from sklearn import tree from backend.dataset.model import SplittedDataset from backend.metric import get_metric, regression from backend.regression.model import RegressionResult from backend.tree import get_rules, get_tree from backend.tree.model import DecisionTreeParams def fit_regression_model( data: SplittedDataset, params: DecisionTreeParams, ) -> RegressionResult: model = tree.DecisionTreeRegressor(**vars(params)) fitted_model = model.fit(data.X_train.values, data.y_train.values.ravel()) y = (data.y_train, fitted_model.predict(data.X_train.values)) y_pred = (data.y_test, fitted_model.predict(data.X_test.values)) return RegressionResult( mse=get_metric(regression.mse, y, y_pred), mae=get_metric(regression.mae, y, y_pred), rmse=get_metric(regression.rmse, y, y_pred), rmae=get_metric(regression.rmae, y, y_pred), r2=get_metric(regression.r2, y, y_pred), rules=get_rules(fitted_model, list(data.X_train.columns)), tree=get_tree(fitted_model, list(data.X_train.columns)), )