diff --git a/lec3-3-results.ipynb b/lec3-3-results.ipynb
index c87b8e6..6a08c24 100644
--- a/lec3-3-results.ipynb
+++ b/lec3-3-results.ipynb
@@ -11,7 +11,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -65,7 +65,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -273,7 +273,7 @@
"cardio 0.000000 1.000000 1.000000 "
]
},
- "execution_count": 20,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -293,7 +293,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 4,
"metadata": {
"id": "1BXW8--WKI3b"
},
@@ -319,7 +319,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -348,7 +348,7 @@
"
Dependent Variable: | cardio | Pseudo R-squared: | 0.194 | \n",
"\n",
"\n",
- " Date: | 2025-04-24 09:36 | AIC: | 66539.7930 | \n",
+ " Date: | 2025-04-24 12:35 | AIC: | 66539.7930 | \n",
"
\n",
"\n",
" No. Observations: | 59500 | BIC: | 66647.7178 | \n",
@@ -417,7 +417,7 @@
"\\hline\n",
"Model: & Logit & Method: & MLE \\\\\n",
"Dependent Variable: & cardio & Pseudo R-squared: & 0.194 \\\\\n",
- "Date: & 2025-04-24 09:36 & AIC: & 66539.7930 \\\\\n",
+ "Date: & 2025-04-24 12:35 & AIC: & 66539.7930 \\\\\n",
"No. Observations: & 59500 & BIC: & 66647.7178 \\\\\n",
"Df Model: & 11 & Log-Likelihood: & -33258. \\\\\n",
"Df Residuals: & 59488 & LL-Null: & -41242. \\\\\n",
@@ -457,7 +457,7 @@
"=================================================================\n",
"Model: Logit Method: MLE \n",
"Dependent Variable: cardio Pseudo R-squared: 0.194 \n",
- "Date: 2025-04-24 09:36 AIC: 66539.7930\n",
+ "Date: 2025-04-24 12:35 AIC: 66539.7930\n",
"No. Observations: 59500 BIC: 66647.7178\n",
"Df Model: 11 Log-Likelihood: -33258. \n",
"Df Residuals: 59488 LL-Null: -41242. \n",
@@ -483,7 +483,7 @@
"\"\"\""
]
},
- "execution_count": 22,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -507,7 +507,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -534,7 +534,7 @@
"dtype: float64"
]
},
- "execution_count": 23,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -545,6 +545,87 @@
"np.exp(log_result.params).sort_values(ascending=False)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Вычисление среднего квадратичного отклонения значений признаков"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "age 6.758844\n",
+ "gender 0.476715\n",
+ "height 7.821231\n",
+ "weight 13.472656\n",
+ "ap_hi 16.366878\n",
+ "ap_lo 9.071287\n",
+ "cholesterol 0.682134\n",
+ "gluc 0.571848\n",
+ "smoke 0.284051\n",
+ "alco 0.225918\n",
+ "active 0.397418\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "np.std(X_train, 0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Вычисление значимости признаков относительно текущей модели\n",
+ "\n",
+ "Признак const был добавлен искусственно и должен быть исключен из рассмотрения\n",
+ "\n",
+ "Признак gender имеет небольшую статистическую значимость (P>|z| = 0.6515, много больше 5 %) и поэтому исключается из рассмотрения"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "ap_hi 0.839295\n",
+ "age 0.348905\n",
+ "cholesterol 0.337191\n",
+ "ap_lo 0.189439\n",
+ "weight 0.171091\n",
+ "active 0.087144\n",
+ "gluc 0.070209\n",
+ "smoke 0.047513\n",
+ "alco 0.043046\n",
+ "height 0.034657\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "coefs = log_result.params.drop(labels=[\"const\",\"gender\"])\n",
+ "stdv = np.std(X_train, 0).drop(labels=\"gender\")\n",
+ "abs(coefs * stdv).sort_values(ascending=False)"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {
@@ -691,7 +772,7 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -929,7 +1010,7 @@
},
{
"cell_type": "code",
- "execution_count": 46,
+ "execution_count": null,
"metadata": {},
"outputs": [
{