VideoAnalysis/main.py

89 lines
3.2 KiB
Python
Raw Normal View History

2023-05-20 13:23:06 +04:00
import os
import sys
import cv2 as cv
import numpy as np
import requests
import torch
import imageWorking
import neuralNetwork
import ontologyWorking
url = 'http://kb.athene.tech/api/1.0/ontology/'
img_path = 'data'
img_size = (1280, 720) # Размер изображения для нормализации.
2023-05-20 13:23:06 +04:00
def analyze_file(uid: str, image_path: str) -> None:
'''
Анализирует файл и выводит результат в консоль.
@param uid: УИД онтологии.
@param url: Базовый URL сервиса.
'''
if not ontologyWorking.is_ontology_exists(uid, url):
2023-05-20 13:23:06 +04:00
raise Exception(f'Онтология с uid {uid} не существует')
if not os.path.isfile(image_path):
raise Exception(f'Изображение {image_path} не существует')
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model.names = neuralNetwork.rename_entity(model.names)
# Распознавание изображения.
2023-05-20 13:23:06 +04:00
results = model(imageWorking.get_image_as_array(image_path))
# Создание аксиом онтологии на основе результатов распознавания.
2023-05-20 13:23:06 +04:00
object_properties = list()
data_properties = list()
for i, res in enumerate(results.pred):
results_ndarray = np.array(res)
request = ontologyWorking.get_request_data(model.names, results_ndarray)
object_properties += request[0]
data_properties += request[1]
# Формирование данных для запроса к сервису работы с онтологиями.
2023-05-20 13:23:06 +04:00
data = {
'data':
{
'objectPropertyAssertions': object_properties,
'dataPropertyAssertions': data_properties
}
}
result = {
'QueryGetNotEmpty': '',
'QueryGetCheck': '',
'QueryGetEmpty': ''
}
2023-05-28 01:07:34 +04:00
params = '&'.join([f'names={query}' for query in result.keys()])
# Выполнение запроса.
2023-05-28 01:07:34 +04:00
response = requests.post(url + f'{uid}/query/multi?{params}', json=data).json()
if response['error']:
raise Exception(response['error'])
for query in response['response']:
result[query] = [resultSQWRL['name']['value'] for resultSQWRL in response['response'][query]['rows']]
print(f'Запрос выполнен')
2023-05-20 13:23:06 +04:00
# Вывод результата.
2023-05-20 13:23:06 +04:00
print()
2023-05-28 01:07:34 +04:00
print('Результат:')
2023-05-20 13:23:06 +04:00
if result['QueryGetNotEmpty']:
print('Аудитория занята')
elif result['QueryGetCheck']:
print('Аудиторию необходимо проверить')
elif result['QueryGetEmpty']:
print('Аудитория пустая')
else:
print('Неизвестное состояние')
# Вывод изображения.
2023-05-20 13:23:06 +04:00
cv.imshow('result', results.render()[0][:, :, ::-1])
cv.waitKey(0)
cv.destroyAllWindows()
# Точка входа в приложение.
2023-05-20 13:23:06 +04:00
if __name__ == '__main__':
if len(sys.argv) != 3:
print(f'Запуск: {sys.argv[0]} <Ontology UID> <Image path>')
exit(1)
analyze_file(sys.argv[1], sys.argv[2])