27 lines
1.1 KiB
Python

from sklearn import tree
from backend.dataset.model import SplittedDataset
from backend.metric import get_metric, regression
from backend.regression.model import RegressionResult
from backend.tree import get_rules, get_tree
from backend.tree.model import DecisionTreeParams
def fit_regression_model(
data: SplittedDataset,
params: DecisionTreeParams,
) -> RegressionResult:
model = tree.DecisionTreeRegressor(**vars(params))
fitted_model = model.fit(data.X_train.values, data.y_train.values.ravel())
y = (data.y_train, fitted_model.predict(data.X_train.values))
y_pred = (data.y_test, fitted_model.predict(data.X_test.values))
return RegressionResult(
mse=get_metric(regression.mse, y, y_pred),
mae=get_metric(regression.mae, y, y_pred),
rmse=get_metric(regression.rmse, y, y_pred),
rmae=get_metric(regression.rmae, y, y_pred),
r2=get_metric(regression.r2, y, y_pred),
rules=get_rules(fitted_model, list(data.X_train.columns)),
tree=get_tree(fitted_model, list(data.X_train.columns)),
)