diff --git a/lec3-3-results.ipynb b/lec3-3-results.ipynb index c87b8e6..6a08c24 100644 --- a/lec3-3-results.ipynb +++ b/lec3-3-results.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -273,7 +273,7 @@ "cardio 0.000000 1.000000 1.000000 " ] }, - "execution_count": 20, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -293,7 +293,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 4, "metadata": { "id": "1BXW8--WKI3b" }, @@ -319,7 +319,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -348,7 +348,7 @@ " Dependent Variable: cardio Pseudo R-squared: 0.194 \n", "\n", "\n", - " Date: 2025-04-24 09:36 AIC: 66539.7930\n", + " Date: 2025-04-24 12:35 AIC: 66539.7930\n", "\n", "\n", " No. Observations: 59500 BIC: 66647.7178\n", @@ -417,7 +417,7 @@ "\\hline\n", "Model: & Logit & Method: & MLE \\\\\n", "Dependent Variable: & cardio & Pseudo R-squared: & 0.194 \\\\\n", - "Date: & 2025-04-24 09:36 & AIC: & 66539.7930 \\\\\n", + "Date: & 2025-04-24 12:35 & AIC: & 66539.7930 \\\\\n", "No. Observations: & 59500 & BIC: & 66647.7178 \\\\\n", "Df Model: & 11 & Log-Likelihood: & -33258. \\\\\n", "Df Residuals: & 59488 & LL-Null: & -41242. \\\\\n", @@ -457,7 +457,7 @@ "=================================================================\n", "Model: Logit Method: MLE \n", "Dependent Variable: cardio Pseudo R-squared: 0.194 \n", - "Date: 2025-04-24 09:36 AIC: 66539.7930\n", + "Date: 2025-04-24 12:35 AIC: 66539.7930\n", "No. Observations: 59500 BIC: 66647.7178\n", "Df Model: 11 Log-Likelihood: -33258. \n", "Df Residuals: 59488 LL-Null: -41242. \n", @@ -483,7 +483,7 @@ "\"\"\"" ] }, - "execution_count": 22, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -507,7 +507,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -534,7 +534,7 @@ "dtype: float64" ] }, - "execution_count": 23, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -545,6 +545,87 @@ "np.exp(log_result.params).sort_values(ascending=False)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Вычисление среднего квадратичного отклонения значений признаков" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "age 6.758844\n", + "gender 0.476715\n", + "height 7.821231\n", + "weight 13.472656\n", + "ap_hi 16.366878\n", + "ap_lo 9.071287\n", + "cholesterol 0.682134\n", + "gluc 0.571848\n", + "smoke 0.284051\n", + "alco 0.225918\n", + "active 0.397418\n", + "dtype: float64" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.std(X_train, 0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Вычисление значимости признаков относительно текущей модели\n", + "\n", + "Признак const был добавлен искусственно и должен быть исключен из рассмотрения\n", + "\n", + "Признак gender имеет небольшую статистическую значимость (P>|z| = 0.6515, много больше 5 %) и поэтому исключается из рассмотрения" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ap_hi 0.839295\n", + "age 0.348905\n", + "cholesterol 0.337191\n", + "ap_lo 0.189439\n", + "weight 0.171091\n", + "active 0.087144\n", + "gluc 0.070209\n", + "smoke 0.047513\n", + "alco 0.043046\n", + "height 0.034657\n", + "dtype: float64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coefs = log_result.params.drop(labels=[\"const\",\"gender\"])\n", + "stdv = np.std(X_train, 0).drop(labels=\"gender\")\n", + "abs(coefs * stdv).sort_values(ascending=False)" + ] + }, { "cell_type": "markdown", "metadata": { @@ -691,7 +772,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -929,7 +1010,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": {}, "outputs": [ {