gym-tic-tac-toe/gym_tic_tac_toe/envs/tic_tac_toe_env.py

65 lines
2.1 KiB
Python
Raw Normal View History

2017-04-04 01:51:35 +04:00
import gym
from gym import spaces
import numpy as np
class TicTacToeEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self):
self.action_space = spaces.Tuple((spaces.Discrete(2), spaces.Discrete(9)))
self.observation_space = spaces.Discrete(3)#Tuple(spaces.Discrete(3), spaces.Discrete(9))
def _step(self, action):
done = False
reward = 0
p, square = action
# p = p*2 - 1
# check move legality
proposed = self.state['board'][square]
om = self.state['on_move']
print ("on move: ", om)
if (proposed != 0): # wrong player, not empty
print("illegal move ", action, ". (square occupied): ", square)
done = True
reward = -om # player who did NOT make the illegal move
if (p != om): # wrong player, not empty
print("illegal move ", action, " not on move: ", p)
done = True
reward = -om # player who did NOT make the illegal move
else:
self.state['board'][square] = p
self.state['on_move'] = -p
# check game over
for i in range(3):
if (self.state['board'][i * 3] == p and self.state['board'][i*3 + 1] == p and self.state['board'][i*3+2] == 2):
reward = p
done = True
break
#TODO other cases
return np.array(self.state), reward, done, {}
def _reset(self):
self.state = {}
self.state['board'] = [0,0,0,0,0,0,0,0,0]
self.state['on_move'] = 1
return self.state
def _render(self, mode='human', close=False):
if close:
return
print("on move: " , self.state['on_move'])
for i in range (9):
print (self.state['board'][i], end=" ")
print()
def move_generator(self):
moves = []
for i in range (9):
if (self.state.state['board'][i]== 0):
p = self.state.on_move
if (p == 2):
p = -1
m = [p, i]
moves.append(m)