+VaLHyFRlIs4Qx/zk+V4oTvC2oqwifrD3BzTZmkiOSL75C27CUlyCOi6O8Ftu8UJ1grcZ166j4d/+DWdTE9rksV/vyiNNhEVpmZATM/biQtCwG6AdO3Zc9/8Lylqdm4xWpWLzyQa+fPuksR1MlqF8Y/+MI/Ww/9MQ/Gn6nf3RZPlGWPj1MR3KI3sw15hZnbkajUpc70C0MmMlP9r/I0prSvlC7hfGdCzZ48FiMhFVuAZJI653IIq6YyWNGg1Wk4m4hx4a07FkT//ih1PmJqES8dd1ie9KkIsO07J0aoJ39ga7dAgsl0T8FcgM0f1bk3hhb7ATLSdotDWK2V8BLEoXxeIJi72yN1jv8eO4GhowrhXxV6BSG41E3H67VxZFbKyy0N1hJ0csfjikUTVANpuNH/zgByxatIjs7GwmT558xYfgX+sL0jha28nlzt6xHejUBohM6d98UwhceffCpYPQObZFPc3VZhLDEpmTNMdLhQm+UJhVyImWE9R3j+2PHEtJSf+qw/PmeakywReM69bSe/w4zsuXx3ScysNNhEfrSJkS453CQtCoxkG/8pWvsHPnTr7whS+Qmpoq7vtR2KrcZPQaFZtP1PPVpVNGdxCPB05vhLx7QCX2iglo09aCxtA/CrT4W6M6hEf2UFpdypqsNajF9Q5oA/uzlVaX8sX8L47qGLLHg9VkJqqwEEktrncgi1yxEkmvx2IyE//lL43qGLJHpvJoM9lzk1CpxO/noYyqASopKWHz5s0sFsuoB4RIvYYV05LYdKJh9A1Q3YdgbRB7fwUDfRTkrIbyDaNugI42HaW5t1nEX0EgQhvBkglLMFWbRt0A9R45gqu5Wcz+CgLqyAgily7FUlIy6gao4UInPV0OsueP/UbqUDaqBig2Npa4OLGnSCC5syCVf/nLR9S29ZARHz7yAwzM/vK4oWa/9wsUvCt5Jpz5ANqrIG7kN7+bqk2kRKRQkFjgg+IEbyucVMj3dn6POksd6caRb+hsKTGhjo9HdrvpOXLEBxUK3qSfNg3rli04amvRZWSM+PXnDzcTGasnZVJobP3kK6NqgH784x/zzDPP8Ic//IHw8FH8shW87o4ZSYRp1Ww6Wc/Xl2eP7MUeN5x+F5LzofWcbwoUvMsQDWp9fwy25Mbrcl3N7XGzpWYL6yevRyWJeRDBYOmEpYRpwjDXmPnKzK+M6LWy243FZEI/bRqOi1U+qlDwJlV0NJJOh8VkJuGrI1vzy+P2cOFoM1NvTUES8dcNDbsBmjNnzhX3+lRWVpKcnExWVhbaq1YUPXr0qPcqFIYlXKdh5YwkNh1vGHkDVL2nf5fxVHEzbNDQ6CE5F079bcQN0OGmw7T3tYv4K4iEa8NZOnEp5uqRN0A9hw7hbm/HkJ/vo+oEb1PpdOin5mDZvHnEDVD9+U56rU5y5on462aG3QDdc889PixD8Ia7ClL55z8f5WJLN5MTI4f/wvJ3ITwBYkY+1CooKHU2HPk9tFZCwvCbXlO1iQmRE8hPEL8Qg0lRVhHfKfsO1V3VZEVnDft1/YsfxqKdMMF3xQleZ8jLp/Ptt7FXVaGfNPyY+/yRZowJBpKyonxYXWgYdgP07LPP+rIOwQuWT0siQqdm84kG/uWOnOG9yO2C0+9B2mwQs/mCS9KMv88GW/a9Yb3E6XGytWYr9+XcJ2ZvBpnbJ9xOuCYcU7WJf571z8N6jexyYTGbCcvPF9c7yOhzcvpng5WUkPj14S166nZ7uHi0hdzbxezs4RjVDQB1dXVcunRp8N8HDx7k29/+Ni+//LLXChNGzqBVsyo3mU0nGm7+5AFVO6G3HdJE/BV01DpIzoNT7wz7JYcaDtFp7xR7fwUhg8bA8vTlmKvNw36N7cMDeLq6RPwVhCStFv20qSNaFPHy2Q76bE6yRfw1LKNqgB544IHB7TAaGxtZtWoVBw8e5KmnnuLf//3fvVqgMDLrC9KoaLJyvsk6vBeUb4CIJDBO9G1hgm+kzoGWs9B8dlhPN1WbyIjKYEbcDB8XJvhCUVYRlZ2VXOi8MKznW0qKUcfHo0lN9XFlgi8Y8vJxVFZir6wc1vMrjzQTnRhGQvoIboEYx0bVAJ06dYoFCxYA8L//+7/MnDmTffv28eabb/LGG294sz5hhJZOTSBKr+GD4YwCuRz9U6lTZ4n4K1glTgdteH8jexNOt5OttVspzCoUw+NBavGExURpo4a1NYbscGAtLcWQmyuud5DSZ2cjGQzDGgVyuzxcPNZC9vwkcb2HaVQNkNPpRK/XA7B161Y+9alPATB9+nQaGkYQvwhep9eoWZ2XzOYT9ciyfOMnXyyDvi4RfwUztebjGOxv/ZvZ3sD+hv1YHVaKJonZX8FKp9axImMFpirTTd/ftv378Vi7RfwVxCSNBv20aVg2b77p9a470469x0WOWPxw2EbVAOXl5fHSSy+xe/dutmzZQlFR/w/U+vp64uPjvVqgMHJ3FaRxocXG2cabxGDlGyAqBaLE8HhQS50DbZXQVH7Dp5mrzUyKnkROzDBvkBcCUmFWIdWWas513HjNLktxCZqkJDTJ4hdiMAvLz8dRU4P93I2vd+WRZmJTwolLi/BTZcFvVA3Qz372M373u9+xfPly7r//fmbNmgXA+++/PxiNCcpZnJ1AdJiWTTfaId7Z1x9/pYj4K+glTgVdxA1jMLvbzvba7RRlFYnh8SC3MHUhRp3xhjdDe+x2rFu3op8xQ1zvIKebPBkpPPyGMZjL6abqWAvZ80T8NRIjboBkWWby5MnU1tbS2trK66+/Pvi5r371q7z00kteLVAYOZ1GRVFeCptONAw9bHphOzi6RfwVClSa/q0xTr4zZAy29/Jeup3dYvHDEKBVa1mVuQpT9dAxmG3PHjw2G2Ei/gp6kkaDYfr0G8ZgteXtOPrcYu+vERpVA5SdnU1jYyOxsbFXfC4rK4ukpCSvFSeM3p0FqdS09VBeb7n+E8o3gDGtPwITgl/aHOisgYbj1/20qdpETmwOk2Mm+7kwwRcKswqps9Zxuv30dT9vKSlBk5KCRvw8DgmGvDycly7Rd/r617vySDPxEyKISxXx10iMuAFSqVTk5OTQ1tbmi3oEL1k0JZ64CB0fXC8Gc/bC2c39KwkLoSE+u3+X+OvEYH2uPsrqyijMFGv/hIoFKQuI1cdeNwbz9PVh3bYdQ26uApUJvqCbNAlVRATWkmtjMJfDTdWJVrLniWZ3pEZ1D9BPf/pTvve973Hq1Clv1yN4iUatoig/hc3Xi8HOl4KzRzRAoUSl7o/BTm24JgbbfXk3va5eMfsrhGhUGlZlrqK0uvSa93f3zl3Ivb0Y8vIUqk7wNkmtRj9jBl3FJddc75pTbbjsbrH44SiMqgF68MEHOXjwILNmzSIsLIy4uLgrPoTAsL4glUsdvRyr67zyE+XvQnQ6RIq/GEJK2hzoqoPLR6542FRlYkbcDDKNmQoVJvhCUVYRl7svc7L15BWPW0qK0aSloklIUKgywRcM+fm46uvpO3HiisfPH24mIT2SmORwhSoLXsPeC+yTfv3rX3u5DMEXbp0UT0Kkns0nGpiT8fH9Wg4bVJgg+w5lixO8L34K6KP7G9yJ8wHocfaw69KuYe8dJQSPecnziDfEY6o2UZBYAICnp4fuHWVELFmicHWCt+kyM1FFRWEpMRH28cxrR5+LmpOt3LJ++JulCn83qgbooYce8nYdgg+oVRLrZqaw+WQD/7ZuBiqVBOdM4OoV8VcoklSQMrN/UcTVPwaVil2XdtHn7mNN1hqlqxO8TK1SszpzNaXVpXx3/ndRSSq6y8qQ7XYRf4UgSaXCMGMGluJikh7/HpJK1R9/OT1MmStG80djVBEYwIULF3j66ae5//77aW5uBqCkpITy8hsvxib41/qCNBq6+jha29H/wKkNEJMJEWJ4PCSlzQFrA1w6CPTP/sqPzyc9Kl3hwgRfKJpURFNPE8db+mf/dRWXoJ04AY24FSEkGfLzcTU303vsGACVh5tJyowiOjFM2cKC1KgaoJ07dzJz5kwOHDjAhg0b6O7uBuD48eM8++yzXi1QGJv5mbEkG/X9O8Tbrf03QKfOUroswVfiJkFYLJzaQLejm92Xdoubn0PYnKQ5JIUlYaoy4e7uxrZzJ4ZcMfoTqrTp6aiijViKS3D0uqg51SbW/hmDUTVA3//+9/nJT37Cli1b0Ol0g4+vXLmSDz/80GvFCWOnUkmsm5lK8ckGPGeLwe0Qix+GMkkFKQVQ/i47arfj8DhYkynir1ClklSsyVpDaU0plm3bkJ1OEX+FsP4YLBeLycTFY824XR4x/X0MRtUAnTx5knvvvfeax5OSkmhtbR1zUYJ3rS9Io9lqp/PgXyH24xECIXSlzQZbM6Vn/8qsxFmkRoq93kJZYVYhrb2tXHrvr2gzMlDHxChdkuBDhvx83K2tnNt+npTJRqLiDEqXFLRG1QDFxMRcd9f3jz76iAkTJoy5KMG75mbEMC3ag/HyLnHz83gQk4UlIp49bafE1hfjwKzEWUxWJaM6cFwsfjgOaCdOxBOfyqU6p1j7Z4xG1QD90z/9E0888QSNjY1IkoTH42Hv3r1897vf5cEHH/R2jcIYSZLEN9MqUOHGlSLu/wl5ksT2pCzcsofV6SuVrkbwMUmSuL9lCrhlNLkzlC5H8DFJkuiYcQeyDJNniZvdx2JUDdDzzz/P9OnTSU9Pp7u7m9zcXJYuXcqiRYt4+umnvV2j4AXLnLs55JnGAWui0qUIfmDSq5hjt5Pcck7pUgQ/mHncwtl0OBnZrnQpgh80GfOI7rqI6vyJmz9ZGNKoGiCdTscrr7zChQsX2LRpE3/+8585e/Ysf/rTn1Cr1d6uURirnnai6vewT72ATZdEXhzqOl29HLC3UORU9S97IIQ0V0cHqsMnOT0jkh2e62+WKYQOu1OiqTeKVNtZLMXX7g0mDN+o1wECyMjIYO3atXz6058mJyfHWzUJ3nbmAyTZg3ZCASWX9Tg9Shck+NI2ayUeZFYbp8Hp98DtVLokwYesW7eCx0Nkbj473WdxyW6lSxJ8qK5FBzJkJDuxmM3ITvH+Hq1RN0CvvfYa+fn5GAwGDAYD+fn5vPrqq96sTfCW8g0Qn83yTAOdDhV7m3U3f40QtExdFdwSMZGECbdAXydU7VS6JMGHLJuL0U3KYnH0HCz0csRTpXRJgg/VNutJinESnZ+Nx2LBJpaeGbVRNUDPPPMMjz76KHfddRf/93//x//93/9x11138Z3vfIdnnnnG2zUKY2FrhardkDqLvBgXkyJdbL6kV7oqwUfaXD0ctNWxxjgNjBMgMhlOvat0WYKPuNrb6Tl4EENuHtlSMhOlOLaLGCxk9Tkkmjq0ZCQ50KSkoE5IwFJiUrqsoDWqBuh//ud/eOWVV3jhhRf41Kc+xac+9SleeOEFXn75ZX772996u0ZhLE6/B8iQOgtJgvUT7Zgv63GIGCwkbbOcRwJWG3NAkvpX/T7zPrgcSpcm+IC1tBQAQ24ukiSxUpXLbvdZnCIGC0l1LXqQID3RjiRJGHJzsZaWIjvE+3s0RtUAOZ1O5s+ff83j8+bNw+VyjbkowYvKN0DCVNBFArA+vQ+LU8XuRhGDhSJTVwW3RmQQq/l4b6DUOWC3wIXtyhYm+IRlczG6yZNQRUQAsFKdRzd2DnkuKFyZ4As1zTqSY5wYdDLQvyiip7ub7r17Fa4sOI2qAfrCF77A//zP/1zz+Msvv8znPve5MRcleIm1CWr2XbH44VSjm+wol5gNFoJanN0c7rlEUfS0vz9oTIWoVCgXMViocTY303P48BV7f01WJZElJbDdLWKwUNNrl2ju1JKZbB98TJucjCY5CUuJmA02GprhPvGxxx4b/P+SJPHqq69SWlrKbbfdBsCBAweora0VCyEGktPvARKkzBx8SJL6R4FePRdOnxsMYtWCkFFqOY8aFSujplz5idRZcPYDcP4XaEXjGyqspVtApcIw48rFD1eoc3nb9SF22YVeGvaPeCHA1bbokSSYmHBl3GWYkUv31m147HZUenF/50gMewToo48+Gvw4efIk8+bNIzExkQsXLnDhwgUSEhKYO3cu5eXlvqxXGIlT70DiNNBFXPHw+ol2ul0qdooYLKSUWs6xMDKT6IH4a0DaHHDYoHKrMoUJPmHZvBn9lCmowsOveHylKo8eHBz0VCpUmeALtc16UmOd6LXyFY8b8vPx9PRg271bocqC17D/PNixY4cv6xC8zVIPdQdg9gPXfCrb6GZ6tJNNlwwUThA3z4WCRqeVoz2XeW7Cdfb+ikwG48T++8FmrPd/cYLXORsb6f3oI6Kvsyl1piqBKVIS292nWaKerkB1grf19Klo6dJy2wzrNZ/TJCaiSU2hq7iEqFWrFKgueI1pIUQhgJVvBJUGkmde99PrJ9rZVq+jV9yzHhJKu86hldSsuDr+GpA6CypKwNHj38IEn7CYTKDRoJ9+/QZnpTqPfZ5z9MlikbxQUNuiQyXJ18RfAwy5eXTv2IGnt9fPlQW3UTVAfX19/Od//ifr1q1j/vz5zJ0794oPIQCc+hskTgdt2HU/vT7dTo9bxY5GkRmHArOlgsWRWUSph7ieabPB2QPnS/1al+AbluIS9NnZqAzXv6drhSqXXpzs95z3c2WCL9Q060mNd6DTyNf9vCEvD7m3l+6du/xcWXAb1R1yX/7ylyktLeUf//EfWbBgAZIkebsuYSw6a+HyYZjzhSGfkhXpJj/GyaY6Pesm2od8nhD4Lju6ONHbyE8nrB36SRGJEJ3RvzdY3j1+q03wPufly/SdOEH0P/zDkM+ZqIpjqpTCDvdpVqhz/Vid4G3dvSraLFoW5V4bfw3QxMejmZCGpbgYY1GhH6sLbqNqgDZt2kRxcTGLFy/2dj2CN5RvBLUWkvNu+LT16XZ+fToCm0siYoi/LITAV2o5h15Ss3yo+GtA6iw4bwZ7N+gj/VOc4HUWkwlJq0U/bdoNn7dSncfvXTvpkR2ES2LCQ7CqbdGjVslMiL/x/ZqG3Dy6d+7EY7MNrgsl3NioIrAJEyYQFRXl7VoEbzn1N0jMBc2NpzzfObGPPrfE1nrxwzGYmbrOsTRqMhHqm1zHtNng6oNzYun8YGYpLkaXk3PTKc8rVLnYcbHPc85PlQm+UNusIy3egfYmf6Qa8vKQ7XasO8r8U1gIGFUD9Itf/IInnniCmpoab9cjjFX7RWg41v/L7ibSIzzMinWyWSyKGLRq7R2c7mtijXHqzZ8cHg+xWf0xmBCUHLW19JWfxpB349FdgFRVDDOkNLa7xdIkwcrao6LdqiUj6ea3KWhiY9FOnCgWRRyBUTVA8+fPp6+vj8mTJxMVFUVcXNwVH4KCyt8FtR6Shpf735XeR1mjDqtT3McVjEot5wmTNCyNmjy8F6TOgsot0GfxbWGCT1hKTEg6Hfqpw2h46Y/BDnguYJPFfX7BaLjx1wBDXh62Xbtwd3f7uLLQMKp7gO6//34uX77M888/T3JysrgJOpCc2gDJuaAZ3uyudRPt/OREFFvq9dyX2efj4gRvM1kqWBY1hXCVdngvSJ3dv0J4RTHM+ief1iZ4n2XzZvRTc1DphhdbL1fP4EXXFvZ4KihUF/i4OsHbapr1TEhwoBnmiv2GvDysZjPd27YRfffdvi0uBIyqAdq3bx/79+9n1qxZ3q5HGIvWSmg6BfMeHvZL0sI9zIt3sKlONEDBpsreTkVfC19LvG34LwqLhbgp/Y2yaICCiv1iFfZz54j57GeH/ZpkKZqZUjrb3adFAxRkLD1qOrs1zMwa/tpd6uhotJmZdBUXiwZoGEYVgU2fPp1eseBS4Cnf0H/jc9KMmz/3E9ZPtLO7SUeXQ4zkBRNTVwXhKi2LI7NG9sLUWXBhG/R2+KQuwTcsphIkvR59Ts6IXrdCncshzwWssviZHUxqmnRo1B5S40a2Wr8hNxfb3n24u7p8VFnoGFUD9NOf/pR//dd/paysjLa2NiwWyxUfgkJOvtM/9f1ms4Gusm6iHZcM5nqxKGIwKbWcY0XUFAzDjb8GpM4CjxvObvZNYYJPWDYXo582FUk7suu9XD0DNx52uyt8VJngC7UteiaOIP4aYMjNBbcb69ZtvikshIyqASoqKmL//v3ccccdJCUlERsbS2xsLDExMcTGxnq7RmE4ms9AawWkzhnxS5PDPCxI6F8UUQgOlX2tVNrbKIq+8Vow12WIhvjs/uUShKBgP38ex4ULGPLyR/zaBCmKWVIm2z2nfVCZ4AudNjVdNg0ZSSPfq1FtNKLLysJSXOyDykLLqO4BCoWNUd8/dpnwyNAZrZpx9g/kqMM42ZeMXDvyaKMgQub12iTa7RJxerEoYqAzWSqIUulZFJE5ugOkzuqfMdjTDuFi5mags5SYkMLC0Gdnj+r1K9W5/JfLRKfcQ4wUfvMXCIqqbdKj1Yw8/hpgyM3FUlKCq6MDjRiUGNKoGqBly5Z5uw6/63N5UDk9SpfhHbLMhEvFdERNxSGrwT3yBmZ+tIXX5CTMl/XcP1ncDB3IZFnG3HWOFcYp6FSjegt/3ABtgDPvw7wverU+wbtkWcZSvBn9tGlImtFd76Xq6fzaZWK3+yx3acR+jYFMlqGmWcfEBAfqUW5Xrs/NheJirFu2EPuZz3i3wBAy6t3gd+/ezec//3kWLVrE5cuXAfjTn/7Enj17vFacMDwx1nMYe2poM45+z58YrZs8Yw8fiBgs4J2zt1Lt6KDIOIr4a4A+CuJzRAwWBOwVFTiqawgbxuKHQ4mTIpmjyhIxWBDotKmx9mrIHMbih0NRR0aimzxJxGA3MaoG6G9/+xuFhYWEhYVx9OhR7Pb+C9XV1cXzzz/v1QKFm8toNONUh2OJGOZieENYGGPhwxYdLX1iNlggM3VVEK02cFtkxtgOlDobqvdAd7NX6hJ8w1JcghQejm7y2N7fK1W5fOSppl0Wi+QFspomPTqNh5RY55iOY8jNo+fgIVytrV6qLPSMqgH6yU9+wksvvcQrr7yC9hMzEhYvXszRo0e9VpwwDLJMZn0JHVHTkFUjnC5wlVti+38wmi6LrTEClSzLmLoqWBWVjVYa2/UmtQCQ+mMwISD1x1/FGKZPH3X8NWCpejoSsNN91jvFCV4ny1DbrCc90YFq1PlMP0NufyJgKS31QmWhaVTf4oqKCpYuXXrN49HR0XR2do61JmEEYi2nieq9RFv06OOvAUaNm5lGm4jBAtjpvmYuObtYM5rZX1fTRUDiVBGDBbC+8tM4L10a1t5fNxMthTNPNZkdbhGDBap2q4buPvWw9v66GVV4OPopk7EUi73BhjKqBiglJYXKysprHt+zZw+TxzhMK4xMZoMZhyYCS8QkrxxvYayVQ61amnrH+OeH4BPmrgri1GEsiEj3zgFTZ0PNfrA0eOd4gldZSopRRUSgm+Sd9/dKVS7H5RpaZatXjid4V22zDr3WQ3LM2OKvAfq8fHqPHMHZJGLu6xnVb7lHHnmERx99lAMHDiBJEvX19bz55pt897vf5Wtf+5q3axSGIstkNpTQETUdJO80LLfEWFFLUHxJjAIFGlmWMVvOscqYg8ZL15vkmaBS9+8PJgSU/virBP2MGUjqMcadH1uinoYaFWXuM145nuA9sty/+GF6on3M8dcAw/TpoFJhNZu9c8AQM6pv8/e//30eeOAB7rjjDrq7u1m6dClf+cpX+P/+v/+Pf/mXf/F2jcIQ4rtOEtHXSLsX4q8BkRoPBSIGC0gnehuod1pGt/jhUHThkDhNxGABqO/ECVwNDRjyR7744VCipDAWqKaw3V3utWMK3tFm0WDrU5M5isUPh6IKC0OfPUXMBhvCqBogSZJ46qmnaG9v59SpU3z44Ye0tLTw4x//2Nv1CTeQ2WDCoYnCEj7KxfCGsDDWwtF2HfU9IgYLJGbLORI0EcwNn+DdA6fOgUsHoeuSd48rjImluARVVBS6TO++v1eoczklX6JJFntFBZKaZj0GnYdEL8VfAwx5+fQeO4azQcTcVxvRtIIvfelLw3re66+/PqIiXnzxRf7zP/+TxsZGZs2axX//93+zYMGCm77ur3/9K/fffz933303GzduHNE5g57sIaPBRLvRe/HXgPkx3WglD8WX9HxlqthAMRB4Pl78cLUxB7WXrzfJ+aDSQvlGWPRN7x5bGBXZ48FSUoxhxgwkb+UhH7tdNQ0dasrcZ/is5javHlsYnf74S0dGoh2Vl1ch0U+bBhoNFpOZ+Ie/6N2DB7kRvbPeeOMNduzYQWdnJx0dHUN+jMTbb7/NY489xrPPPsvRo0eZNWsWhYWFNDff+Kat6upqvvvd77JkyZIRnS9UJHQeJ9zeQvsYFj8cSrjaw+xoG++LGCxgHOupp9nVPbbFD4eiNUDSDBGDBZDejz7C1dzi1fhrQISk51ZVtojBAkhLl4Zeu3dmf11NZTCgz8nBsllsfny1ETVAX/va1+jq6qKqqooVK1bw2muv8e67717zMRK//OUveeSRR3j44YfJzc3lpZdeIjw8/IajSG63m8997nP86Ec/uumsM7vdHpK71Wc2mLBro7GGj3ExvCEsjLVwokNHnU3EYIHAZKkgSRPJ7PA035wgdTbUH4WOGt8cXxgRS4kJVXQ02nQvzfa7ykp1Lmfkeuo9I983UPC+2mY9YXo3idEunxzfkJdH36lTOC6JmPuTRvTb7cUXX6ShoYHHH3+cDz74gPT0dD7zmc9gNpuR5ZHvP+VwODhy5AirVq36e0EqFatWrWL//v1Dvu7f//3fSUpK4stf/vJNz/HCCy8QHR09+JHuox8o/iTJbjIazLRHTQfJN6s2z4vuRq/ysPmSWBRRaW7ZwxbLedYYp6Ly0fUmOQ/Uuv4NUgVFyW43lpISn8RfAxaqpqJHQ5lHzAZTmufj2V8ZiQ5f/ThHP3UqklaL1WTyzQmC1IjfXXq9nvvvv58tW7Zw+vRp8vLy+PrXv05WVhbd3SNbYr21tRW3201ycvIVjycnJ9PY2Hjd1+zZs4fXXnuNV155ZVjnePLJJ+nq6hr8qKurG1GNgSix/Shhjjbao8e+ONpQDGqZOdHdYjZYADjac5lWl42i6Km+O4lGD0m5IgYLAD2Hj+Bua/NJ/DUgXNKxUJUjYrAA0NKppc+hGtPeXzej0uvRTc2ha7OYDfZJY/rzQqVSIUkSsizjdru9VdOQrFYrX/jCF3jllVdISEgY1mv0ej1Go/GKj2CX0WimTxtDd5iXZwNdZWGslfJOLdXd3lmDRBgdU1cFaVojBWGpvj1R6mxoPAFtF3x7HuGGLCXFqGNj0U6c6NPzrFTnck5u5JKn3afnEW6spllHhMFNvNE38deAsLx87GfO4KgRMfeAETdAdrudv/zlL6xevZqpU6dy8uRJfvOb31BbW0tkZOSIjpWQkIBaraapqemKx5uamkhJSbnm+RcuXKC6upq77roLjUaDRqPhj3/8I++//z4ajYYLF0L/B7fkcfXHX8YZPou/BsyJ7sag8rBZjAIpxiV72Go5T6FxKpKPrzfJuf0jQSIGU4zscmE1m/sXP/Tx9b5NlUMYWrZ7xCiQUjweqGvRk5Fo9/WPc/Q5OUh6PZYSsTXGgBE1QF//+tdJTU3lpz/9KevXr6euro7/+7//Y926dahGkVXrdDrmzZvHtm3bBh/zeDxs27aNhQsXXvP86dOnc/LkSY4dOzb48alPfYoVK1Zw7NixkLi/52aS2g9hcHb6NP4aoFfJzI3pFrPBFHTIVke7u5dCX8ZfA9S6/nuBRAymmJ6DB3F3dBLmw/hrgEHSskg1VewNpqDmTi12p4oMLy5+OBRJp0M/NYcuMRts0IjWAXrppZfIyMhg8uTJ7Ny5k507d173eRs2bBj2MR977DEeeugh5s+fz4IFC/j1r3+NzWbj4YcfBuDBBx9kwoQJvPDCCxgMBvKv+sEQExMDcM3joSqzwUyvLg6bwcdxyMcWxVr4+QUjlRY12Ubfx5zClcxdFUzURpNrSL75k70hdTYcfh1azvVvlCr4laWkBHV8PJo0H832u8pKdS5POf+PGk8rmarh3VYgeE9Ns55Ig5u4KN/GXwMMefl0/vWv2C9eRC/27RxZA/Tggw96fVj2s5/9LC0tLTzzzDM0NjYye/ZsTCbT4I3RtbW1oxpdCkWSx0l64xbaYmb6PP4aMMtoI0ztYdMlPd/O7fHLOYV+TtnNVmsln44t8H38NSBxBmjDoHwDLP++f84pACA7nVjMpYQV+O96L1BlE4Ge7Z5yHlYt88s5hX798ZeO7LQ+f/04R5+djWQwYCkuIfGb3/DPSQPYiBqgN954wydFfPOb3+Sb37z+CrRlZWU3fK2vagpEKW0H0LsstBl9H38N0Klk5kdb2VQXLhogP/uwu5Yud5939/66GbUWkj6OwUQD5Fe2Dz/EY7H4dPbX1fSShttVU9nuPs0X1Uv912gLNHZocbhUZCb7bvbX1SStFv20aVg2bybhG18f99dbDK0EkYwGE736BHr8FYd8bGGshUqrloouMRvMn8yWc2TpYpmq93M0kTYHWs9Bk7g3xJ8sxSWoExPRXGcCiC+tUOdSI7dSJbf49bzjXW2znqgwFzER/r21wJCXh6OqCvv58349byASDVCQULkdpDdtpc0Ps7+uNstoI0LtZlOdWBTRXxweF9stlRRG+2H219USp4E2vD8GE/zC43Bg3bKlf/FDP1/vW1RTiMQg1gTyI7cH6lp1ZCb5bvHDoeinTEEKCxOzwRANUNBIaduPzmWj3Y/x1wCNCm6JsfJBnZ5RLPgtjMI+Ww1Wj903e3/djEoDKflw8h3EBfcP2569eLq7/Rp/DdBKapaqp7Hdc3pUK/oLI9fQrsPpUpHhx/hrgKTRYJg+Hcvm4nF/vUUDFCQyG0z06JPoNSQpcv6FsVaqbRpOd43otjFhlExdFWTr48k2KDQzJ3UOdFRB40llzj/OWEwlaJKT0Cb7N94esFKVxyW5nfPy9VfgF7yrtllHdIT/468Bhvx8nLW12M+M761QRAMUBFRuOxObtvcvfqiQfKMNo8bNJrEmkM/1eZzssF5gjVHBaegJU0EXKWIwP/DY7XRv3YYh1/+juwPmqrKIJkysCeQHLjdcatWRkej/0Z8BukmTUEVEYCkZ33uDiQYoCKS17EHr7qHND4sfDkUjiRjMX/Z2V9Pjcfp39tfVVGpImQkn/yZiMB/r3rULT08Phjwl399qlqqnixjMDxradbjcKjKTfb/44VAktRr99OlYijeP6+stGqAgkNFgwmZIoc/fs4GusjDWwqUeDSc6RAzmS6auc0wzJDJJH6dsIWlzoKsW6o8qW0eIsxSXoElNQZOYqGgdK1V5NMidnJUbFK0j1NU064mJdGEMV3ZhWUN+Ps7L9fSdOqVoHUoSDVCAU7t7mdhSpmj8NSA3qodojYvNl0QM5is9Hic7rReUufn5anFTQG8Ue4P5kKe3l+4dOxSNvwbMUmUSS4SYDeZDLjdcbtX5dOf34dJlZqKKjMRSPH5ng4kGKMClNe9C4+5TNP4aoJZgQayIwXxpt7WKXtnln72/bkalhpQCOLVBxGA+0r1zJ3Jfn6Lx1wCNpGKZejo73CIG85X6Nh1uj0RGADRAklqNfsYMLMXjdzaYaIACXGaDie6wNOw6heOQjy2KtdDQq+Fou4jBfMFsqSDXkEy6LkbpUvqlzQbLZbh0SOlKQpKluBjNhDQ08fFKlwLASnUezVgoly8rXUpIqmnWExflJCrMo3QpAITl5+NqaqL32DGlS1GEaIACmMbVw4SWXQERfw2YHtlLnNYlFkX0AZvbwS7rRYoCYfRnQNxkMMT0jwIJXuXuttFdtjMg4q8BM6V04okUMZgPOF0S9W06v+z8PlzajAxURuO4XRRRNEABbEJzGWqPw697f92MSoIFMRY2X9LjGZ+jpj5TZr2AXXZTGAj3/wyQVP0xWPmG/t0bBa/pLitDdjgCIv4aoJZULFfPoMx9Bs84jUV85fJA/KXg9PerSSoVhhkzsJSYkMfh+1s0QAEso8GENWwijkCJQz62MM5Kc5+aw61apUsJKWbLOQrCUkjTGZUu5Uppc6C7Ceo+VLqSkGIpLkabno4mNlbpUq6wUp1HK1ZOynVKlxJSapt1xBudRAZI/DXAkJ+Pu6WF3qPjb7anaIAClNZpJa1lD+3GXKVLucbUiF4SdE42idlgXmN129nTXR1Yoz8DYjMhLFbEYF7ktlrp3r0bQ27gvb/zpIkkYhQxmBc5Po6/AmH219W0EyeijokZl7PBRAMUoCY0l6GWnbRHB879PwNUEtwaY2XzJT1uMUruFTusF3DKbtYE0v0/AyQVpM6C0++CR9m1S0KFdds2cDoDKv4aoJIkVqhz2ek+g1sOrNGKYHWpVYdHlshIDJz7fwZIKlX/bDCTCdk9vt7fogEKUJkNJVjCM3Boo5Uu5boWxllos6s50CJiMG8wdVUwJzyNFG2U0qVcX+ocsLVCzV6lKwkJlpIStJmZqKMD8/29Up1LOzaOeWqULiUk1DbpSYx2Em4IzIbSkJ+Pu72dnkPja7anaIACkNbZRWrr/oCMvwZkh/eRpHey6ZKYDTZWXe4+9nfXBGb8NSAmA8ITRAzmBe6uLmx79wVk/DVghpRGihTDDo/YG2ysHE6Jhg5tQKz9MxTthAmo42LH3d5gogEKQOmN25Fkd0BNf7+aJMFtMRZKLulwBeYfNUFju6USNx7WGHOULmVokgSpBXD6PXC7lK4mqFm3bgW3O6AbIEmSWKGawU73WVwiBhuTulYdskxAzf66miRJGGbkYjWbkV3j5/0tGqAAlNlgwhqRiTNQ45CPLYyz0OFQs69Zp3QpQc3UVcH88IkkaiOVLuXG0uZAbztU7VS6kqBm2VyMLisLtTHAZvtdZaU6jy56OOqpUrqUoFbTpCcpxkmYPrBvmDTk5+Pu7MT24QGlS/Eb0QAFGL2jg+S2D2kL4PhrwKQwOyl6h9gbbAzaXT0csNVSqOTO78NlnAgRSWJvsDFwdXRg+/DDgB79GTBVSmGCFMt2EYONWp9DoqlTS2YALX44FE1qKuqEBCwlxUqX4jeiAQowExu3IiEHdPw1QJL6d4gvuazHIUbJR2WbpRIZWBXI8dcASeqfDXbmfXAF/g/0QGQt3QKyjD4IGiBJklipymW3+yxOeXzNDvKWS606kCE9gOOvAf0x2AyspVuQHePj/S0aoACT2WCiK2ISLk2E0qUMy8JYKxanir1NIgYbDbOlggUR6cRrwpUuZXjS5kBfF1wsU7qSoGQpLkY3eRLqyACPOz+2Up2HlT4Oey4qXUpQqmnSkxzrxKAL7PhrgCE/H4/Vim3/fqVL8QvRAAUQg72V5PbDAT3762oZYXYmGOx8IGKwEWt12Thku0RRMMRfA6JSISqlf2sMYURcra30HDoUUHt/3cxkKYkMKZ7tbhGDjVSvQ6K5M7Bnf11Nk5yMJilp3CyKKBqgAJLeuBVZgg7jdKVLGTZJgttirZRe1mMXo+QjsqXrPCok7ojKVrqU4ZMkSJkFZz4AV/D8YA8EltJSkKSguP9nwEAMtsdTgV0eP7ODvKGuWQ8SpAfg4odDkSQJfW4u1q1b8dhD//0tGqAAktlQgiViMq5giUM+tijWQrdLxS4Rg42I2VLBrZEZxGjClC5lZNLmgKMbKrcpXUlQsWwuRj95Mqrw4Hp/r1TnYcPOIc8FpUsJKrXNelJinei1wRF/DQjLy8Njs2HbG/qLnooGKECE9TWT2PFRUMz+utrEMAcZYXY21YlFEYer2dnN0Z7LFAXy4odDiUoBY5qIwUbA2dRM79Gj6ANw64ubyVIlMklKFDHYCPTYVTR3aQJy76+b0SQloUlJwVIc+rPBRAMUINIbtyBLKjqC8RcicFushS31OvpEDDYspZZzqCUVK41TlC5ldFJnw9nN4OxVupKgYDWbQaXCMD144u1PWqnOY6/nHHbZqXQpQaG2WYdKgokJwRN/fZIhNxfrtu14+vqULsWnRAMUIDIbSuiKnIJbHWRxyMcWxlrocasoaxQ3Qw+HqauCxRFZGNVBOmqWOgecPXB+i9KVBAVLcTH67CmowoLz/b1SlUsvDvZ7KpUuJSjUNutJiXOiC7L4a4AhLw+5t5funbuULsWnRAMUAMJ7G0nsPB6U8deANIOTSeF9fFAnGqCbaXBYON7bQGEg7vw+XJGJEJ0uYrBhcDY00HvsGIa8fKVLGbV0VTw5UjI7RAx2U7Y+Fa0WbVDGXwM0CQlo0lKxlIT2bDDRAAWAjEYzbklDZ1Rwxl8Dbou1sK1BR4+YLHJDpZZz6CQ1K6KCNP4akDoLKkzgsCldSUCzlJhAo0E/Lbjf3yvUeez3nKdXDs5Yx19qm/WoVHLQxl8DDLl5dJeV4enpUboUnxENUADIrC+hKzIbtzq4R08Wxlrpc6vY1hDcX4evmSwVLImcRGSQX29SZ4OrF86Nrx2kR8pSXIw+JweVIUjjzo+tVOXSh5N9nvNKlxLQapp1pMU50GqCM/4aYMjLQ+7ro7usTOlSfEY0QAqL6LlEvKWctujgjb8GJOudTInoZZOIwYZU5+jkVG9TcMdfAyISICYTTom9wYbiuHSJvlOnMATh7K+rpalimS6lst1drnQpAau7V0W7NbgWPxyKJi4O7cSJdIXwooiiAVJYRoMZt6SlMzIEfiECC2OslDXq6XZKSpcSkEq7zmGQNCyLnKx0Kd6ROgvOl4LdqnQlAclSUoKk1aKfGhrv7xXqPA54KumRg/8XvC/UNutRq2QmxAd3/DXAkJuLbedO3N2hGXOLBkhhmQ0ldEbl4FGHxiKCC+Ms2D0SWxtC4+vxNrPlHEujJhMeItebtDngtkNF6P6VOBaWzcXop05FpQ+NUdGV6lwcuNnjOad0KQGpplnPhHgHWo3SlXiHIS8P2emke8d2pUvxCdEAKSjKVkOctSKo9v66mQSdi6kRvXwgFkW8Ro29gzN9zRSFQvw1ICwWYifBqb8pXUnAcVRXYz97NiTirwHJUjR50kQRg12HpUdFR7cmJOKvAeqYGLQZGSG7KKJogBSU0WDGrdLRGZWjdCledVushV1NOrocIgb7JJOlgjCVltsjJyldinelzoYL26C3U+lKAorFZELS69HnhNb7e4U6l4OeC1jl0F4kb6Rqm/Vo1DJpIRJ/DTDk5tK9Zy9ui0XpUrxONEAKymwooSNqKh6VVulSvGphrBWXB7bUh8awv7eYu86xPGoyYSF2vUmdBW4XVITmX4mj1bV5M/qpU5F0IRJ3fmyFegZuPOzxVChdSkCpbdYzId6ORq10Jd5lyMsDlwvrttCLwUQDpBBj90ViuitDKv4aEKdzMT2yVyyK+AkX7W2ct7cG595fNxMWA/GTRQz2CfYLF3Ccr8SQH7yLHw4lUTIyU8oQe4N9QpdNTadNQ2ZSaI3+AKiNRnSZmSEZg4kGSCEZDWZcKgOdkdlKl+ITC2Mt7G3W0WEXMRj0b30RqdKxODJL6VJ8I3U2XCyDnnalKwkIlhITksGAfkqQL3Y5hJXqXA57LtIlh+4ieSNR06xHq/aQGhd6DRCAPjcX2759uDo6lC7Fq0QDpARZJrOhmI6oqciqEJkucJVbY614ZCgVMRiyLGPqOseKqCnoQ/R6kzILZA+c3aR0JYqTZRnL5s3op01D0oZY3PmxZeoZyMjsdosYTJb7Nz+dkOBAHWLx1wBDbi54PHRv26Z0KV4lGiAFRHefJ9pWTXsILH44lBitm9yoHhGDAeftrVQ52imKDsH4a4DBCPHZIgYD7OfO46iqCsn4a0C8FMksVSbbPSIG67KpsfRognrvr5tRR0Whm5RF1+bQisFEA6SAzAYTTnUYXRGhOTw+4LZYK/tbdLSN8xjM1HUOo1rPwohMpUvxrdRZULUbbK1KV6IoS0kxUlgY+skhstjlEFaqcvnIU0WnHJqL5A1XTbMencZDSpxT6VJ8ypCbR8+BA7jaQyfmFg2Qv8kymQ0mOqKmIatCdLz0Y7fGWJFlKLk0fkeBZFnGbKngjqhstCF+vUmdBchw+j2lK1GMLMtYikswTJ+OpAnRuPNjy9TTAdjpPqtwJcqR5f4GaGKiA3WI/zY15PYnFtbSUoUr8Z4Qv2SBJ9ZylqieupCOvwYYtW7yjT1sujR+F0U809dMraOTwlCOvwboIiFhKpRvULoSxdjPnMFZWxvS8deAGCmCOapJbPeM30URO7rVdPeqyUgM3fhrgCoiAt3kySE1G0w0QH6W0WjCqY7AEhFii+ENYWGshYMtWpr7xud/ambLOWLUBhZEpCtdin+kzoaafWBtUroSRVhKSvp/UUwaH+/vlapcjnlqaJO7lS5FEbXNevRaDymxoR1/DTDk5tJz+AiulhalS/GK8flbSSmyTGZ9CR3GachSiMchH1sQY0WSxmcMJssy5q4KVhlz0I6T603KTEAalzGYLMt0bS5GP306UqhOB7rKUvV0VKgoc59RuhS/G4i/0hPtqMbJb1LDjBkgSVjMoRGDjZPLFhjiusqJ7GugLQQXPxxKpMZDgdE2LmeDnept5LLTEpqLHw5FFwGJ0+DUO0pX4nd9p07hqq8fF/HXAKMUxi2qyewYh3uDtVk12PrUZITg4odDUYWHo58yBcvmzUqX4hWiAfKjzEYTDk0klogspUvxq4WxFg636WjsHV//uZkt54hThzMvYqLSpfhX2myoOwCWeqUr8StLcQmqyEh0mSE+2+8qK9S5nJDraJFDb6+oG6lt1mPQekiKHh/x1wBDXh69H32Esyn4Y+7x9RtJSbKHzHoTHVHTQRpf3/ZbYrrRSjKbx1EM5pFlzJZzrDbmoBln15vkmaDSQPlGpSvxG9njwVJcjGHGjHETfw1YopqGFjU7xlEMNrD4YXrS+Im/BuinTweNBqvJpHQpYzbOLp1yEjpPEG5vom0czP66Wrjaw6zo7nEVg53obaDRaQ3txQ+Hog2DxOnjalHE3mPHcTU1jav4a0CkZGCBasq4isFaLRp67OqQXvxwKCqDAX12dkgsiigaID/JaDBj1xixhmcoXYoiFsZaOdau45JtfPwnZ+qqIFETwdzwCUqXooy0OXD5MHTWKl2JX1hMJaiMRrQZ4/P9vVKdS7l8mUa5U+lS/KKmWU+Yzk1itEvpUhRhyMuj78QJnJcvK13KmIyP30ZKkz1kNproMI6/+GvAvOhudCoPxeMgBvPIMqWWc6wxTkUljdNVsJPzQK0dFzGY7PFgKTH1x1/jLQ/52GLVVHRoxkUMJstQ16wjPcnBeH17D+xzZzGZlS5lTMbnu9XPEjuOEmZvpS06T+lSFBOm9jDHaOODutBfFPFoz2VaXLbxGX8N0BggMXdcxGC9R47gbmkZl/HXgHBJz22q7HERg7V0aeh1jM/4a4BKr0eXk4OlOLhng4kGyA8yG0zYtdF0h42z2UBXWRhr4WSnlpru0L5J1NRVQYo2ioKwVKVLUVbabGg4Bu0Xla7EpywlJahjYtBOHN/v75XqXM7KDVz2hM5eUddT06wnXO8mwTg+468Bhrw8+spP46gN3phbNEA+JsluMhpKaTf2LyA1ns2J7kav8rAphGMwl+xhi+U8heM5/hqQlAtqPZS/q3QlPiO73VhKTOjHcfw1YKEqBwNadoTwDvEeD9Q168lIso/3H+fop05F0umwlATvbLDx/Y71g6T2wxicHbQZx2/8NcCglpkb3c2mEJ4NdsR2iXZ3D4XGqUqXojyNHpJz4VTo7g3Wc+gQ7o6OcR1/DQiTdCxU5bDDHboNUHOXlj6nalwtfjgUlU6HfurUoN4bTDRAPpbRYKJPF4stLE3pUgLCwlgLZ7q0XLSGZgxmslQwQRtNfliK0qUEhtTZ0HQKWiuVrsQnLMUlqOPi0E4Yp7P9rrJSnct5uYk6T5vSpfhEbbOOCIOb+KjxHX8NMOTlYa+owF5VpXQpoyIaIB+SPE4yGrfQHiXirwFzom2EqTwhOQrklN1stZynMHoqkrje/ZJm9N8QHYI7xMtOJxazGUNurrjeH7tNlU0YupDcId7jgboWPZki/hqkz8lB0uuxlJQoXcqoiAbIh5LbDqF3do3r2V9X06lk5sVYQ3JRxIO2OjrdfeNr76+bUev6p8SfDL29wWwHDuLp6sKQJ97fA/SSlttVU9kegjFYY4cWu1NFxjie/XU1SatFP20aliBdFFE0QD6U2WiiVxdPj0HEIZ+0MNbKeauWc12hFYOZuyrI0MUw3ZCodCmBJW0OtFZAc2itEWMpKUadkIAmdZzP9rvKCnUuVXILVZ5mpUvxqtoWPZFhbmIj3UqXElAM+fk4LlzAfv680qWMmGiAfETlcZLeuEXM/rqOWUYbEWo3my6FzppATo+brZZKCo3TRBxytYTpoA0PqdlgssOBtbRUxF/XsUA1hUj0IXUztNsDdS06EX9dh37KFKSwsKCcDSYaIB9Jad2PztUt4q/r0Kpk5sf07w0my0pX4x37bTVYPXaKosXsr2uoNX+PwULkgnfv24fH2i1mf12HTtJwu2oa2z2nkUPkeje2a3G6VON68cOhSBrNxzHY5qC73gHRAL344otkZWVhMBi49dZbOXjw4JDPfeWVV1iyZAmxsbHExsayatWqGz5fKRmNZnr0ifTqk5QuJSAtjLVQ1a3hTJdG6VK8wtRVwWR9HDn6BKVLCUxpc6D9Qv+MsBBgLTGhSUpCkyTe39ezUp1HrdzGBblJ6VK8oqZZjzHcRXSEiL+uJyw/H0dNDfaKCqVLGRHFG6C3336bxx57jGeffZajR48ya9YsCgsLaW6+fn5cVlbG/fffz44dO9i/fz/p6emsWbOGywG0KZvKbSe9cZuIv25gZpSNSI2bzSGwKKLd42KH9QKFRjH7a0gJ00AXERIxmMdux7p1K3oRfw1pnmoSURhCIgZzu+Fyq46Mcbz3183oJk9GCg8PuhhM8Qbol7/8JY888ggPP/wwubm5vPTSS4SHh/P6669f9/lvvvkmX//615k9ezbTp0/n1VdfxePxsG3bNj9XPrTU1r1o3TbaxeKHQ9Ko4JZoa0jEYHu7q+n2OMb33l83o1JD8syQiMFse/bgsdkIE/HXkLSSmqXq6SERgzW063C6Rfx1I5JajWH69KCLwRRtgBwOB0eOHGHVqlWDj6lUKlatWsX+/fuHdYyenh6cTidxcXHX/bzdbsdisVzx4WuZDWZshmR6xWygG1oUZ6HWpmFbg07pUkbNI8v8ue0oU/UJTNbHK11OYEubA501/fuDBTFLcQmalBQ0ieL9fSN3qPK4LHewzxN8s4MGyDKcvWQgJkLEXzdjyM/HeekSfeXBM+qnaAPU2tqK2+0mOTn5iseTk5NpbGwc1jGeeOIJ0tLSrmiiPumFF14gOjp68CM9PX3Mdd+I2t3HhOYd/fGXcEMzo3qYE93N949E0WEPzrHlt9uPc6jnEt9NWaZ0KYEvPhv0UUG9NYanrw/r9u0YcnOVLiXgzVNN4jZVNv/p3EyX3KN0OaNy/rKB5k4dc7NtSpcS8HRZWagiI7GUBM+aQIpHYGPx05/+lL/+9a+8++67GAzXn1L95JNP0tXVNfhRV1fn05rSWnajdfeKvb+GQZLgqxmN9Lnh2WNRSpczYrX2Dn7VtIvPxs5iYWSm0uUEPpUaUmb2N0BBNEz+Sd07dyH39orZX8MgSRKPa9fjxMV/OYPr3hAAa4+Kjy5EkDOhl5Q4p9LlBDxJrUY/fTqW4pKgicEUbYASEhJQq9U0NV05U6CpqYmUlBsvHvjzn/+cn/70p5SWllJQ8P+3d9/hcVVn4se/d7qkGTWrW9LIXZLlbrBFCQ44lBACISFOfoRiWDaAYXEcWEpoCQktkA0kWUhIKFmSOCEs1So2NlaMcZFtjC0Xucl9JFl1NGpT7v39YdAi3CRrNPeO9X6eR89jz9y59x0dndGr895zzsQTHme324mPj+/1NZhyPWX4HFl0SzmkT5JtQebm1PHuAQclUXRDdEhTefBwOSnWOBakn693ONEjcwp4D8Kh9XpHclq8pSVYs7KwDJP+3Rcpiov51kv5QN3C8ii6IVrVYPV2FzF2lckjZfSnrxxFRQQ9Hro2bdI7lD7RNQGy2WxMmzat1w3Mn9/QXFxcfMLXPf300zz22GOUlZUxffr0SITaJ+ZgB8PrK2iKz9c7lKhybpKXGYlt/GSDk4au6CiF/U/jBjZ2HObnWZcSa47ee5gibtgocCREZRlM7ejA9+Fy7FL+6pfZpiK+Ysrn2UApzVp0JBPVB2I40mphZn4b1jNjpY6IsLndmOLj8ZZEx95gupfAFixYwEsvvcRrr73Gtm3buO2222hvb2fu3LkAXH/99dx///09xz/11FM89NBDvPzyy+Tl5VFbW0ttbS0+n0+vt9Bj+JF/YVG7aZLFD/tFUeDm3FpCqsYDG+INXx3Z3dXIb+pXct2waUyNk13A+0UxQcZEqHrz6O6SUcS3fDlad7fs/dVPiqLwY+vXAXgmYPxZQq3tZj6tiSU/p4u0RNn1vT8Uk+nobLDSErQo6N+6J0Bz5szhmWee4eGHH2by5Mls3LiRsrKynhuj9+/fj8fj6Tn+hRdewO/3853vfIfMzMyer2eeeUavt9DD7SnFFzOcbluS3qFEnQRriH/LrWXxYTtv7zduKSyoqfzkUBnDrQncmXaO3uFEp6wp4KuFg8ZbwPRkWktKsWZnYznBjFNxYklKHHdbv84KtZol6ma9wzkhVYVV25w4HSEmjoiO0SqjcRQVEaw/QufGjXqHckqGGNy74447uOOOO4773PLly3v9f+/evYMf0GmwBHxk1a/gYNosvUOJWjOSfJyX3MrDG10UpwXIiDHeXxB/aljLtq56Xh/xPRwmq97hRKekPIhJOloGy52pdzR9EvL5aK+owPnVr+odStS6wFzA7FARvw6UM8WUR6oyuPdjno6t+2NobrPwtWmtWM6svZojxpqTgykhAW9JKbFTp+odzknpPgJ0psiuX45ZC9AUL/cHDMTcnDqsqNy7zmW4Utj2znperF/NzSlnMyFWdgA/bZ+Xwbb8L6jRsbaK78MP0QIBKX8N0Hzrpdix8HTgfcOVwprbzGzeG0uhu5OUeCl9nS7FZMJRUIC3tBQtZOz+LQlQmOR6ymiLzcFvS9A7lKjmtKj8u9tDRZ2dv+81zm7xfjXITw6VMdKezG2p0TFqYWhZU6D9COz7WO9I+sRbUoI1NxdzYqLeoUS1eCWG/7R+gzXqbhaFNuodTo+QCqu2uUiIDVGUF51rFhmJo6iIUGMjHeuMPdtTEqAwsAa8ZDWspFFGf8JiSkI7F6a08LONTg60G+NH9MUjq9njb+Lx7MuwmmRsfMAS3RA7LCr2Bgt5vfhWfCSLH4ZJsXkMl5sn85vgYjxqi97hAFC1NxZvh5niwjbMxvjIiWrW7GzMSUl4y4w9G0yaOgyy65ahaCFZ/TmMrsuuJ84c4p518ag6j5Rv6vDwp4ZKbk2dyTjZ3iQ8FOVoGWzr2xAydrmh7YOlEApJ+SuM7rBcTDwxPBl8D1XnUlhDq4Wt+2IoyusgyWnskk20UBQFe0EBbWVlaEHj9m9JgMLA7SmjLTaXgNV4N/VFq1izyg/dHlYfsfHn3TG6xdGlBvjJoTIKY9K4OeVs3eI4I2VNgY5G2LtC70hOyltais3txjzIi6gOJXGKnfusV/CJupe3QpW6xREMwertTpJcQQpzO3WL40wUU1REqLmFjrXGne0pCdAA2fwtZDSulpufB8GE+A4uSW3myU1x1LTpU3b6Tf3HHA54+cXwS7Eo0l3CKiEH4lKP3gxtUMHmZto//lgWPxwE08wj+JZ5Oi8Gl3JAbdQlhk01cfi6zBQX+DBJ9w4rS1YW5mHD8JYatwwmTT5AOXVLUTSVxgQpfw2G/ze8nkRrkAWVLkIRHilf336Q/2lcz3+knSs7vQ8GRYHMSbD1XQgZc6+ltg8+AFWV8tcgudVyESmKi8cD7xLSIrvsRX2Lhe0HHEwa0SE7vQ8CRVFwFBbiLV+MFjBm/5YEaIDcnlK8cXkELU69QzkjOcwat+V52Nhk5Y87YiN23Y6QnwcPlTM5NosfDDP2WhZRLXMydLXAngq9Izku76ISbCNGYHZK/x4MMYqNB6xXslU7yD9CqyN23UAQVm9zkZoQZFyOlL4Gi2P8eFSvl/bVkWvb/pAEaADs3U2kN1ZK+WuQ5Ts7+UZ6E89siWNHa2RKYb+qW0FjsJ2fZ12CWUpfgyd+ODjTDVkGCzY10bF2rYz+DLIJphzmmIv5Y3A5NWp9RK65cXccnX4TM/PbMEXH9oNRyZKRgTk11bB7g8kn+wDk1H2ABjL7KwK+m9VAus3Pgsp4AoM8Uv6xbx9/b/6UH6V/hVy7bGsyqD4vg217F4LdekfTS9vixQA4CqR/D7abLbPIUpJ4PPAuQW1wy1GeJis7D8cwZVQ7rljjrTZ/Jvm8DNa2ZAmq3693OMeQBGgA3IdL8TpHELRErjQzVNlMR0thW1ss/Pf2wft+t4W6efhQOTPicpmTPGnQriO+IGsKdLfB7g/1jqQX76ISbCNHYoqL0zuUM55dsfCA9Up2abW8Hlo5aNfxBxXWbHeSnuRnzPCuQbuO+D+OoiJUn4/2lYPXrqdLEqDT5Og6Qlrzeil/RdDouC6uymjk+W1xVDUPzjZ2T9cux6f6eSzrYkyKjI1HhCvz6JeBymCB+no61q2T8lcEFZiyuNZ8Lq8FV7BD9Zz6Badhw844/EGFmfk+pHtHhjUtDUt6miHLYJIAnabcuiVoikKTK1/vUIaUb2c2kBPTzYJKF91hHimvaNvD2y1buDdjFpk2WfMlojInwfb3IWCMv8rbFi+Bz/Y0EpFzg+UrjFBS+UXgHfxaeBfQO9RgZU+tg2lj2olzSOkrkhyF42lbuhS121hlbkmATpP7cCmtcaMIWfRbpG8ospjgdreHPW0WntsavtJES7CTRw8v4XznCK5KlL/6Iy5rCvjbYdcSvSMBwLtoEfZRozDFSP+OJKti5ifWKzmgNfJq8F9hO293QGFNtYusZD8jM4z1S3gocBQVoXV04PtX+No0HCQBOg0xnbWktmykKUHKX3pwx3bzncwGXqyOZUNjeEphj3uW4deCPJr1NRQZG488ZzrEZ0OV/mWwQG0tnZ98IuUvnYwypTPXcgF/DX3MFvVgWM65bocTVYWzpfSlC0tKCpbMTLylZXqH0oskQKcht3YxqmKh2TVO71CGrG9mNDIyrosFlfF0DnCkvLx1B6Xeah7IuJA0q6z3opvMSVBdCn59d+P2lpWBxYI9X8rbevm++RzGKZk8HniHLm1gi+jtr7exr97O9LHtxNql9KUXR2Ehvg8/RO00zrpLkgCdBrenjFbnKEJmh96hDFlmBW7P83C4w8Qvq04/aWkItvNzzwd8LX4MX0+QX3i6ypoCwU7Yo+9sMG9JKfbRozE5pH/rxaKYeMB6JXWal5eCp//z0OlXqNzhJCe1G3ealL705CgqQuvsxFdhnEVPJQHqp9jOw6S0bqZRZn/pbrjDz5ysI7yyK4bVR6z9fr2maTx2+ANMKDyYeZGUvvQWlwKJubB9kW4hBA4domvTJil/GYDblMItlq/yz9AaNqr7+v16TYPK6qN/HJ01VkpferMkJ2MdPhxvSYneofSQBKif3J5yQoqVZtdYvUMRwNfTmsl3dnJ3pYv2YP8+4d5v3caytt08lDWbZFnLyRgyJum6HpC3rAzFasU+TsrbRvAd89lMUHJ5IvAuHVr/FtLbW2fnYIOds8f5cNgivJGgOC5HYSG+5RWo7e16hwJIAtRvbk8pra7RqGa73qEIwKTArXkejnSZeHxT32eF1QbaeMLzIZcn5DM7fswgRij6JWsyhPQrVbQuKsE2Zgwmu/RvIzArJu63XkGz1s4LwQ/6/LqOLhPrdsaRl95FTqrxViAequzjx6P5/bR9uFzvUABJgPrF2X6AZO82KX8ZTIY9wA+y6/nLnlj+VWs75fGapvHo4cXEmCzcn3lhBCIUfRY77GgZTAf+/fvp3rqVmKIiXa4vjm+4KZnbLbN5J7SetaHdpzxe02BNtROLSWP6GGOMNIijLElJWHNyDFMGkwSoH3JrywmZbLS4ZMTAaL6W0sLE+Hb+c72LVv/JS2FvNm9mpW8fj2ZdTILcyG486fokIN7SMhSbDdsY6d9Gc6V5GtNNI3gq8D5t2skXy9ztseNpsjEj34fNKqUvo3EUFuJbsYJQW5veoUgC1B9uTwktrjGoplOPMojIUhT4oduD1w8/+/TEs8IO+Vv5ZV0F304s4nzXiAhGKPosXZ8bkL2LFmEfOxaTTfq30SiKwr3WK+igm98Eyk94nK/TxIZdcYzK7CJr2MCmz4vB4Rg/HgIBfMuW6R2KJEB95fLVkNS2U8pfBpZiC3J9dj1v7othyeFjf4mpmsZDh8pJMDu4O+MCHSIUfeJIiPglu/fU0L1jBw4pfxlWupLAnZaLKVM38VGo+pjnNQ1Wb3dis2hMHS2lL6MyJyRgdbtpNUAZTBKgPnLXlhM02WlxjtY7FHESs4a1Mi3Bx33rXTR39y6F/a3pEyo7DvJY1iU45SZ28QXeslIUux37aOnfRnaZeRLnmMbwTGARrVrvBTN3HHJQ32JjZoEPq0VKX0bmKCykfeXHhFpbdY1DEqA+ch8upcU1Fs3U//VmROQoCtzi9tAdgoc+cfU8vre7mV/XfcT3kyczw6nPTbbCuLyLSrCPG4dilf5tZIqicLf1cgKE+K/A/+0u7u0wsXF3HGOHd5KRJKUvo3OMHw+hEG0f9H1m32CQBKgPEtp2kdC+h0bZ+ysqJFlD3JRTy/sHHbx/wE5IU3nwUBlpVifz08/XOzxhMN07d+LfvVvKX1EiRXGxwHoZy9StLAttQdVg9TYXMXaVyaOk9BUNzC4Xtrw8vCWlpz54EEkC1Ae5njKC5hha40bpHYroo3OS2piZ5OXBT1z8rnYDmzo9/Hz4JcTKCJ74Em9pKUpMDPZR0r+jxYWm8cwyFfBfgVI27DfR4LVQnN+Gxax3ZKKvHIWFtK9aRbC5WbcYJAE6FU3D7Smj2TUWzRSencfF4FMUuDmnDs3q4Y+NK7lh2HSmxA7XOyxhMJqm4V1UgmPcOBSL9O9ooSgKC6yXkdSRyfaaBPJzOklNHOCuyCKi7IWFoGm0LV6iWwySAJ1CYtsO4jv2yeyvKBRrCZCcvZCgfxjDu2TBQ3Gs7upq/Pv2SfkrCsVrcVyx+2ZaHPXUudfoHY7oJ7PTiW3kSF0XRZQE6BTcnjIC5li8zpF6hyL6qSS4iSZTA4XtX+cXGxPxdMiPe9TyHRmU03pLSlFiY7GNlP4dbbbsiyHYHkfnmDX8JlRKvebVOyTRT47x4+morCTY0KDL9eU3wsloGm5PKc2ucWiKFJejyT61kUWBT/m6ZSK3ZZiwKir/uc6FJrNjo9OOsrCf8mj5axGO/HwUs/TvaNLUZqZqXyzjczu5NXkaDmw8FXgPTTp4VHEUFICi4F28WJfrSwJ0EknerTg7D8nsrygT0EL8qXsFWUoS37BOxGlR+aHbw4p6O3+tka0votL298N+yq4tWwkcOiTlrygTUmHVNheJcSHG53XgUmK41/oNKtU9vBvaoHd4oh9MsbHYR47Eu0ifMpgkQCfh9pTjtzjxxsmWCdHk3cBG6jQvN9nPw/LZyN3khHYuSmnh55862e+TH/uoc3AdeD1hPaW3tAST04ktLy+s5xWDa3NNLG0dZmYWtGH+rCvPMI/mCvMU/ju4hMOqfrOKRP/Zx4+nc8MGAnX1Eb+2/CY4kS+Uv1Dk2xQtdofqKQtW8U3rZHJMyb2euy67Hqc5xN3r4lFlpDy6mMyw9e2wnU7TNLwlpdil/BVVGlotbNsfw4S8DpKcoV7PzbN8jQRieTLwHqqUwqKGIz8fTCbayk+8x9tgkd/sJzCsZRNxXbU0SfkranRrQV72f0SeaRiXWo4ta8SYVW7N87C2wcaru2J0iFCctmGjoerNsJ2u69NPCXo8Uv6KIsEQrNrmJNkVpCC385jnYxU791m/yUZtH2+G1uoQoTgdppgY7KNH6TIbTBKgE3DXluO3uPDGuvUORfTRW4H1NGnt3GQ7D/MJRu2KXB1cmtrEU5ud7G6Tv/yjRvoEOFgJrQfDcjpvaRmm+Hhsbunf0eLTPXF0dJuZWeDDdILfXFPNeXzbfBa/Dy5jv6rPzCLRf47xRXRu3EjAE94y96lIAnQ8mkqup4ym+Hwpf0WJ6lAtHwS38S3rVDJNiSc99v9lHyHZFuDHlS5CMlIeHVLzwWSFLW8N+FSaquItLTk6++tEv0mFodQ1W6g+GMOkke0kxIVOeuwPLReRpsTzROBdQpoaoQjFQNjHjQOLBW9p+Gd7noz0/uNIbd5IbPcRGuPH6x2K6IMuLcAr/o8YY0pntuXUJUu7SeM2t4dNTVb+UB0bgQjFgFntkFYQljJY5yefEKw/IuWvKBEIKqze7iI1IcC47K5THu9QrNxv/SbbtMMsDK2KQIRioEwOB/YxYyJeBpME6Dhya8votibgi83ROxTRB28EKmnTuphrOxeTovTpNeOcnXwjvYlfbY2julVKYVEhczIc/gSa9w7oNN6SUkwJCVhzpH9Hg092x9IdMDGzoI0+dm8mmHKYY57Jy8EK9qiRn10k+s8xfjxdVVX4D4anzN0XkgB9iaKFyPUspsmVT597m9BNVegQFcEdfMc6nTRTfL9ee01WAxl2Pz9aG09ARsqNL308mG0DKoNpoRDesjIchYVS/ooChxut7Docw5RR7bhi+tdJb7LMYriSxC8C7xDUTl42E/qzjx2LYrXiLY3cDvHyCfAlqU0biPE30pQg5S+j69C6ec2/kkJTFrMs4/r9eptJ43b3Yba3WvjttrhBiFCElcUOaYWw+fTLYB3r1hNqbMQxXvq30fkDCmuqnWQk+RmdderS15fZFQs/sV7FHq2OPwc/GoQIRTiZ7HbsY8dGdFFESYC+xO0po8uaiC9Gdg43uoX+tXRpAW60nYtymqN1I+O6+VZmI7/dHsvmZtkN3PAyJ0PdZmjcfVov95aWYE5KwpqdHd64RNit3xVHMKgwI9932oPx40yZXGc+j/8JfUS1GtkZRqL/HEVFdG/fjn/v3ohcTxKgL1DUIDm1i2mKL5Dyl8FtDO7n49Buvmc7m2TTwEZvrs5oIDemmwVrXXTLSLmxpRceHQna8r/9fqkWDNJWXn60/CX929AONtioqXUwbUw7cY6B1aevs5zPSCWNxwPv4NeCYYpQDAb76NEodjvessjMBpME6AvSmipxBFqk/GVwbVoXf/Z/zERTNueYRw/4fBYT3J7nocZn4b+2SinM0My2o/cCnUYZrGPtWkLNLTL7y+C6/Aprq51kDfMzIqN7wOezKmYesH6TA1ojLwcrwhChGCyKzYZ97FhaFy2KyPUkAfoCt6ecTlsy7Y5MvUMRJ/EX/2pCaFxvPydsf8nnxnRzTdYR/lAdy/pGKYUZWuYUOLINjlT362Xe0lLMw4ZhyZT+bWTrdjpRVZgxru+zvk5llCmdmyyzWBhaRZUauVlGov8cRUX4d+6ie/fplbn7QxKgzyhqgJzaJVL+Mri1wRrWhfZyrW0GiUp41/C5Ir2JUXFd/HhtPJ0yUm5cqflgjYGqvpfBtEAAb/liKX8Z3L46G/vr7Uwf6yPGHt5VSr9nLiZfyeLxwDt0aYGwnluEj33UKBSHIyKLIkoC9JmMxtXYg16aZPFDw2rVOviLfzXTzXmcZR4R9vOblaOlsMOdJp6qcob9/CJMzFZIG390UcQ+bnrZvno1qtcr5S8D6+xWqNzhJDe1G3eaP+zntygmHrB+k3rNy++Dy8J+fhEeitWKfdw4vIsWoQ3ypraSAH0m11NOpz2FDke63qGI49A0jf/xr8KEwrW2mYP2V3yWw8/3so7w6q5YPq63Dso1RBhkTYHGnVC/tU+He0tKsaSmYkmX/m1EmgZrdzgxKTB97OnP+jqVXFMK/265kDdDa9kQ2js4FxED5igqwl9TQ/eOnYN6HUmAAFPIT07dBzRK+cuwPg7tZmPoANfbinEpjkG91mVpzRS6OrhnnQtfQH4eDCl1HFhj+1QGU/1+2pYswS7lL8OqqbVzqMHOWeN8OGyD+1f/d8xnM1lx82TwPTq0gd9kLcLPPnIkSmws3rLBXRRREiAgs+FjbMF2KX8ZVJPazkL/GorNo5hiGfzdu00K3Or20Nhl4hebpBRmSCYLZBRB1T9PWQZr/2glqs8n5S+Dau8ysX5XHHnpXeSkhr/09WUmReE+6xW0au38LvjBoF9P9J9iseAYNw7vopJBLYNJAgTkesrosKfR6UjTOxTxJZqm8Zp/JQ7FyvdsZ0fsuun2AD/IrudvNTEsr7VF7LqiHzKnHN0XrHbTSQ/zlpZiSU/Hmib922g0DdZsd2Ixa0wf0x6x62aZkrjd8jXeC21gTWhXxK4r+s5RVERg/366t20btGsM+QTIHOoiu37Z0dlfwnD+FdzBFvUwN9jOIU6xR/Tas1NamBTfzr3rXLT6pXRiOCljweY8aRlM7e6mbelSHIWFEQxM9NWuww5qm23MGOfDZh3c0teXfdM8lbNMI3k68D5tWmdEry1OzTZiBKa4uEHdG2zIJ0CZR1ZiDXXSKIsfGs4RtY1/BCr5imUsRebIb12gKPDvbg++ADy6UUphhmMyQ8aEk84G8/3rX2gdHVL+MiBfp4lPdscxOquTrGGRn5auKAr/af0Gnfh5PlAe8euLk1PMZuz5+XhLBq8MNuQTILenjHZHJl32FL1DEV+gahqv+D/CpTj4rvUs3eJIsQW5IaeOt/bHUH5ISmGGkzUFWg/AoQ3HfdpbUoolMxNLivRvI9E0WL3Nhd2qMmVUh25xpCsJ3Gm9hHJ1MytC23WLQxyfo6iIwKHDdFVVDcr5h3QCZA52MLx+OU3x+XqHIr5kaXArO9Q6brSdi0PRdzr6V5K9TE9s44H1Lpq6pRRmKMmjwB5/3L3B1M5OfB9+KOUvA6o+6KC+1crMfB9WS2RLX192qWki55rG8kyghBZNv2RMHMvmdmNyOvGWDE4ZbEgnQFlHVmBRu6T8ZTC1aiv/G9jARZYC8s36b1ugKHBLbi1+FX6ywdXXtfdEJJjMkDHxaAKk9t4001dRgdbVJeUvg/F2mPl0TxxjsztJT9J/RWZFUbjbejkhVH4VGNxZR6J/FLMZR0HB0TKYOrBNcY9nSCdAbk8Zvpgsum3JeociPhPSVF72ryBZieNq6zS9w+mRaA1xc04tpYccvHcwsjdji1PImgLew3CwstfD3pISrMOHY0mW/m0UqgqrtjmJtatMHhm5WV+nMkxxssB6GcvVbSxTt+gdjvgCR1ERwbo6Oj/9NOznHrIJkCXYwfAj/6IpXobHjaQ8WEWN2shNtvOwK8balLQ4uY3iJC8PbXBR3zlku47xJI8AR2KvMljI145veYWUvwxm24EYmrwWZha0YTHrHU1vF5rH81VTIf8VKKNBa9M7HPEZa24upvj4QZkNNmQ/xbOOrMCs+mmUBMgwDqrNvBPYyCWW8YwyG3PNlpty61BQuW+9lMIMQzEdUwbzLV+O5vdL+ctAWnxmNtfEUpDbSWqCMXcb/pH1MiyYeCYw+PtQib5RTKajZbDSsrCXwYZsApRdu5S2mGz8tkS9QxFAUAvxcvcK0pV4rrRO0TucE4q3hLglt5ZltXb+uW9wt+QQ/ZA1BXz1sH8V8Fn5KycHc2KivnEJAEIqrNrmwhUbYsII495onKjEcrf1cj5Wd1IWOvkCmyJyHEVFhI4coXP9+rCed8gmQJkNq6T8ZSCLAps4pDVzk/08rIrBxsa/ZHqijwuGtfLTjU4OdwzZLmQsSW6ISYYt/0uorQ3fihVS/jKQLftiaWk3U1zQhtngXeY88zguNU3k+WA5dVqr3uEIwJqdjTkxEW9pWVjPa4gfxd/97nfk5eXhcDiYMWMGa9euPenxb7zxBvn5+TgcDiZMmEBJSUm/r2kmSFOCfEAawV61gUXBTXzdMpE8U3Ss13JDdh12U4h71kkpzBAUE2ROhC1v0bZkCQQCOMbL7E4jaGozs2VfDOPdnSS7QnqH0yd3Wi8hFhtPBd6TUpgBKCYT9sLCsN8HpHsC9Pe//50FCxbwyCOPsGHDBiZNmsQll1xCfX39cY//+OOP+f73v8/NN9/MJ598wlVXXcVVV11FVT8XSvLGZOO3xofjLYgBCGhBXu7+iGwlicutk/QOp8/iLCo/dHtYWW/n9T0xeocj4OjeYB2NeN/6G1a3G3NCgt4RDXmhEKza6iIxLkSR27ilry9zKQ7utV7BOrWGd0LhLbuI0+MYP55Qc3NYz6l7AvSrX/2KW265hblz51JYWMiLL75IbGwsL7/88nGPf+6557j00ku55557KCgo4LHHHmPq1Kn89re/7dd1m12y+KERvBPYSL3m5Wb7+VgU3X8c+2VSfAezU5p5fFMc+3zGLtsNCYm5hMwptK/fIqM/BrFpbyxtnUdLX6bo6t6cbR7FN81TeSH4AYfUJr3DGfKsw4djDvOSFrrOM/b7/axfv57777+/5zGTycTs2bNZtWrVcV+zatUqFixY0OuxSy65hLfffvu4x3d3d9Pd3d3z/9bWozXddyuvxvFp7ADfgRioDEbwA6AGhRq9gzkNBUABQf75qkvvUM4Yvs5jV9v+7z8m4Izpy4jOL+FsUFoA2d5JdyoaU+NexbVzEdFR/Ort3xVYk5XC9yzPIX/i6O/qPJUfeb24XC4UZeCr8uuaADU0NBAKhUhPT+/1eHp6Otu3H39fltra2uMeX1tbe9zjn3jiCX76058e8/iDf7vuNKMWQkTao/+Yq3cIYsgKb9lFnL5NwKN/S6C+vp7U1NQBn89YK80Ngvvvv7/XiFFLSwtut5v9+/eTIPcI6Mrr9ZKTk8OBAweIj5f7sfQm7WEc0hbGIW1hHJ+3hc0Wno2pdU2AUlJSMJvN1NXV9Xq8rq6OjIyM474mIyOjX8fb7Xbs9mO3LkhISJAfZoOIj4+XtjAQaQ/jkLYwDmkL4whH+Qt0vgnaZrMxbdo0li5d2vOYqqosXbqU4uLi476muLi41/EAS5YsOeHxQgghhBBfpnsJbMGCBdxwww1Mnz6ds88+m1//+te0t7czd+7Rmv/111/P8OHDeeKJJwC46667uOCCC3j22We5/PLLWbhwIevWreMPf/iDnm9DCCGEEFFE9wRozpw5HDlyhIcffpja2lomT55MWVlZz43O+/fvx/SF+ZPnnHMOf/3rX3nwwQd54IEHGDNmDG+//TZFfdzzx26388gjjxy3LCYiS9rCWKQ9jEPawjikLYwj3G2haLLMpRBCCCGGmChbmkoIIYQQYuAkARJCCCHEkCMJkBBCCCGGHEmAhBBCCDHknLEJ0BNPPMFZZ52Fy+UiLS2Nq666iurq6l7HdHV1MW/ePIYNG4bT6eTb3/72MYssioF74YUXmDhxYs9CYsXFxZSWlvY8L+2gnyeffBJFUZg/f37PY9IekfHoo4+iKEqvr/z8/9ukWdohsg4dOsQPfvADhg0bRkxMDBMmTGDdunU9z2uaxsMPP0xmZiYxMTHMnj2bnTt36hjxmSsvL++YvqEoCvPmzQPC1zfO2ASooqKCefPmsXr1apYsWUIgEODiiy+mvb2955gf/ehHvPfee7zxxhtUVFRw+PBhrr76ah2jPjNlZ2fz5JNPsn79etatW8eFF17IlVdeyZYtWwBpB71UVlby+9//nokTJ/Z6XNojcsaPH4/H4+n5+uijj3qek3aInObmZs4991ysViulpaVs3bqVZ599lqSkpJ5jnn76aZ5//nlefPFF1qxZQ1xcHJdccgldXV06Rn5mqqys7NUvlixZAsA111wDhLFvaENEfX29BmgVFRWapmlaS0uLZrVatTfeeKPnmG3btmmAtmrVKr3CHDKSkpK0P/7xj9IOOmlra9PGjBmjLVmyRLvgggu0u+66S9M06ReR9Mgjj2iTJk067nPSDpF17733auedd94Jn1dVVcvIyNB++ctf9jzW0tKi2e127W9/+1skQhzS7rrrLm3UqFGaqqph7Rtn7AjQl7W2tgKQnJwMwPr16wkEAsyePbvnmPz8fHJzc1m1apUuMQ4FoVCIhQsX0t7eTnFxsbSDTubNm8fll1/e6/sO0i8ibefOnWRlZTFy5EiuvfZa9u/fD0g7RNq7777L9OnTueaaa0hLS2PKlCm89NJLPc/X1NRQW1vbqz0SEhKYMWOGtMcg8/v9vP7669x0000oihLWvjEkEiBVVZk/fz7nnntuz4rRtbW12Gw2EhMTex2bnp5ObW2tDlGe2TZv3ozT6cRut3Prrbfy1ltvUVhYKO2gg4ULF7Jhw4ae7WW+SNojcmbMmMGrr75KWVkZL7zwAjU1NZx//vm0tbVJO0TYnj17eOGFFxgzZgzl5eXcdttt/Md//AevvfYaQM/3/PMdCj4n7TH43n77bVpaWrjxxhuB8H5G6b4VRiTMmzePqqqqXvV1EVnjxo1j48aNtLa28s9//pMbbriBiooKvcMacg4cOMBdd93FkiVLcDgceoczpF122WU9/544cSIzZszA7Xbzj3/8g5iYGB0jG3pUVWX69Ok8/vjjAEyZMoWqqipefPFFbrjhBp2jG9r+9Kc/cdlll5GVlRX2c5/xI0B33HEH77//Ph9++CHZ2dk9j2dkZOD3+2lpael1fF1dHRkZGRGO8sxns9kYPXo006ZN44knnmDSpEk899xz0g4Rtn79eurr65k6dSoWiwWLxUJFRQXPP/88FouF9PR0aQ+dJCYmMnbsWHbt2iX9IsIyMzMpLCzs9VhBQUFPSfLz7/mXZxpJewyuffv28cEHH/Bv//ZvPY+Fs2+csQmQpmnccccdvPXWWyxbtowRI0b0en7atGlYrVaWLl3a81h1dTX79++nuLg40uEOOaqq0t3dLe0QYRdddBGbN29m48aNPV/Tp0/n2muv7fm3tIc+fD4fu3fvJjMzU/pFhJ177rnHLJOyY8cO3G43ACNGjCAjI6NXe3i9XtasWSPtMYheeeUV0tLSuPzyy3seC2vfCPPN2oZx2223aQkJCdry5cs1j8fT89XR0dFzzK233qrl5uZqy5Yt09atW6cVFxdrxcXFOkZ9Zrrvvvu0iooKraamRtu0aZN23333aYqiaIsXL9Y0TdpBb1+cBaZp0h6R8uMf/1hbvny5VlNTo61cuVKbPXu2lpKSotXX12uaJu0QSWvXrtUsFov2i1/8Qtu5c6f2l7/8RYuNjdVef/31nmOefPJJLTExUXvnnXe0TZs2aVdeeaU2YsQIrbOzU8fIz1yhUEjLzc3V7r333mOeC1ffOGMTIOC4X6+88krPMZ2dndrtt9+uJSUlabGxsdq3vvUtzePx6Bf0Geqmm27S3G63ZrPZtNTUVO2iiy7qSX40TdpBb19OgKQ9ImPOnDlaZmamZrPZtOHDh2tz5szRdu3a1fO8tENkvffee1pRUZFmt9u1/Px87Q9/+EOv51VV1R566CEtPT1ds9vt2kUXXaRVV1frFO2Zr7y8XAOO+z0OV99QNE3TBjxOJYQQQggRRc7Ye4CEEEIIIU5EEiAhhBBCDDmSAAkhhBBiyJEESAghhBBDjiRAQgghhBhyJAESQgghxJAjCZAQQgghhhxJgIQQQggx5EgCJIQQQoghRxIgIYRhzJo1i/nz5+sdhhBiCJAESAghhBBDjiRAQghDuPHGG6moqOC5555DURQURWHv3r1UVVVx2WWX4XQ6SU9P57rrrqOhoaHndbNmzeLOO+9k/vz5JCUlkZ6ezksvvUR7eztz587F5XIxevRoSktLe16zfPlyFEVh0aJFTJw4EYfDwcyZM6mqqtLjrQshdCAJkBDCEJ577jmKi4u55ZZb8Hg8eDweXC4XF154IVOmTGHdunWUlZVRV1fHd7/73V6vfe2110hJSWHt2rXceeed3HbbbVxzzTWcc845bNiwgYsvvpjrrruOjo6OXq+75557ePbZZ6msrCQ1NZUrrriCQCAQybcthNCJ7AYvhDCMWbNmMXnyZH79618D8POf/5wVK1ZQXl7ec8zBgwfJycmhurqasWPHMmvWLEKhECtWrAAgFAqRkJDA1VdfzZ///GcAamtryczMZNWqVcycOZPly5fz1a9+lYULFzJnzhwAmpqayM7O5tVXXz0mwRJCnHksegcghBAn8umnn/Lhhx/idDqPeW737t2MHTsWgIkTJ/Y8bjabGTZsGBMmTOh5LD09HYD6+vpe5yguLu75d3JyMuPGjWPbtm1hfQ9CCGOSBEgIYVg+n48rrriCp5566pjnMjMze/5ttVp7PacoSq/HFEUBQFXVQYpUCBFtJAESQhiGzWYjFAr1/H/q1Km8+eab5OXlYbGE/+Nq9erV5ObmAtDc3MyOHTsoKCgI+3WEEMYjN0ELIQwjLy+PNWvWsHfvXhoaGpg3bx5NTU18//vfp7Kykt27d1NeXs7cuXN7JUqn62c/+xlLly6lqqqKG2+8kZSUFK666qqBvxEhhOFJAiSEMIy7774bs9lMYWEhqamp+P1+Vq5cSSgU4uKLL2bChAnMnz+fxMRETKaBf3w9+eST3HXXXUybNo3a2lree+89bDZbGN6JEMLoZBaYEGLI+XwWWHNzM4mJiXqHI4TQgYwACSGEEGLIkQRICCGEEEOOlMCEEEIIMeTICJAQQgghhhxJgIQQQggx5EgCJIQQQoghRxIgIYQQQgw5kgAJIYQQYsiRBEgIIYQQQ44kQEIIIYQYciQBEkIIIcSQ8/8BHysv8Ze+0BsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -860,12 +920,9 @@ } ], "source": [ - "# sim.input[\"al\"] = 0.0\n", - "# sim.input[\"ti\"] = 0.0\n", - "# sim.input[\"density\"] = 1.05979\n", "sim.input[\"al\"] = 0.0\n", "sim.input[\"ti\"] = 0.0\n", - "sim.input[\"density\"] = 1.0569013636039\n", + "sim.input[\"density\"] = pow(1.0569013636039, 4)\n", "sim.compute()\n", "sim.print_state()\n", "display(sim.output[\"temp\"])\n", @@ -874,7 +931,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 412, "metadata": {}, "outputs": [ { @@ -913,175 +970,175 @@ " 20\n", " 0.00\n", " 0.0\n", - " 1.06250\n", + " 1.274429\n", " 20\n", - " 47.327945\n", - " 27.327945\n", + " 42.835502\n", + " 22.836\n", " \n", " \n", " 1\n", " 25\n", " 0.00\n", " 0.0\n", - " 1.05979\n", + " 1.261477\n", " 25\n", - " 47.611470\n", - " 22.611470\n", + " 43.331606\n", + " 18.332\n", " \n", " \n", " 2\n", " 35\n", " 0.00\n", " 0.0\n", - " 1.05404\n", + " 1.234322\n", " 35\n", - " 48.165031\n", - " 13.165031\n", + " 43.986276\n", + " 8.986\n", " \n", " \n", " 3\n", " 40\n", " 0.00\n", " 0.0\n", - " 1.05103\n", + " 1.220283\n", " 40\n", - " 48.432971\n", - " 8.432971\n", + " 44.153422\n", + " 4.153\n", " \n", " \n", " 4\n", " 45\n", " 0.00\n", " 0.0\n", - " 1.04794\n", + " 1.205995\n", " 45\n", - " 48.651848\n", - " 3.651848\n", + " 44.307892\n", + " 0.692\n", " \n", " \n", " 5\n", " 50\n", " 0.00\n", " 0.0\n", - " 1.04477\n", + " 1.191469\n", " 50\n", - " 48.779612\n", - " 1.220388\n", + " 44.452879\n", + " 5.547\n", " \n", " \n", " 6\n", " 60\n", " 0.00\n", " 0.0\n", - " 1.03826\n", + " 1.162049\n", " 60\n", - " 49.007364\n", - " 10.992636\n", + " 44.715013\n", + " 15.285\n", " \n", " \n", " 7\n", " 65\n", " 0.00\n", " 0.0\n", - " 1.03484\n", + " 1.146814\n", " 65\n", - " 49.109219\n", - " 15.890781\n", + " 44.849617\n", + " 20.150\n", " \n", " \n", " 8\n", " 70\n", " 0.00\n", " 0.0\n", - " 1.03182\n", + " 1.133485\n", " 70\n", - " 49.189167\n", - " 20.810833\n", + " 44.968670\n", + " 25.031\n", " \n", " \n", " 9\n", " 20\n", " 0.05\n", " 0.0\n", - " 1.08755\n", + " 1.398933\n", " 20\n", - " 43.235730\n", - " 23.235730\n", + " 25.524792\n", + " 5.525\n", " \n", " \n", " 10\n", " 45\n", " 0.05\n", " 0.0\n", - " 1.07105\n", + " 1.315949\n", " 45\n", - " 46.159681\n", - " 1.159681\n", + " 40.896200\n", + " 4.104\n", " \n", " \n", " 11\n", " 50\n", " 0.05\n", " 0.0\n", - " 1.06760\n", + " 1.299075\n", " 50\n", - " 46.745501\n", - " 3.254499\n", + " 41.694263\n", + " 8.306\n", " \n", " \n", " 12\n", " 55\n", " 0.05\n", " 0.0\n", - " 1.06409\n", + " 1.282075\n", " 55\n", - " 47.153699\n", - " 7.846301\n", + " 42.495068\n", + " 12.505\n", " \n", " \n", " 13\n", " 65\n", " 0.05\n", " 0.0\n", - " 1.05691\n", + " 1.247820\n", " 65\n", - " 47.983498\n", - " 17.016502\n", + " 43.688436\n", + " 21.312\n", " \n", " \n", " 14\n", " 70\n", " 0.05\n", " 0.0\n", - " 1.05291\n", + " 1.229037\n", " 70\n", - " 48.428651\n", - " 21.571349\n", + " 44.051266\n", + " 25.949\n", " \n", " \n", "\n", "" ], "text/plain": [ - " T Al2O3 TiO2 Density Real Inferred RMSE\n", - "0 20 0.00 0.0 1.06250 20 47.327945 27.327945\n", - "1 25 0.00 0.0 1.05979 25 47.611470 22.611470\n", - "2 35 0.00 0.0 1.05404 35 48.165031 13.165031\n", - "3 40 0.00 0.0 1.05103 40 48.432971 8.432971\n", - "4 45 0.00 0.0 1.04794 45 48.651848 3.651848\n", - "5 50 0.00 0.0 1.04477 50 48.779612 1.220388\n", - "6 60 0.00 0.0 1.03826 60 49.007364 10.992636\n", - "7 65 0.00 0.0 1.03484 65 49.109219 15.890781\n", - "8 70 0.00 0.0 1.03182 70 49.189167 20.810833\n", - "9 20 0.05 0.0 1.08755 20 43.235730 23.235730\n", - "10 45 0.05 0.0 1.07105 45 46.159681 1.159681\n", - "11 50 0.05 0.0 1.06760 50 46.745501 3.254499\n", - "12 55 0.05 0.0 1.06409 55 47.153699 7.846301\n", - "13 65 0.05 0.0 1.05691 65 47.983498 17.016502\n", - "14 70 0.05 0.0 1.05291 70 48.428651 21.571349" + " T Al2O3 TiO2 Density Real Inferred RMSE\n", + "0 20 0.00 0.0 1.274429 20 42.835502 22.836\n", + "1 25 0.00 0.0 1.261477 25 43.331606 18.332\n", + "2 35 0.00 0.0 1.234322 35 43.986276 8.986\n", + "3 40 0.00 0.0 1.220283 40 44.153422 4.153\n", + "4 45 0.00 0.0 1.205995 45 44.307892 0.692\n", + "5 50 0.00 0.0 1.191469 50 44.452879 5.547\n", + "6 60 0.00 0.0 1.162049 60 44.715013 15.285\n", + "7 65 0.00 0.0 1.146814 65 44.849617 20.150\n", + "8 70 0.00 0.0 1.133485 70 44.968670 25.031\n", + "9 20 0.05 0.0 1.398933 20 25.524792 5.525\n", + "10 45 0.05 0.0 1.315949 45 40.896200 4.104\n", + "11 50 0.05 0.0 1.299075 50 41.694263 8.306\n", + "12 55 0.05 0.0 1.282075 55 42.495068 12.505\n", + "13 65 0.05 0.0 1.247820 65 43.688436 21.312\n", + "14 70 0.05 0.0 1.229037 70 44.051266 25.949" ] }, - "execution_count": 111, + "execution_count": 412, "metadata": {}, "output_type": "execute_result" } @@ -1103,17 +1160,17 @@ " return math.sqrt(metrics.mean_squared_error([row[\"Real\"]], [row[\"Inferred\"]]))\n", "\n", "\n", - "result_train = density_train.copy()\n", + "result_train = train.copy()\n", "result_train[\"Real\"] = result_train[\"T\"]\n", "result_train[\"Inferred\"] = result_train.apply(fuzzy_pred, axis=1)\n", "result_train[\"RMSE\"] = result_train.apply(rmse, axis=1)\n", - "result_test = result_test.round({\"RMSE\": 3})\n", + "result_train = result_train.round({\"RMSE\": 3})\n", "result_train.head(15)" ] }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 413, "metadata": {}, "outputs": [ { @@ -1152,226 +1209,225 @@ " 30\n", " 0.00\n", " 0.00\n", - " 1.05696\n", + " 1.248056\n", " 30\n", - " 47.891388\n", - " 17.891\n", + " 43.682360\n", + " 13.682\n", " \n", " \n", " 1\n", " 55\n", " 0.00\n", " 0.00\n", - " 1.04158\n", + " 1.176984\n", " 55\n", - " 48.896868\n", - " 6.103\n", + " 44.584574\n", + " 10.415\n", " \n", " \n", " 2\n", " 25\n", " 0.05\n", " 0.00\n", - " 1.08438\n", + " 1.382694\n", " 25\n", - " 43.763385\n", - " 18.763\n", + " 32.410898\n", + " 7.411\n", " \n", " \n", " 3\n", " 30\n", " 0.05\n", " 0.00\n", - " 1.08112\n", + " 1.366141\n", " 30\n", - " 44.343497\n", - " 14.343\n", + " 36.212359\n", + " 6.212\n", " \n", " \n", " 4\n", " 35\n", " 0.05\n", " 0.00\n", - " 1.07781\n", + " 1.349487\n", " 35\n", - " 44.942768\n", - " 9.943\n", + " 38.572188\n", + " 3.572\n", " \n", " \n", " 5\n", " 40\n", " 0.05\n", " 0.00\n", - " 1.07446\n", + " 1.332788\n", " 40\n", - " 45.551433\n", - " 5.551\n", + " 39.981475\n", + " 0.019\n", " \n", " \n", " 6\n", " 60\n", " 0.05\n", " 0.00\n", - " 1.06053\n", + " 1.265004\n", " 60\n", - " 47.561265\n", - " 12.439\n", + " 43.236968\n", + " 16.763\n", " \n", " \n", " 7\n", " 35\n", " 0.30\n", " 0.00\n", - " 1.17459\n", + " 1.903466\n", " 35\n", - " 41.725073\n", - " 6.725\n", + " 50.833080\n", + " 15.833\n", " \n", " \n", " 8\n", " 65\n", " 0.30\n", " 0.00\n", - " 1.14812\n", + " 1.737597\n", " 65\n", - " 41.027110\n", - " 23.973\n", + " 51.763969\n", + " 13.236\n", " \n", " \n", " 9\n", " 45\n", " 0.00\n", " 0.05\n", - " 1.07424\n", + " 1.331697\n", " 45\n", - " 45.590985\n", - " 0.591\n", + " 39.657149\n", + " 5.343\n", " \n", " \n", " 10\n", " 50\n", " 0.00\n", " 0.05\n", - " 1.07075\n", + " 1.314475\n", " 50\n", - " 46.212753\n", - " 3.787\n", + " 40.856200\n", + " 9.144\n", " \n", " \n", " 11\n", " 55\n", " 0.00\n", " 0.05\n", - " 1.06721\n", + " 1.297178\n", " 55\n", - " 46.792589\n", - " 8.207\n", + " 41.786269\n", + " 13.214\n", " \n", " \n", " 12\n", " 20\n", " 0.00\n", " 0.30\n", - " 1.22417\n", + " 2.245779\n", " 20\n", - " 28.333333\n", - " 8.333\n", + " 32.500000\n", + " 12.500\n", " \n", " \n", " 13\n", " 30\n", " 0.00\n", " 0.30\n", - " 1.21310\n", + " 2.165641\n", " 30\n", - " 32.052213\n", - " 2.052\n", + " 32.500000\n", + " 2.500\n", " \n", " \n", " 14\n", " 40\n", " 0.00\n", " 0.30\n", - " 1.20265\n", + " 2.091978\n", " 40\n", - " 35.887897\n", - " 4.112\n", + " 32.500000\n", + " 7.500\n", " \n", " \n", " 15\n", " 60\n", " 0.00\n", " 0.30\n", - " 1.18265\n", + " 1.956253\n", " 60\n", - " 40.494729\n", - " 19.505\n", + " 32.500000\n", + " 27.500\n", " \n", " \n", " 16\n", " 70\n", " 0.00\n", " 0.30\n", - " 1.17261\n", + " 1.890664\n", " 70\n", - " 42.007217\n", - " 27.993\n", + " 63.573515\n", + " 6.426\n", " \n", " \n", "\n", "" ], "text/plain": [ - " T Al2O3 TiO2 Density Real Inferred RMSE\n", - "0 30 0.00 0.00 1.05696 30 47.891388 17.891\n", - "1 55 0.00 0.00 1.04158 55 48.896868 6.103\n", - "2 25 0.05 0.00 1.08438 25 43.763385 18.763\n", - "3 30 0.05 0.00 1.08112 30 44.343497 14.343\n", - "4 35 0.05 0.00 1.07781 35 44.942768 9.943\n", - "5 40 0.05 0.00 1.07446 40 45.551433 5.551\n", - "6 60 0.05 0.00 1.06053 60 47.561265 12.439\n", - "7 35 0.30 0.00 1.17459 35 41.725073 6.725\n", - "8 65 0.30 0.00 1.14812 65 41.027110 23.973\n", - "9 45 0.00 0.05 1.07424 45 45.590985 0.591\n", - "10 50 0.00 0.05 1.07075 50 46.212753 3.787\n", - "11 55 0.00 0.05 1.06721 55 46.792589 8.207\n", - "12 20 0.00 0.30 1.22417 20 28.333333 8.333\n", - "13 30 0.00 0.30 1.21310 30 32.052213 2.052\n", - "14 40 0.00 0.30 1.20265 40 35.887897 4.112\n", - "15 60 0.00 0.30 1.18265 60 40.494729 19.505\n", - "16 70 0.00 0.30 1.17261 70 42.007217 27.993" + " T Al2O3 TiO2 Density Real Inferred RMSE\n", + "0 30 0.00 0.00 1.248056 30 43.682360 13.682\n", + "1 55 0.00 0.00 1.176984 55 44.584574 10.415\n", + "2 25 0.05 0.00 1.382694 25 32.410898 7.411\n", + "3 30 0.05 0.00 1.366141 30 36.212359 6.212\n", + "4 35 0.05 0.00 1.349487 35 38.572188 3.572\n", + "5 40 0.05 0.00 1.332788 40 39.981475 0.019\n", + "6 60 0.05 0.00 1.265004 60 43.236968 16.763\n", + "7 35 0.30 0.00 1.903466 35 50.833080 15.833\n", + "8 65 0.30 0.00 1.737597 65 51.763969 13.236\n", + "9 45 0.00 0.05 1.331697 45 39.657149 5.343\n", + "10 50 0.00 0.05 1.314475 50 40.856200 9.144\n", + "11 55 0.00 0.05 1.297178 55 41.786269 13.214\n", + "12 20 0.00 0.30 2.245779 20 32.500000 12.500\n", + "13 30 0.00 0.30 2.165641 30 32.500000 2.500\n", + "14 40 0.00 0.30 2.091978 40 32.500000 7.500\n", + "15 60 0.00 0.30 1.956253 60 32.500000 27.500\n", + "16 70 0.00 0.30 1.890664 70 63.573515 6.426" ] }, - "execution_count": 112, + "execution_count": 413, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "result_test = density_test.copy()\n", + "result_test = test.copy()\n", "result_test[\"Real\"] = result_test[\"T\"]\n", "result_test[\"Inferred\"] = result_test.apply(fuzzy_pred, axis=1)\n", "result_test[\"RMSE\"] = result_test.apply(rmse, axis=1)\n", - "# result_test[\"RMSE\"] = result_test[\"RMSE\"].apply(lambda x: \"{:,.4f}\".format(x))\n", "result_test = result_test.round({\"RMSE\": 3})\n", "result_test" ] }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 414, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'RMSE_train': 15.400435161512734,\n", - " 'RMSE_test': 13.625552728224925,\n", - " 'RMAE_test': 3.345881099161754,\n", - " 'R2_test': 0.12969191263186874}" + "{'RMSE_train': 13.83186033639128,\n", + " 'RMSE_test': 11.911189650488444,\n", + " 'RMAE_test': 3.174074819493516,\n", + " 'R2_test': 0.3349182345631472}" ] }, - "execution_count": 113, + "execution_count": 414, "metadata": {}, "output_type": "execute_result" }